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Electric Aircraft Assignment, Routing, and Charge Scheduling

Considering the Availability of Renewable Energy

Finn Vehlhaber1 and Mauro Salazar1

Abstract— Electric airplanes are expected to take to the skies
soon, finding first use cases in small networks within hardly
accessible areas, such as island communities. In this context,
the environmental footprint of such airplanes will be strongly
determined by the energy sources employed when charging
them. This paper presents a framework to optimize aircraft
assignment, routing and charge schedules explicitly accounting
for the energy availability at the different airports, which are
assumed to be equipped with renewable energy sources and
stationary batteries. Specifically, considering the daily travel
demand and weather conditions forecast in advance, we first
capture the aircraft operations within a time-expanded directed
acyclic graph, and combine it with a dynamic energy model
of the individual airports. Second, aiming at minimizing grid-
dependency, we leverage our models to frame the optimal
electric aircraft and airport operational problem as a mixed-
integer linear program that can be solved with global optimality
guarantees. Finally, we showcase our framework in a real-
world case-study considering one week of operations on the
Dutch Leeward Antilles. Our results show that, depending
on weather conditions and compared to current schedules,
optimizing flights and operations in a renewable-energy-aware
manner can reduce grid dependency from 18 to 100%, whilst
significantly shrinking the operational window of the airplanes.

I. INTRODUCTION

Civil aviation accounts for two percent of global carbon

dioxide emissions and demand for flights is steadily grow-

ing [1]. To meet emission reduction targets, manufacturers

are working on increasing their aircraft efficiency and in-

vestigating the use of alternative fuels such as sustainable

aviation fuels, hydrogen, or battery-electric propulsion [2],

[3]. Meanwhile, policy makers are enacting laws to reduce

the dependence on planes, for instance through recent bans

on short-haul flights that have the worst carbon footprint [4],

thus promoting a shift to passenger rail. Yet short-haul

aviation is a necessary service in some otherwise inaccessible

areas such as island chains or very sparsely populated land-

scapes. In fact, some countries deem certain flight routes as

so essential that they are operated despite being unprofitable.

The European Union designates these routes public service

obligations (PSOs) and subsidizes airlines that operate them.

A similar concept exists in the US with their essential air

service (EAS) for remote regions. Such routes may be among

the first candidates for electric aviation [5].

In recent years, several manufacturers have announced

electric airplanes and it will only be a matter of time

until they take to the skies. They promise clean and quiet
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Fig. 1. The Dutch Leeward Antilles Aruba, Curaçao, and Bonaire as an
example for sustainable regional aviation with the location of their airports
labeled with IATA identifiers.

operation but are limited by current battery technology.

Unfortunately, current models cannot—or may never—offer

ranges or passenger volumes that can rival state-of-the-art

passenger airplanes [6], which is why their use cases will be

limited to short routes with low demand. What is more, an

efficient and clean operation requires a ground infrastructure

that can supply renewable energy with which to charge these

planes [7]. In order to maximize its sustainability, this new

mobility paradigm requires particular attention to the weather

forecast and flexible scheduling around the availability of

renewable energy.

Against this background, this paper provides a framework

to optimize electric aircraft and airport operations, explicitly

accounting for the availabiltiy of renewable energy.

Related Literature: This paper is related to three

streams of research, namely electric aircraft operations,

fleet assignment, and routing. Despite the absence of elec-

tric aircraft in operation, several authors have started to

consider its implications for infrastructure and flight op-

erations. Early works explored the sizing of the required

charging infrastructure at the airports, under consideration

of both battery-swapping and charging, culminating in a

framework for obtaining the required number of charging

stations for a given electrified flight schedule at a single

regional airport [8], [9]. Similarly, Mitici et al. showcase

a framework for minimizing investment costs of a large

airport supporting electric aviation through sizing of the

aircraft fleet and charging stations [10], again considering

both battery-swapping and -charging. While the schedule

is assumed to be given, the aircraft mission assignment is

optimized along with the charging windows. Framed as a

mixed-integer linear program (MILP), the aforementioned

works achieve optimality guarantees and good tractabil-

ity. Conversely, other authors leverage iterative algorithms

from scheduling theory [11] or discrete-event simulation

(DES) [12] to investigate how electric aircraft affect the

operations and infrastructure requirements of an airport, the

latter finding that an initial roll-out of electric aviation will

have a minor operational influence, even at large airports. On
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a broader scale, Kinene et al. design the charging network

for regional electric aviation, strategically selecting some air-

ports as charging bases to minimize capital expenditure while

increasing connectivity [13]. While most authors assume the

energy to be provided by the national power grid, van Amstel

optimizes the energy and charging infrastructure of an airport

to only exploit renewable energy sources [14]. In his work,

the flight schedule is given but can be varied slightly in

favor of a more energy-efficient operation. Other authors

account for the carbon content in the local energy mix and

analyze the network to design regional routes and assign

the fleet to achieve environmentally friendly operation [15].

Whilst the existing literature has explored the infrastructure

sizing problem for both single airports and flight networks

extensively, there exists a gap for the planning of electric air

mobility operations. The case of the desired reliance on only

renewable energy is a novelty for electric aircraft scheduling

that has yet to be analyzed further.

Fleet assignment and route design have been popular top-

ics in operations research since the advent of commercial avi-

ation [16], [17] to improve aircraft utilization, fuel savings,

and thus revenue. Historically, due to computational limita-

tions, the schedule of an airline was found via a sequence

of these algorithms. Barnhart et al. introduced a string-based

model that can achieve fleeting and routing simultaneously

and yields feasible schedules directly [18]. More recently,

authors have taken integrated approaches that improve the

schedule significantly, for example by accounting for flight

speed adjustments that lead to additional fuel savings [19].

Through techniques like Bender’s decomposition, authors

even achieve computation times that enable real time updates

for schedules that suffer from demand uncertainty [20].

However, the literature has not yet addressed fleet assignment

for electric aircraft.

Roy and Tomlin leverage network flow algorithms for the

aircraft routing problem by initializing the network as a

time-expanded directed graph [21]. After proving that the

resulting problem is NP-hard, they introduce sub-optimal

solution algorithms that can be efficiently applied to large

airspace problems. Another publication describes a frame-

work for the on-demand scheduling and routing of safari

planes [22], again leveraging a time-expanded digraph. The

authors consider capacity and fuel constraints, and propose

a time-free relaxation to reduce computational complexity

which enables fast solutions for large scale problems with

reasonable optimality gaps. For the vehicle routing problem

at large, network flow algorithms have been successful in

yielding optimal solutions, even for electric vehicle fleet

applications [23], [24], also in extended graphs [25]. In this

context, some authors address the necessity to model the

consumption and the battery’s state of charge in order to

ensure feasible routes, which will apply to electric aircraft

routing models as well.

In conclusion, while authors have explored the impli-

cations of electric aviation on the airport infrastructure,

little work has been done on the planning of electric flight

operations. The battery charge requires an additional variable

to be tracked, which has been addressed in recent works for

eco-routing of electric cars but has yet to be integrated into

aircraft routing problems. Additionally, the literature review

has highlighted a gap for the consideration of the intrinsic

coupling of availability of renewable energy and sustainable

electric flight operations.

Statement of Contributions: In this paper, we introduce

a framework for the scheduling of a fleet of electric airplanes

to meet passenger demand while specifically considering the

availability of renewable energy at each airport that is part

of the network. To this end, we strategically generate the

schedule and aircraft routing for a given demand to minimize

the grid dependency during the day.

Organization: The remainder of this paper is structured

as follows: Section II outlines a mathematical framework for

the integrated fleet assignment and routing for a network of

flights relying on renewable energy sources. In Section III,

the model is applied to the daily flight operations in the

Dutch Caribbean. Finally, Section IV draws the conclusions

and provides an outlook on implications and possible exten-

sions.

II. METHODOLOGY

In this section, we introduce the flight network as a

directed acyclic graph (DAG) and outline the energetic

models of the aircraft and airport. Thereafter, we introduce

the optimization problem.

A. Flight Network

Here we explain how the graph modeling the flight net-

work is constructed and introduce the necessary terminology.

We consider a network of airports a ∈ H, that is served by

a set of aircraft denoted by P . The daily time of operation

is discretized into time instances t ∈ T with time step ∆t.
The set of all possible flight connections f between airports

in the network is F , whereby each flight connection takes

a number of time steps, tf , which is chosen as the integer

closest to the actual time of flight divided by the time step.

Each flight connection has a given demand Df for the day

that needs to be satisfied.

We model the flight network as a DAG G = (V ,A). A

generic vertex i ∈ V corresponds to the space-time tuple

i = (a, t), where we denote is = a, and it = t.

Connecting the vertices is (i, j) ∈ A, the set of edges,

which is constructed as follows: Between vertices of the

same airport that are consecutive in time, there exist |T |− 1
ground edges per airport, denoted by the set Ag ⊂ A, where

Ag = {(i, j) : js = is, jt = it + 1} ,

such that |Ag| = |H| · (|T | − 1). In addition to the ground

edges, we add for each flight a set flight edges Af ⊂ A,

where for a flight f from a to b we define the set

Af = {(i, j) : is = a, js = b, jt = it + 1} ∀f ∈ F ,

consequently, with AF =
⋃

f∈F
Af , A = AF ∪Ag.



t(a, t)

(a, t+ 1)

(b, t)

(b, t+ 1)
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Fig. 2. Visualization of the DAG with an example of a flight with a time of
flight of 3 time steps (dashed red arrow) and its corresponding flight edge
(i, j) and virtual flight edges in the set C(i,j) in red.

B. Flight Assignment and Aircraft State of Charge

Each aircraft of the fleet traverses the graph, starting at an

airport at time t and terminating at time |T |. We denote an

aircraft’s origin vertex ok ∀k ∈ P , and it must be exactly one

of the vertices that represent the initial time at either airport.

Similarly, the aircraft’s destination vertex is dk ∀k ∈ P ,

being one of the vertices representing the final time.

We leverage a network flow model formulation where each

edge has an associated binary variable xk
(i,j) ∈ {0, 1} for

each aircraft in the fleet. For a continuous path through time

for each aircraft, we require that

1j=ok +
∑

i:(i,j)∈A

xk
(i,j) = 1j=dk +

∑

j:(j,l)∈A

xk
(j,l) ∀j ∈ V ; ∀k ∈ P ,

(1)

where 1j=ok and 1j=dk are indicator functions for the origin

and destination vertex of each airplane, respectively.

Each flight connection needs to be flown at least as many

times as required by the demand, i.e.,
∑

k∈P

∑

(i,j)∈Af

xk
(i,j) ≥ Df ∀f ∈ F . (2)

Every flight f has a time of flight that is some multiple tf of

the time step ∆t. For flights where tf > 1 we consider the

next tf − 1 ground edges as virtual flight edges that need to

be traversed before the plane can enter another flight edge, as

exemplified in Fig. 2. To this end, we introduce the auxiliary

set

C(i,j) =
{

(l,m) : ls = ms = js, lt = jt + τ, mt = jt + τ + 1,

∀τ ∈ {1, . . . , tf − 1}
}

⊂ Ag ∀(i, j) ∈ Af , ∀f ∈ F .

Then we introduce the constraint

xk
(l,m) ≥ xk

(i,j) ∀(l,m) ∈ C(i,j), ∀(i, j) ∈ AF , ∀k ∈ P , (3)

which forces the path to consist of at least tf − 1 ground

edges after every flight edge.

For small enough time steps, we must also enforce that the

number of aircraft on the same flight edge cannot exceed a

certain maximum, as this would have resulted from them

starting too closely together. Therefore, we add that
∑

k∈P

xk
(i,j) ≤ Kmax ∀(i, j) ∈ AF , (4)

where Kmax is the maximum amount of planes that can start

per time step.

When traversing a flight edge, i.e., when flying, the aircraft

expends energy ∆Ef which we calculate as the sum of

the energy required for take-off and climb and that for the

flight in cruise, the latter of which can be estimated using

an adaptation of the Breguet range equation [3] as

∆Ef =
m · g · hcruise

ηTO
+

m · g

ηcruise · L/D
· df , (5)

where m is the mass of the aircraft, g is the gravitational

acceleration, hcruise the height at which the plane is flying

during cruise, df the distance of the flight, and L/D, ηTO,

and ηcruise the aerodynamic efficiency of the airplane and the

take-off and cruise efficiencies of its powertrain, respectively.

On ground edges that are part of the path, an aircraft can

recharge, i.e.,

P k
c,(i,j) ≥ 0 ∀(i, j) ∈ Ag , (6)

P k
c,(i,j) ≤ Pc,max ∀(i, j) ∈ Ag , (7)

P k
c,(i,j) ≤ xk

(i,j) ·M ∀(i, j) ∈ Ag , (8)

where Pc,max is the maximum charging power and we

leverage the big-M formulation [26], with M being a large

number.

On ground edges that serve as virtual flight edges after a

flight edge, however, it is impossible to recharge as the plane

is technically still flying, which is why we add that

P k
c,(l,m) ≤ (1− x(i,j)) ·M ∀(l,m) ∈ C(i,j) . (9)

For ease of notation, we now refer to all quantities on edges

between the same two consecutive time layers by the same

t. We exemplify this notation with the charging power

P k
c,(i,j) = P a,k

c (t) ∀ {(i, j) ∈ Ag : i = (a, t)} , ∀k ∈ P .

Then, to track the battery state of energy of an aircraft to

ensure feasible paths, we define at every time layer Ep(t)
with its dynamics as

Ek
p(t+ 1) = Ek

p(t) + ∆Ek
p(t) , (10)

where

∆Ek
p(t) =

∑

a∈H

P a,k
c (t) ·∆t−

∑

f∈F

∑

xk
(i,j) ·∆Ef

{(i,j)∈Af :it=t}

. (11)

Here, the second term collects the energy expenditure on all

visited flight edges of this time step.

We observe that for (11), we can exploit the structure of

the digraph, along with the implications from (1): For each

time step, i.e., between the nodes of two consecutive time

layers, exactly one edge lies on the path. Therefore, (11)

yields for each time step either the energy recharged at one

airport or the energy expended during one flight, but never

both.

C. Energy Model of the Airport

In this section, we explain how the aircraft traversing the

flight network are connected to their respective airports via

local dynamic energy models. As shown in Fig. 3, we assume

each airport to be equipped with a battery energy storage

system (BESS) that can store and supply power, a connection

to the grid, a connection to local renewable power sources,

and an apron where the gates and chargers for the electric

airplanes are located.
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Pb Pa
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Fig. 3. Energetic Model of an airport with renewable energy sources and
stationary battery energy storage system (BESS). Arrows indicate direction
of positive power flow.

The power drawn at the apron during one time step is

obtained from the sum of all chargers, i.e.,
P a
a (t) =

∑

k∈P

P a,k
c (t) ∀t ∈ T , ∀a ∈ H, (12)

This power is potentially subject to limits, imposed by

P a
a (t) ∈ [0, Pa,max] ∀t ∈ T , ∀a ∈ H , (13)

where Pa,max is the maximum power that can be supplied

to the apron at the airport.

For safety reasons, planes can only start, land, and charge

during the time of operations of the airport, previously

denoted by T . The renewable power sources, however, can

supply power during the whole day, and the BESS can store

said power to reduce curtailment. Therefore, we distinguish

between the set of time instances for the whole day, Td, and

that for the time of operations, T ⊂ Td. Consequently,

P a
a (t) = 0 ∀t /∈ T . (14)

We express the power split at the airport as

P a
gr(t) = P a

a (t) + Paux − P a
rnw(t)− P a

b (t) , (15)

where P a
gr(t), P a

rnw(t), and P a
b (t) are the powers drawn

from the grid and supplied from renewables and the BESS,

respectively, and Paux is the power draw from all auxiliary

systems of the airport, here assumed constant. We model the

dynamics of the BESS as

Ea
b(t+ 1) ≤ Ea

b(t)− ηb · P a
b (t) ·∆t ∀t, t+ 1 ∈ Td , (16)

Ea
b(t+ 1) ≤ Ea

b(t)−
1

ηb
P a
b (t) ·∆t ∀t, t+ 1 ∈ Td , (17)

where ηb is an efficiency term for charging and discharging

the battery.

Periodicity constraints ensure that the battery ends its day

with the same state of energy it started with, i.e.,

Ea
b(t0) = Ea

b(tf) ∀a ∈ H , (18)

where t0 and tf are the time steps at the start and the end

of the day, respectively, and the battery energy is subject to

the limits

Ea
b(t) ∈ [Ea

b,min, E
a
b,max] ∀t ∈ Td, ∀a ∈ H . (19)

At the beginning of operations, we require the BESS to have

a state of charge (SoC) of at least ξb,init in order to facilitate

the availability of energy for unforeseen circumstances:

Eh
b (t0,ops) ≥ ξb,init · E

a
b,max ∀a ∈ H . (20)

The battery power is limited through

P a
b (t) ∈ [P a

b,min, P
a
b,max] ∀t, t+ 1 ∈ Td . (21)

Given the solar irradiation Ias (t), we find the solar energy

obtained through the solar cells at each airport from

P a
rnw(t) ≤ Ias (t) ·A

a
sc · ηsc ∀t, t+ 1 ∈ Td, ∀a ∈ H , (22)

TABLE I

NUMBER OF SCHEDULED FLIGHTS FOR A WEEK OF OPERATIONS ON THE

ABC ISLANDS.

Origin Destination
# Flights

M T W T F S S

AUA CUR 8 5 5 8 8 6 5
CUR AUA 8 5 5 8 8 6 5
BON CUR 11 10 9 10 11 9 8
CUR BON 11 10 9 10 11 9 8

where Aa
sc is the area of the solar cells installed at that

airport and ηsc is the conversion efficiency of the cells. For

the sake of simplicity we do not include other renewable

energy sources such as wind or water power here, which

can, however, readily be included within our framework.

For this paper we assume the airport to be a consumer

only, i.e.,

P a
gr(t) ≥ 0 ∀t, t+ 1 ∈ Td, ∀a ∈ H , (23)

but with financial objective functions this could be changed

to have the airport acting as a producer as well.

D. Objective

As remote communities often suffer from a limited grid

connection, we aim at finding a flight schedule that reduces

the energy drawn from the grid with a given fleet size. To

this end, we frame the optimization problem as follows.

Problem 1 (Grid energy minimization). The flight schedule

that meets the required demand and best exploits the avail-

ability of renewable energy is obtained through

min Egr =
∑

a∈H

∑

t∈Td

P a
gr(t) ·∆t

s.t. (1) − (23).

With minor adjustments, the introduced framework can

also lend itself to optimization with other objectives and

variables in mind, such as fleet or infrastructure sizing, which

are here omitted due to space restrictions.

III. RESULTS

In this section, we showcase the effectiveness of the

framework in a case study for a flight network in the Dutch

Leeward Antilles (ABC islands) and comment on it.

The ABC islands are an island community in the

Caribbean with sunny weather conditions year-round, mak-

ing them a perfect candidate for sustainable regional aviation.

Inter-island flights are currently conducted with a fleet of

BN-2 Islanders and DHC6 Twin Otters operated by the local

airline Divi Divi Air [27], which can be replaced with early

electric aircraft models in the near future.

We extract all inter-island flights from the daily flight

schedules of August1 that are flown by the aforementioned

aircraft and assume that the demand can be covered with an

initial fleet of eight electric nine-seaters. For the airplanes, we

assume a homogeneous fleet of the model Alice, a nine-seater

announced by the manufacturer Eviation [28]. The required

1supplied by NACO International Aviation Consultancy



Fig. 4. Optimal routes and state of charge evolution of all planes of the
fleet serving the flight demand in Table I on the ABC islands with weather
conditions of Saturday, August 19.

number of flights per pairing is shown in Table I. At the

beginning and end of operations all aircraft are assumed to be

parked at the airport in Curaçao (CUR), which is the base of

the airline. Along with the flight demand, we use the weather

conditions of that same day, where the solar irradiation at

each airport was obtained from publicly available weather

data [29]. The airports are not equipped with solar panels or

a BESS yet, so we assume a solar array of 2000 m2 and a

BESS with 1 MWh on each.

The graph creation and pre-processing is carried out in

MATLAB in negligible time. Problem 1 is a MILP that

we parse with YALMIP and solve with Gurobi [30], [31].

On commodity hardware and with a discretization of ∆t =
10 min we obtain a globally optimal solution within minutes.

The results are depicted in Figures 4 and 5.

We compare our optimized schedule to the actual schedule

of the same day, whereby we still optimize aircraft charging

schedules as shown in Fig. 6. Over the course of the week,

Fig. 7 shows that, depending on the weather conditions,

the solar-optimized schedule requires between 18 % and

100 % less energy from the grid than the actual schedule.

Moreover, the majority if not all of the total grid energy

requirements is at Curaçao, where the airplanes start and

end their day and which is either origin or destination of all

demanded flights, indicating the need for additional design

considerations, especially to ensure grid independence even

in extreme cases.

IV. CONCLUSION

This paper introduced an optimization model for the

routing and charge scheduling of electric aircraft to meet

a daily passenger demand that reduces grid dependence by

explicitly accounting for the availability of renewable energy.

Fig. 5. Airport optimal power breakdown and state of charge evolution of
the BESS for the routes shown in Fig. 4. Thick bars under each plot mark
an aircraft being on the tarmac during that time.

Fig. 6. Airport optimal power breakdown and state of charge evolution of
the BESS for scheduled operations on Saturday, Aug. 19. Thick bars under
each plot mark an aircraft being on the tarmac during that time.

Framed as a mixed-integer linear program, our problem can

be efficiently solved with global optimality guarantees. The

framework was applied on a regional aviation network on

the Dutch ABC Islands, for which demand and weather

conditions were known. The results showed that a schedule



Fig. 7. Comparison of grid energy requirements for the scheduled operation
(background, muted) and the solar-optimized operation (foreground) for
each day from Monday, Aug. 14, to Monday, Aug. 21. Differences in energy
requirements between days with the same demand are due to the different
weather conditions.

that specifically accounts for solar power supply can reduce

grid dependency by up to 100 %, which is of special interest

for remote airfields that serve otherwise badly connected

communities.

This work can be built upon as follows: First, passenger

demand models and weather uncertainty could be introduced

to study the robustness of the resulting schedules. Second,

it would be of interest to explore additional use cases to

investigate investment strategies to enhance electric aviation.
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