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Abstract— In this paper we extend recent developments
in computational optimal transport to the setting of Rieman-
nian manifolds. In particular, we show how to learn optimal
transport maps from samples that relate probability distri-
butions defined on manifolds. Specializing these maps for
sampling conditional probability distributions provides an
ensemble approach for solving nonlinear filtering problems
defined on such geometries. The proposed computational
methodology is illustrated with examples of transport and
nonlinear filtering on Lie groups, including the circle S1, the
special Euclidean group SE(2), and the special orthogonal
group SO(3).

Index Terms— Optimal Transportation, Optimal Control,
Nonlinear Filtering, Riemannian manifolds.

I. INTRODUCTION

THE theory of optimal transport (OT) has emerged as
a powerful mathematical tool in a wide range of en-

gineering and control applications [2]. This is largely due
to the fact that it induces a natural and computationally
tractable geometry on the space of probability distributions [3],
[4]. The metric that the theory provides to quantify dis-
tance between distributions, the Wasserstein metric, gives rise
to natural geodesic flows and transport maps that can be
used to interpolate, average, and correspond distributions in
a physically meaningful sense. For these reasons, OT has
proven enabling for an ever expanding range of applications
in machine learning [4]–[6], and image processing [7]–[10],
besides ones in control and estimation [2], [11]–[13].

In this rapidly developing landscape of OT techniques and
applications, neural networks and stochastic optimization have
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come to provide a potentially transformative framework for
the development of efficient and scalable numerical algo-
rithms [14]–[18]. The focus so far on utilizing such techniques
however has been limited to applications of OT on Euclidean
spaces. Yet, optimal transport can equally well be considered
on manifolds, that are especially relevant in control and robotic
applications. A manifold structure is naturally imposed by
geometric constraints, as in attitude estimation of aircraft [19],
[20], localization of mobile robots [21], [22], and visual
tracking of humans and objects [23], [24].

Thus, one of the goals of the present paper is to develop a
computational framework for OT in the setting of Riemannian
manifolds [25], [26] with special attention to matrix Lie-
groups, as these encompass the majority of the motivating ap-
plications. A second goal of the paper is to use the framework
for sampling conditional distributions, in order to perform
nonlinear filtering on Riemannian manifolds.

Specifically, we make the following key contributions:
i) We propose a sample-based computational methodology

for computing OT maps on Riemannian manifolds. Our
proposed methodology extends the min-max formulation
of [17] by combining it with McCann’s characterization
of optimal transport maps [25].

ii) We propose a sample-based and likelihood-free method
to sample conditional distributions on Riemannian man-
ifolds. In order to do so, we use the recently introduced
framework of block-triangular transport maps, that is used
in the context of conditional generative models [27], [28]
and nonlinear filtering [29], [30].

iii) We illustrate our proposed algorithms on several nu-
merical examples on the circle, special Euclidean group
SE(2), and the special orthogonal group SO(3).

II. PROBLEM FORMULATION AND BACKGROUND

Let M be a smooth connected manifold without boundary
that is equipped with the Riemannian metric ⟨·, ·⟩g . Let d(z, z′)
denote the geodesic distance for any z, z′ ∈ M . We are
interested in solving the following two problems.
Optimal control: This is the problem to steer a random
process X(t), taking values in M, from an initial probability
distribution P to a terminal probability distribution Q. It is
formulated as follows:

min
u

E
[∫ 1

0

∥u(t)∥2g dt
]
,

s.t Ẋ(t) = u(t), X(0) ∼ P, X(1) ∼ Q,

(1)
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where the control input u(t) ∈ TX(t)M for all t ∈ [0, 1], and
the control cost is the square of the Riemannian norm ∥u∥g :=√
⟨u, u⟩g . In practice, such problems arise when controlling

an ensemble of agents or a swarm of robots.
Optimal filtering: The second problem we are interested is
to compute the conditional distribution of a hidden random
variable X ∈ M given an observed random variable Y ∈
Rm. The conditional distribution of X|Y , i.e., the posterior
distribution, is given by Bayes’ law as

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
, (2)

where PX is the prior probability distribution of X , PY |X
is the likelihood of observing Y given X , and PY (y) =∫
M PY |X(y|x)PX(x)dx is the probability distribution of Y .

Sampling the conditional distribution in (2) is an essential
step in many nonlinear ensemble filtering algorithms [31].
Classic algorithms include particle filters (or sequential Monte
Carlo methods), which suffer from weight degeneracy [32],
[33], and Kalman-filter-type algorithms, which often fail to
represent multi-modal distributions [21], [34]–[36].

In Section III we will show that, in general, both problems
can be formulated as problems of OT on Riemannian mani-
folds. But before we proceed, we review next some key results
of the theory of OT on Riemannian manifolds.

A. Background on OT on Riemannian manifolds

Given two probability distributions P and Q on M, the
Monge optimal transportation problem seeks a map T : M →
M that solves the optimization problem

inf
T∈T (P,Q)

EZ∼P [c(Z, T (Z))], (3)

where T (P,Q) := {T : M → M; T#P = Q} is the set of all
transport maps pushing forward P to Q, and c : M×M → R
is a lower semi-continuous cost function that is bounded from
below. To account for the challenging nonlinear constraint
in (3), the Monge problem is relaxed by replacing deterministic
transport maps with stochastic couplings and solving

inf
π∈Π(P,Q)

E(Z,Z′)∼π[c(Z,Z
′)], (4)

instead, where Π(P,Q) denotes the set of all joint distributions
on M×M with marginals P and Q. This relaxation, due to
Kantorovich, turns the Monge problem into a linear program,
whose dual becomes

sup
(ϕ,ψ)∈Lipc

EZ∼P [ϕ(Z)] + EZ′∼Q[ψ(Z
′)], (5)

where Lipc is the set of pairs of functions ϕ, ψ from M → R,

Lipc := {(ϕ, ψ) | ϕ(z) + ψ(z′) ≤ c(z, z′), ∀z, z′ ∈ M}.

Definition 2.1: Given a function ϕ : M → R ∪ {±∞}, the
inf-c convolution is given by

ϕc(z′) = inf
z∈M

[c(z, z′)− ϕ(z)] .

Moreover, ϕ is said to be c-concave if ∃ψ such that ϕ = ψc.

Theorem 2.2 (McCann [25]): Consider the Monge prob-
lem (3) with cost c(z, z′) = d(z, z′)2/2, and assume that
P is absolutely continuous with respect to the volume mea-
sure on M. Then, there exists a unique minimizer T (z) =
expz[−∇ϕ(z)] where ϕ is c-concave and the pair (ϕ, ϕc)
maximize the dual Kantorovich problem (5).

Remark 2.3: For the case where M = Rn and c(z, z′) =
1
2∥z − z′∥22, the optimal map is given by T (z) = z −∇ϕ(z),
where ∥z∥22/2−ϕ(z) is a convex function; this is a celebrated
result due to Brenier [37].

B. Computational methods for OT on manifolds
The majority of existing computational algorithms for OT

on manifolds are concerned with constructing normalizing
flows and c-concave potential functions [38]–[41]. For in-
stance, [38] proposes a general method to represent c-concave
functions by taking the inf-c convolution of a piecewise
constant function, reference [39] introduces a set of diffeo-
morphisms on circles, tori, and spheres that are used as
building blocks of a neural network to represent c-concave
functions, and reference [42] is concerned with implemen-
tation of diffusion models on Riemannian manifolds via a
variety of approaches that are based on projection, using a Lie-
algebra basis and coordinate vector-fields, in order to represent
general vector-fields. Lastly, [41] introduces the geodesic
distance layer, which generalizes the concept of linear layers
to manifolds, used as an input layer to a neural net to represent
vector-fields on manifolds.

In the present paper, we also use neural networks to repre-
sent transport maps on the given manifold. Our neural network
architectures, along with the special details for each example
that we present, are explained in Section IV.

III. SOLUTION METHODOLOGY

In this section, we present the OT formulation of the two
problems, optimal control and filtering, along with a stochastic
optimization formulation for their numerical solution.

A. Solution to the optimal control problem
The optimal control problem (1) is precisely the Benamou-

Brenier formulation of the optimal transport problem on a
Riemannian manifold [43]. The optimal cost coincides with the
optimal cost of the Kantorovich problem (4). By the Cauchy-
Schwarz inequality we have∫ 1

0

∥u(t)∥2g dt ≥ (

∫ 1

0

∥u(t)∥g dt)2 = d(X(0), X(1))2,

with equality when ∥u(t)∥g is constant and the trajectory is a
geodesic. Upon taking expectation of both sides and applying
the initial and terminal constraints, we have that

E
[∫ 1

0

∥u(t)∥2g dt
]
≥E(X(0),X(1))∼π

[
d(X(0), X(1))2

]
for any π ∈ Π(P,Q). Lastly, by infimizing both sides
we obtain a lower-bound for the optimal control cost, with
equality when u(t) steers X(t) along geodesics that connect



X(0) to T (X(0)) where T (x) = expx[−∇ϕ(x)] is the optimal
transport map from P to Q. As a result, the solution to the
optimal control problem is given by

X(t) = expX(0)[−t∇ϕ(X(0))], for t ∈ [0, 1] (6)

where ϕ solves the dual Kantorovich problem (5). The expo-
nential exemplifies that the optimal trajectories are geodesics.

In order to numerically solve the Kantorovich dual prob-
lem (5), we use the result of Theorem 2.2 to replace ψ with
ϕc. Using the definition of ϕc,

EZ′∼Q[ϕ
c(Z ′)] = EZ′∼Q[min

z
c(z, Z ′)− ϕ(z)]

= min
U

EZ′∼Q[c(expZ′ [−U(Z ′)], Z ′)− ϕ(expZ′ [−U(Z ′)])]

where we assumed that

expZ′ [−U(Z ′)] = argmin
z
c(z, Z ′)− ϕ(z), a.e.

for some vector-field U : M → TM. With this assumption,
we can express the Kantorovich dual problem as

max
ϕ

min
U

EZ∼P [ϕ(Z)] (7)

+ EZ′∼Q[c(expZ′(−U(Z ′)), Z ′)− ϕ(expZ′(−U(Z ′)))]

This is a max-min optimization problem with the objective
function that can be approximated using samples from the
two distributions P and Q. If (ϕ,U) is an optimal pair, then
T (z) = expz[−∇ϕ(z)] is the optimal transport map from P
to Q and T−1(z′) = expz′ [−U(z′)] is the optimal transport
map from Q to P .

B. Solution to the optimal filtering problem
The problem of computing conditional distributions can be

formulated as an OT problem using the idea of block-triangular
transport maps. In particular, if a map of the form S : (x, y) 7→
(T (x, y), y) transports the independent coupling PX ⊗ PY to
the joint distribution PXY , then the map T (x, y) transports
the prior PX to the conditional distribution PX|Y (·|y) for any
value y of the observation; see Theorem 2.4 in [27] for a proof
of this result. That is,

if (T, Id)#(PX ⊗ PY ) = PXY

then T (·, y)#PX = PX|Y (·|y), a.e. y.

To seek the optimal transport map T that characterizes pos-
terior distributions, we express the Monge problem (3) with
P = PX ⊗ PY , Q = PXY , constrain the maps to have
a block-triangular structure, form the Kantorovich dual, and
apply the inf-c convolution representation explained above in
Section III-A, which yields the max-min optimization problem

max
ϕ

min
U

E(X,Y )∼PXY
[ϕ(X,Y )] (8)

+ E(X,Y )∼PX⊗PY
[c(X, expX(−T (X,Y ))

− ϕ(expX(−T (X,Y )), Y )].

Similarly to the optimization problem (7), the objective func-
tion in (8) can be approximated using samples of the pair
(X,Y ) ∼ PXY . If (ϕ,U) is an optimal pair, then T (x, y) =
expz[−U(x, y)] is the optimal transport map from PX to
PX|Y (·|y) for any value y of the observation.

IV. NUMERICAL RESULTS

In order to numerically solve the proposed optimal con-
trol (1) and optimal filtering (2) problems, we use their
stochastic optimization formulations (7) and (8), respectively.
Both of these problems involve optimizing over a real-valued
function ϕ : M × Rm → R, and a vector-field U : M ×
Rm → TM (with the convention that m = 0 for (7)).
To this end, we use neural networks to represent ϕ and U .
The input layer to the neural network is based on a specific
coordinate representation of the manifold that is described
within each example. For all examples, the middle layers are
fully connected residual blocks (for these examples, we used
one or two blocks of size 32). When M is a n-dimensional
Lie-group, we model the output of the vector-field as an
element of the Lie-algebra, which is isomorphic to Rn. We
used the ADAM optimizer to solve the max-min problem with
batch-size 64, learning rate 10−3, 10 inner-loop minimization
iterations per one maximization iteration, and a total of 103 to
104 maximization iterations. The neural networks are trained
on 103 to 105 samples from the distributions. The details of
the numerical codes are available online1.

A. Optimal transport mapping on S1

The first example of OT on the circle S1 uses coordinates
θ ∈ [0, 2π), with the tangent space TθS

1 ∼= R1. For all
u ∈ TθS

1, we use the exponential map expx(u) = (x + u)
mod 2π, and the geodesic distance

dS1(θ, θ′) = min(|θ − θ′|, 2π − |θ − θ′|), ∀θ, θ′ ∈ [0, 2π).

We implement our proposed numerical procedure for two
choices of the marginal distribution: (1) P and Q are dis-
tributions centered at θ̄ = 0 and π, respectively, constructed
from standard Gaussians modulo2 2π; (2) P is the uniform
distribution on S1 and Q is a mixture of two similarly
projected Gaussians, centered at 0 and π. We use the map
θ 7→ [cos(θ), sin(θ)] as the input layer of the networks. The
given initial and final distribution, along with the optimal
trajectory expx[−tU(x)]#P for t ∈ [0, 1] are depicted in
Figure 1. The first case highlights the periodic structure of
the circle, where half of the initial distribution is transported
in a clockwise direction, while the other half moves counter-
clockwise, as opposed a constant shift by π which is optimal in
the Euclidean case. The second example highlights the ability
of transporting to multi-modal distributions on the circle.

B. Optimal transport mapping on SE(2)

Next, we extend the previous example to the special Eu-
clidean group SE(2). Elements of SE(2) are represented
by the coordinate z = (x, y, θ) ∈ R2 × [0, 2π). For all
u ∈ TzSE(2) ∼= R3, we consider the exponential map

expz(u) = (x+ ux, y + uy, (θ + uθ) mod 2π),

and the geodesic distance

d2SE(2)(z, z
′)2 = dS1(θ, θ′)2 + |x− x′|2 + |y − y′|2

1https://github.com/Dan-Grange/OTManifold
2We set P,Q as having density e−((θ−θ̄)mod2π)2/2/

√
2π.

https://github.com/Dan-Grange/OTManifold


(a) (b)

Fig. 1. OT mapping on the circle. The left panels in (a) and (b) show the given initial and final distributions. The right panels show the trajectory of
optimal transportation evaluated by our numerical procedure. The curves are obtained with a kernel density estimation on samples.

Fig. 2. OT mapping on SE(2). The elements of SE(2) are depicted as
arrows. Samples from the marginal distributions P and Q are shown in
the left panel, and the optimal flow, obtained as a result of our numerical
procedure, is depicted in the right panel.

for z = (x, y, θ) and z′ = (x′, y′, θ′). We use z →
[x, y, cos(θ), sin(θ)] as the input layer to the neural networks.
Figure 2 qualitatively demonstrates the capability of our pro-
posed approach to optimally transport distributions on SE(2).

C. Optimal filtering on SO(2)

We now consider the problem of estimating the orientation
θ ∈ [0, 2π) of a ground robot in a circular room as depicted in
Figure 3. The robot is equipped with a sensor that measures
its distance to the wall of the room along the direction that
the robot is facing, i.e. Y = h(θ) +W , where

h(θ) = ℓ cos(θ) +
√
1− ℓ2 sin(θ)2,

ℓ is the distance of the robot from the center, and W ∼
N(0, 10−2) is additive Gaussian noise. We assume a uniform
prior distribution for the orientation θ and use our proposed
numerical procedure to characterize the conditional distribu-
tion of the orientation θ given the observation Y . We use the
input layer (θ, y) 7→ (cos(θ), sin(θ), y) in our networks for this
example. Figure 3 depicts the resulting posterior distribution.
Due to the symmetric geometry of the circle, there are two
angles that are consistent with an observation. As a result,
the conditional distribution is bimodal, which is approximated
well by our numerical procedure.

In order to test the algorithm in a dynamic setting, we let the
orientation change with a constant velocity u using the model:
θt+1 = θt + u + ξt where ξt ∼ N(0, 10−2) is the process
noise. Our goal is now to compute the conditional (filtering)
distribution of the orientation θt given the history of sensory
observation Y1, Y2, . . . , Yt, generated by Yt = h(θt) + Wt.
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θ
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Y

Robot location
Room center

−1.00−0.75−0.50−0.250.000.250.500.751.00 −1.00
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0.00
0.25
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0.25
0.50
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1.00
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Pθ (prior)
Pθ|Y (exact posterior)
̂Pθ|Y (est. posterior)

Fig. 3. Optimal filtering on a circle. The left panel shows the problem
setup. The right panel shows the prior, exact and estimated posterior
conditional distribution of the orientation given the observed signal. As
expected, the bimodal posterior is captured by our algorithm.

To do so, we use the numerical framework in Section III to
update the conditional distributions for θt sequentially as new
observations arrive, as in [1]. We consider two setups for the
orientation’s velocity u in this example. In the first setup, we
assume the velocity is known and non-zero. In this case, due
to the known direction of the motion, the problem becomes
observable, leading to a unimodal filtering distribution. In the
second setup, we assume zero-velocity in our algorithm, while
the actual velocity is non-zero. Since the direction of motion
is unknown, the conditional distribution remains bimodal. The
results are depicted in Figure 4. For comparison, we have
shown results from the Ensemble Kalman filter (EnKF) [44]
and the sequential importance sampling and resampling (SIR)
particle filter [31]. As a quantitative comparison, we evaluated
the mean-squared-error (MSE) in estimating f(θ) = dS1(θ, 0).
The result shows consistency of our algorithm with SIR.
We expect the OT approach to outperform SIR in high-
dimensional problems, as shown in the Euclidean case in [1].

D. Optimal filtering on SE(2)

Building on the previous example, we assume the position
of the robot is also unknown, and consider the goal of estimat-
ing the position and orientation of the robot simultaneously.
The state of the robot is now represented by z = (x, y, θ),
an element of SE(2). We assume y = 0, and consider
independent uniform distributions on [−1, 1] for x and [0, 2π)
for θ. We consider the same distance measuring sensor as
in Section IV-C. Figure 5 depicts the simulation results. We
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Fig. 4. Simulation results of EnKF, SIR, and OT for the (dynamic)
optimal filtering example on SO(2). Left panel: the trajectory of the
samples/particles along with the true state for the cases of known
and unknown velocity. Right panel: The mean-squared-error (MSE) for
estimating the true state averaged over 10 independent simulations.

observe that the algorithm is able to capture the complicated
posterior distribution. For verification, we show the predictive
distribution for the observation Y prior to receiving the real-
ized observation, and after receiving the observation. We note
that the posterior predictive distribution is concentrated around
the exact distance.

Fig. 5. Optimal filtering on SE(2). The left panel shows samples from
the prior and posterior distribution of the location and orientation of the
robot. The right panel shows the prior and posterior prediction for the
observation signal, in comparison to the value of the exact distance.

E. Optimal transport mapping on SO(3)

Next, we consider the OT problem on the special orthogonal
group SO(3). An element of SO(3) is represented by a
rotation matrix R. The elements of the tangent space TRSO(3)
are represented by RΩ where Ω is a skew-symmetric matrix.
A three dimensional vector ω ∈ R3 is uniquely mapped to a
skew-symmetric matrix according to

[ω]× :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
We have the exponential map expR(R[ω]×) = Re[ω]× , where

e[ω]× = I +
sin(∥ω∥)

∥ω∥
[ω]× +

1− cos(∥ω∥)
∥ω∥2

[ω]2×.

Then, the geodesic distance is given by

dSO(3)(R, expR(R[ω]×)) =
√
2∥ω∥.

The input to the neural net is the matrix representation of the
rotation matrix. The output of the vector-field is designed to
be a three dimensional vector ω, which is then mapped to

Fig. 6. OT mapping on SO(3). Samples from the optimal transport
trajectory from P (blue) to Q (red) are shown in the figure. The two
figures show four components of the rotation matrix.
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Fig. 7. Optimal filtering on SO(3). The histograms show the approx-
imate posterior distributions for three components of R using samples
computed by the estimated transport map. The dashed lines correspond
to two rotation matrices that are consistent with the measurement.

an element of the tangent space by R[ω]×. Figure 6 depicts
the result for optimally transporting an initial distribution of
rotation matrices P to a final distribution Q. The distributions
P and Q are chosen to be cosU sinU 0

0 0 1
sinU − cosU 0

 ,
 − cosU − sinU 0

− sinU cosU 0
0 0 −1

 ,
respectively, with U being uniformly distributed on [0, 2π].

F. Optimal filtering on SO(3)

Lastly, we consider the problem of characterizing the condi-
tional distribution on SO(3). We consider noisy measurement
Y = h(R) + W where h(R) = (R1,1, R2,1, R3,1, R2,2).
and W ∼ N(0, 10−2). The selected observation function
is degenerate because there are two rotation matrices that
correspond to any exact measurement. For example,

R =

1 0 0
0 1√

2
∓ 1√

2

0 ± 1√
2

1√
2


are both consistent with h(R) = (1, 0, 0, 1√

2
). In our experi-

ment, we consider a uniform prior probability distribution on
SO(3) and use our proposed numerical procedure to sample
from the conditional distribution. The numerical result is
depicted in Figure 7. It is observed that the algorithm is able
to capture the bimodal distribution.

V. CONCLUDING REMARKS

This work proposes a computational methodology for find-
ing optimal transport maps and sampling conditional probabil-
ity distributions on several instances of Riemannian manifolds.



Our planned future research will focus on: (1) theoretical
stability and sample-complexity analysis of the proposed ap-
proach, and (2) application of the approach to problems of
attitude estimation using the publicly available Multi-Vehicle
Stereo Event Camera (MVSEC) dataset [45].
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[45] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis, “The multivehicle stereo event camera dataset: An event
camera dataset for 3d perception,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2032–2039, 2018.


	Introduction
	Problem formulation and background
	Background on OT on Riemannian manifolds
	Computational methods for OT on manifolds

	Solution methodology
	Solution to the optimal control problem
	Solution to the optimal filtering problem

	Numerical results
	Optimal transport mapping on S1
	Optimal transport mapping on SE(2)
	Optimal filtering on SO(2)
	Optimal filtering on SE(2)
	Optimal transport mapping on SO(3)
	Optimal filtering on SO(3)

	Concluding remarks
	References

