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Abstract—We study a resource allocation problem over time,
where a finite (random) resource needs to be distributed among
a set of users at each time instant. Shortfalls in the resource
allocated result in user dissatisfaction, which we model as an
increasing function of the long-term average shortfall for each
user. In many scenarios such as wireless multimedia streaming,
renewable energy grid, or supply chain logistics, a natural choice
for this cost function turns out to be concave, rather than usual
convex cost functions. We consider minimizing the (normalized)
cumulative cost across users. Depending on whether users’ mean
consumption rates are known or unknown, this problem can
be reduced to two different structured non-convex problems.
The “known” case is a concave minimization problem subject
to a linear constraint. By exploiting a well-chosen linearization
of the cost functions, we solve this provably within O

(
1
m

)
of

the optimum, in O (m logm) time, where m is the number of
users in the system. In the “unknown” case, we are faced with
minimizing the sum of functions that are concave on part of the
domain and convex on the rest, subject to a linear constraint. We
present a provably exact algorithm when the cost functions and
prior distributions on mean consumption are the same across all
users.

Index Terms—Optimization, Smart grid, Stochastic systems

I. INTRODUCTION

NON-CONVEX optimization has seen rapidly increasing
practical interest over the last decade, primarily due to

applications in machine learning and related areas [1]. Theo-
retical interest in non-convex optimization has also seen steady
growth [2], [3]. Theoretical results in non-convex optimization,
however, are almost always limited to local optima [4].

Here, we consider two structured non-convex optimization
problems and present polynomial-time algorithms with prov-
able guarantees on reaching their respective global optima.
These non-convex optimization problems arise in dynamic
resource allocation over time, where the goal is to minimize
dissatisfaction due to shortfalls in allocated resources.

In many engineering and business settings, the main chal-
lenge is to share a limited, time-varying, and random resource
with multiple users over time. Each of these users stores their
allocated share in local storage and consumes it over time as
needed. Shortfalls—when there is not enough resource to meet
the requirement at that time—cause the user dissatisfaction.
The goal of the resource server is to minimize the long-term
dissatisfaction across all users. We highlight a few applications
where this resource allocation problem is crucial.

Multimedia streaming. In wireless multimedia streaming,
users receive their desired content from the access point and
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store it in their buffers, which the media players access to
play. Here, the time-varying resource is the amount of data
transmitted over the wireless system, which is random and
time-varying due to multipath fading [5]–[7]. See [8] for a
detailed discussion.

Renewable energy grid. The energy generated by wind
and solar resources varies over time due to weather and
other factors [9]. Users store the received energy in local
storage [10], and the consumption is also random and time-
varying [11]. Whenever there is not enough energy to meet
requirements at that time, the user becomes discontent. For
domestic users, this may lead to dissatisfaction or annoyance,1

whereas for industrial users this may necessitate expensive
backup options for heavy machines with steep financial costs.

Supply chain logistics. Produced goods are sent to distribu-
tion centers before they can finally be sold to end consumers.
However, production can depend on the economy, climate, or
upstream manufacturing, and the amount of produced goods
varies over time [12]. Further, the demand at any time instant
at a specific distribution center is random [13], [14]. If a
certain distribution center runs out of inventory, it leads to
dissatisfaction among the users it serves.

As we see in Sec. II, the appropriate function that maps the
shortfall to dissatisfaction in all these applications turns out to
be concave.

A. Contributions

First, faithful to the listed applications, we formulate a
general version of the dynamic resource allocation problem.
We then obtain lower bounds on the long-term average dis-
satisfaction in terms of two static non-convex optimization
problems, depending on whether the mean consumption is
known or unknown. We also prove solving these non-convex
problems yields simple optimal policies. Next, for known
mean consumption, we solve the non-convex optimization
problem almost accurately in (almost) linear time by exploit-
ing a suitable linearization and the underlying combinatorial
structure. Finally, for unknown mean consumption, under a
general assumption on the prior, we show the corresponding
static optimization problem has a unique non-convex structure,
and solve it accurately assuming symmetry across users.

The rest of this paper is organized as follows. Sec. II
formulates the resource allocation problem. Sec. III reduces
the problem to a static non-convex optimization problem and
gives a lower bound for both cases: where we do and do
not know the mean consumption rates of users. Sec. IV
considers the case where we know the mean consumption

1 With the proliferation of plug-in electric vehicles, domestic users increas-
ingly have access to a storage system for storing energy for later use.
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rates and develops an O(m logm) algorithm for solving the
optimization problem that is within O

(
1
m

)
of the optimal cost.

Sec. V gives an exact algorithm for the case where the average
consumption rates are unknown, when the users are symmetric.
Sec. VI finally concludes with a discussion on open questions
for future work.

II. SYSTEM MODEL

There are m users in the system, and resource allocation
happens at discrete time instants t ∈ {1, 2, . . .}. At the
beginning of each time slot t, the server has a total available
resource of c(t) units. Of these c(t) units, user i is served
with Si(t) units of resource, which is put into buffer Qi. At
the end of each time slot t, user i tries to consume Fi(t) units
of resource from the buffer. A shortfall occurs at user i if it
tries to consume more resource than is available in the buffer.
Let the amount of shortfall be κi(t), which is the amount of
resource desired by user i at time t unavailable in the buffer.
So the buffer evolution, service, and shortfall are connected
by the following equations.2

Qi(t+ 1) = (Qi(t) + Si(t)− Fi(t))
+
, (1)

κi(t) =
(
Fi(t)− (Qi(t) + Si(t))

)+
, (2)

m∑
i=1

Si(t) ≤ c(t). (3)

The average shortfall at user i is given by κ̄i:

κ̄i = lim
T→∞

1

T

T∑
t=1

κi(t). (4)

For each user i, its dissatisfaction due to shortfall is given
by Vi(·) : [0,∞) 7→ [0,∞), i.e., the dissatisfaction of user
i is Vi(κ̄i). We first note that any reasonable dissatisfaction
function Vi(·) must satisfy Vi(0) = 0 and be an increasing
function. However, unlike many cost functions, a concave
and increasing Vi(·) is a natural choice, as explained below.

Consider two different scenarios in the case of the energy
grid: κ̄i close 0 and κ̄i sufficiently large. In the first case, a
small increase in κ̄i can cause significant increase in dissat-
isfaction. In electricity markets, home users with an almost
shortfall-free service will experience a greater incremental an-
noyance for the same amount of increase in shortfall compared
to users who are already experiencing significant shortfall.
Likewise, industrial users will have to budget for backup
options for heavy machines when κ̄i moves away from 0.
In contrast, if κ̄i is sufficiently large, a small decrease in κ̄i

would not cause any significant decrease in dissatisfaction.
Thus, in practice, Vi should have a positive but decreasing
derivative. Similar arguments apply to multimedia streaming,
as discussed in [8].

2We use the notation (x)+ = max(x, 0).

A. Assumptions

Our first assumption is that the availability process c(t) has
a well-defined long-term average c̄:

c̄ = lim
T→∞

1

T

T∑
t=1

c(t).

This holds if the availability process is ergodic and stationary
or cyclo-stationary, which captures daily, weekly, or seasonal
changes in availability. Note that c(t) can either be an arbitrary
deterministic sequence or a random process, whose long-term
average converges to a constant (almost surely).

We make the following assumptions regarding the consump-
tion processes {Fi(t)}. We assume that for each i, Fi(t) has
a well-defined long-term average fi:

fi = lim
T→∞

1

T

T∑
t=1

Fi(t),

and that maxi,t Fi(t) is bounded almost surely.
We restrict the set of allowable policies {Si(t)} to those

with a well-defined long-term average si for each user i:

si = lim
T→∞

1

T

T∑
t=1

Si(t).

In general, knowledge of {Qi(τ) : τ ≤ t} may result
in better policies. Hence, we allow that knowledge while
obtaining the lower bound on long-term cost in Theorem 1.
However, in many applications, for example renewable energy
and multimedia streaming [8], {Qi(τ) : τ ≤ t} are not avail-
able under current operative procedures. So while designing
our policies, we do not use {Qi(τ) : τ ≤ t}.

B. Objective

Our goal is to develop allocation policy {Si(t)} that min-
imizes the long-term average dissatisfaction normalized by
the number of users: 1

m

∑m
i=1 Vi(κ̄i). Here, κ̄i, the average

shortfall for user i, depends on the service {Si(t)} and the
consumption {Fi(t)}.

Clearly, the optimum allocation policy depends on the mean
consumptions {fi}. When {fi} are known, the objective is to
find an allocation policy that minimizes the normalized long-
term average dissatisfaction:

arg min
{Si(t)}

1

m

m∑
i=1

Vi(κ̄i). (5)

On the other hand, when {fi} are unknown and have prior
distributions {pi}, a natural objective is an allocation policy
that minimizes the expectation of (5):

arg min
{Si(t)}

1

m

m∑
i=1

Efi∼pi
Vi(κ̄i). (6)

Remark 1. These objective functions, in particular (5), are
similar to the objective in [8]. However, there are some key
differences. First, unlike the restrictive assumption Vi(fi) =
V ·fi in [8], we allow any concave increasing function. Second,
unlike [8], our availability process c(t) is not assumed to be



constant, and our algorithms and their performance guarantees
apply to time varying and random c(t). Third, Fi(t) can take
any bounded value here, and we do not assume Fi(t) ∈ {0, 1}
as in [8]. Fourth, the shortfall studied here, though similar,
is not the same as the “frequency of pause” studied in [8].
Finally, the setting that leads to the objective in (6), has not
been considered in [8].

III. REDUCTION TO NON-CONVEX OPTIMIZATION

Our first step towards solving the long-term cost minimiza-
tion problems in (5) and (6) is to reduce them to static non-
convex optimization problems, which if solved, naturally lead
to optimal yet simple allocation policies. We now present
a theorem which serves that purpose, and in the following
sections discuss methods for solving the static non-convex
optimization problems efficiently.

Theorem 1. When {fi} are known, it is impossible to achieve
a lower long-term average dissatisfaction than

V̄ = min
{si≥0}

1

m

m∑
i=1

Vi(max(fi − si, 0)) (7)

subject to
m∑
i=1

si ≤ c̄.

When {fi} are unknown, it is impossible to achieve a lower
expected long-term average dissatisfaction than

Ṽ = min
{si≥0}

1

m

m∑
i=1

Efi∼pi
Vi(max(fi − si, 0)) (8)

subject to
m∑
i=1

si ≤ c̄.

Furthermore, if {ŝi} solves (7) or (8) within an optimality gap
∆, then the simple policy {Si(t) = ŝi

c(t)
c̄ } solves (5) or (6),

respectively, within an optimality gap ∆.

The main step in Theorem 1’s proof is the following claim
relating average shortfall, allocation, and consumption.

Claim 1. Under the assumptions of Sec. II-A, the average
shortfall at user i, κ̄i satisfies

κ̄i = max(fi − si, 0),

where fi and si are the long-term consumption rate and
service rate respectively.

Proof: First we consider the case si < fi. Note the
following identity.

(−x)+ = (x)+ − x ∀ x ∈ R.

Using Qi(t) + Si(t)− Fi(t) for x gives us

κi(t) = Qi(t+ 1)− (Qi(t) + Si(t)− Fi(t)).

Adding this equation for t ∈ {1, 2, . . . , T} gives us

T∑
t=1

κi(t) = Qi(T + 1)−Qi(1) +

T∑
t=1

Fi(t)−
T∑

t=1

Si(t).

When si < fi, the existence of long-term averages for {Si(t)}
and {Fi(t)} imply limT→∞

Qi(T )
T = 0.3 So dividing by T on

both sides and letting T →∞ gives

κ̄i = fi − si, (9)

which concludes the proof for the si < fi case.
We now prove that κ̄i = 0 if si = fi. For any policy {Si(t)}

with an average service rate si(= fi), define S̃i(t) =
s̃
si
Si(t)

for some s̃ < fi. So the long-term average of {S̃i(t)} is s̃.
Further, {S̃i(t)} is a valid policy since it satisfies all the policy
constraints. Using (9), we get

κ̄i

(
{S̃i(t)}

)
= fi − s̃.

Using the fact that Si(t) is strictly more than S̃i(t), and the
fact that s̃ can be any arbitrary value less than fi, we get

κ̄i(si = fi) ≤ fi − s̃ ∀ s̃ < fi,

which is equivalent to

κ̄i ≤ 0 = fi − si.

Thus it holds that κ̄i = fi − si for all si ≤ fi.
The argument for the si = fi case also applies to any si ≥

fi. Thus we have the more general expression

κ̄i = (fi − si)
+
,

which works for all si ≥ 0. However, when si > fi, the buffer
occupancy Qi(·) grows indefinitely large. ■

Proof of Theorem 1: Since any scheduling policy must
satisfy

∑m
i=1 Si(t) ≤ c(t) for all times t, the long-term

averages must satisfy
∑m

i=1 si ≤ c̄. So the constraint set
includes all feasible policies. For any feasible policy, Claim 1
gives the average shortfall at user i as κ̄i = max(fi − si, 0).
Hence, when the mean consumptions are known, the aver-
age dissatisfaction of any policy must be at least as large
as the minimum of 1

m

∑m
i=1 Vi(max(fi − si, 0)) subject to

these constraints. A similar argument applies when the mean
consumptions are unknown.

Clearly, the simple policy satisfies the budget constraint at
any time t:

∑m
i=1 Si(t) ≤ c(t). Also, the long-term average

of this simple allocation is ŝi. Hence, by the assumption on
ŝi and Claim 1, the long-term average dissatisfaction is within
∆ of the optimum. ■

Remark 2. While Theorem 1 seems to give a simple policy,
it is not clear if there are efficient algorithms to solve (7) and
(8). This is because (7) and (8) are non-convex problems, and
standard gradient-based methods [15], [16] may get stuck at
a local optimum. The optimization problem in (7) has been
solved in [8] using a knapsack-type subroutine for the special
case where Vi(fi) = V ·fi for all i. However, the general case
remains open, which we tackle here. Further, the problem in
(8) is completely new and has an interesting and challenging
non-convex structure, as discussed later.

Note that the lower bound in Theorem 1 in the known
consumption case holds even if the scheduling policy knows

3Please see Appendix B for a formal proof and comments on how finite
buffer capacity might affect the system.



{Fi(t)} (and not just {fi}). This is because Claim 1 makes no
assumptions on the inter-dependence between Fi(t) and Si(t).
However, the simple optimal policy in Theorem 1 for this case
only assumes knowledge of {fi}.

IV. LP ALGORITHM FOR KNOWN {fi}
In this section, we present a polynomial-time algorithm

for the non-convex optimization problem (7) of Theorem 1.
Towards that, we solve a linearized program (LinProg) to get
the solutions {sLP

i }. Then, using Theorem 1’s simple policy,
at each time t, we allocate sLP

i /c̄ fraction of the available c(t)
units of resource to user i. We state this as LINALLOC (Alg. 1)
and its performance guarantee as Theorem 2.

minimize
{si : 0≤si≤fi}

1

m

m∑
i=1

(
1− si

fi

)
Vi(fi) (LinProg)

subject to
m∑
i=1

si ≤ c̄.

Algorithm 1 LINALLOC

1: Solve (LinProg) to get solutions {sLP
i }

2: for time t ∈ {1, 2, . . .} do
3: for each i ∈ {1, 2, . . . ,m} do
4: Allocate Si(t) = sLP

i
c(t)
c̄ units to user i

5: end for
6: end for

Note that (LinProg) is equivalent to maximization of pos-
itively weighted sum of non-negative variables subject to an
upper bound on their sum (after ignoring constants and rescal-
ing). So we do not need general-purpose linear-programming
solvers, and it can be solved using a familiar greedy approach
in O(m logm) time. We just need to assign si = fi in
decreasing order of

{
Vi(fi)

fi

}
, and the final i just before we

run out of resource c̄ gets the remaining resource.4

Note that we need to solve the linear program only once
until {fi} and c̄ change. We then simply reuse the solution
for each time instant to allocate the resource. In multimedia
streaming, the set of users can change every few minutes.
Consumption and supply can also change with time in elec-
tricity markets and supply chain settings. Using an off-the-
shelf solver to repeatedly solve (7) with new {fi} and c̄ is
intractable, and our linear program lets us do this efficiently.

Theorem 2. LINALLOC (Alg. 1) always results in a feasible
allocation, and the long-term average dissatisfaction achieved
by LINALLOC, V LINALLOC, satisfies

V LINALLOC − V̄ ≤ C

m

for some constant C, where V̄ is the lower bound from
Theorem 1.

Before we prove Theorem 2, we state Claim 2, which
characterizes the solution of (7), the non-convex optimization

4This solution also satisfies the condition of Claim 2.

program in Theorem 1. This will be helpful in relating the
solution of (LinProg) to the solution of (7).

Claim 2. There exists at least one global optimum {sCP
i } of

(7) which satisfies the following:

|{i : 0 < sCP
i < fi}| ≤ 1,

i.e., there is at most one user i where the optimal solution sCP
i

is neither 0 nor fi.

Proof: Notice that (7) can be written as the minimization
of

∑m
i=1 Vi(fi − si) subject to

∑m
i=1 si ≤ c̄ and 0 ≤ si ≤ fi.

Since Vi(·) are all concave, the objective is also concave. The
constraint set is defined by linear constraints, and is thus a
polyhedron. Since the minima of a concave function over a
polyhedron happens at a corner point,5 the solution {sCP

i } is a
corner point of the feasible set.

The vector {sCP
i } is m-dimensional, so corner points are

formed by the solution of m linear equations. Since
∑m

i=1 si =
c̄ is just one equation, at least m − 1 of the equations {si =
0}∪{si = fi} must be true. (If

∑m
i=1 si is strictly less than c̄,

then m of these equations must be true.) Further, both si = 0
and si = fi cannot be true simultaneously. Thus at least m−1
of {si} must be either 0 or fi, which implies at most one si
is neither 0 nor fi. ■

We are now ready to prove Theorem 2.
Proof of Theorem 2: First observe that (LinProg) is in

the form of (7) as well: if Ṽi(x) = xVi(fi)
fi

, then Ṽi(fi−si) =(
1− si

fi

)
Vi(fi), which is the term in (LinProg). Further, since

Ṽi(x) is linear, and thus concave, it satisfies all the properties
of Vi(·) assumed in Sec. II-A (note that Ṽi(0) = 0 and Ṽi(·)
is increasing). So Claim 2 applies to (LinProg) as well, and
an optimal {sLP

i } satisfies

|{i : 0 < sLP
i < fi}| ≤ 1.

While it is possible that a generic linear-programming solver
might give a different (global optimal) solution which does
not satisfy this condition, please see the discussion after Alg. 1
for an efficient and simple algorithm which gives a solution to
(LinProg) satisfying Claim 2. Let SLP denote {i : sLP

i < fi},
the set of users who have a non-zero dissatisfaction, and let
SCP denote a similar set for {sCP

i }. Further, let iLP and iCP

denote the users (if any) who have si > 0, but still have a non-
zero dissatisfaction (i.e., the one user identified in Claim 2).

Since {sCP
i }, the optimal solution of (7), also satisfies

the constraints of (LinProg), {sCP
i } is a feasible solution for

(LinProg). But the optimal solution of (LinProg) is given by
{sLP

i }. So we have

1
m

∑
i∈SLP

(
1− sLP

i

fi

)
Vi(fi) ≤ 1

m

∑
i∈SCP

(
1− sCP

i

fi

)
Vi(fi). (10)

Claim 2 gives us

1
m

∑
i∈SLP

(
1−sLP

i

fi

)
Vi(fi) =

1
m

 ∑
i∈SLP\{iLP}

Vi(fi)+
(
1−sLP

iLP

fiLP

)
ViLP(fiLP)

.
5See e.g., https://math.stackexchange.com/q/2946023.

https://math.stackexchange.com/q/2946023


However, by Claim 1, the long-term average cost satisfies

V LINALLOC = 1
m

∑
i∈SLP\{iLP}

Vi(fi) +
1
mViLP(fiLP − sLP

iLP),

which, together with the monotonicity of ViLP(·) gives us

V LINALLOC − 1
mViLP(fiLP) ≤ 1

m

∑
i∈SLP

(
1− sLP

i

fi

)
Vi(fi). (11)

Similar arguments on the right side of (10) give us

1

m

∑
i∈SCP

(
1− sCP

i

fi

)
Vi(fi) ≤ V̄ +

1

m
ViCP(fiCP). (12)

Substituting (11) and (12) into (10) gives us

V LINALLOC ≤ V̄ + 1
m (ViLP(fiLP) + ViCP(fiCP)) .

From the assumptions on {Fi(t)} in Sec. II-A, {fi} are
bounded almost surely, and there is a C such that

V LINALLOC−V̄≤C
m,

which concludes the proof of Theorem 2. ■
Note that (LinProg) effectively solves the problem with a

gap of at most one user. Since the cost we have considered is
the average across the m users, the simple policy of Theorem 1
with the solution of (LinProg) is within O

(
1
m

)
of the optimum.

V. UNKNOWN CONSUMPTION STATISTICS

In this section, we consider the objective in (6). Here, the
ergodic consumption rates {fi} are not known, but we know
the distributions {pi} of {fi}. We assume {pi} have finite
supports {[ai, bi]}. As in the known consumption case,
we solve the static non-convex optimization problem in (8)
and then employ the simple policy in Theorem 1. Defining
Ki(si) = Efi∼pi

[Vi ((fi − si)
+)], (8) becomes

minimize
{si : 0≤si≤bi}

1

m

m∑
i=1

Ki(si) s.t.
m∑
i=1

si ≤ c̄. (13)

While an intractable problem in general, we consider the case
where {pi} are non-increasing over their respective supports.
Many well known densities satisfy this including uniform,
truncated exponential, and Gaussian restricted above mean.

Claim 3. When pi is non-increasing, Ki(·) is a non-increasing
function that is concave over [0, ai] and convex over [ai, bi].

Proof: Please see Appendix A. ■
Thus, when {pi} are non-increasing, the objective becomes

minimization of sum of non-increasing functions subject to
linear constraint, where each function is part concave and
part convex. Though this structure may be of independent
mathematical interest, solving it in its full generality seems
quite challenging, and we leave it for future work. We consider
the symmetric case where ai = a, bi = b, and Ki = K for all
i. This happens when {Vi} are the same and the consumption
rates are all drawn from the same distribution. This is a
natural assumption for multimedia streaming and energy grid
where all the users are treated equal.

We first state and prove Claim 4 and Claim 5 which
characterize the optimal solution of (13).

Claim 4. There exists a (global) optimum {s∗i } of (13), with
S∗conv = {i : a ≤ s∗i ≤ b}, such that s∗i = s∗j for i, j ∈ S∗conv.

Proof: Suppose s∗i > s∗j ≥ a for some i, j ∈ S∗conv. Since
K(·) is convex in [a, b], Jensen’s inequality gives

2K
(

s∗i +s∗j
2

)
≤K(s∗i )+K(s∗j ).

So we can reduce the cost by setting both users to
s∗i +s∗j

2 . (Note
that the constraint on cumulative service rate being less than c̄
is not violated by this transformation.) So we can always find
an optimal {s∗i } with s∗i = s∗j for i, j ∈ S∗conv. ■

Claim 5. There exists a (global) optimum of (13) {s∗i }, with
S∗conc = {i : 0 ≤ s∗i < a}, such that |{i ∈ S∗conc : s∗i ̸= 0}| ≤
1, and {s∗i } satisfies Claim 4.

Proof: This is similar to Claim 2, with the functions
here being K(·) rather than Vi(·). In the set S∗conc, the search
for the optimal solution can be restricted to si ∈ [0, a) (by
definition of S∗conc), and in this region, K(·) is concave. Hence,
for these users, similar arguments as Claim 2 apply, and give
the cardinality bound. One difference with Claim 2 is that the
interval is open at a, avoiding the si = a case we had there.
This is because if si = a for any i, it is a part of the convex
interval and the transformation of Claim 4 applies.6 None of
the users in S∗conc are affected by Claim 4’s transformation, so
the overall solution also satisfies Claim 4. ■

Algorithm 2 SYMALLOC

1: Initialize V ∗ ←∞, s∗i ← 0 ∀ i ∈ {1, 2, . . . ,m}
2: for n ∈ {0, 1, . . . ,m− 1} do
3: V, β ← solution of (14)
4: if V < V ∗ then
5: V ∗ ← V , β∗ ← β, n∗ ← n
6: end if
7: end for
8: s∗1 ← β∗

9: for i = 2 to n∗ + 1 do
10: s∗i ←

c̄−β∗

n∗

11: end for
12: At each time t, allocate using Si(t) = s∗i

c(t)
c̄

Claim 4 and Claim 5 imply that there is at least one optimal
solution that has one user with service rate β ∈ [0, a), and n
users with service rate r ∈ [a, b] with r = c̄−β

n . The remaining
m − n − 1 users have a service rate 0. If we have the value
of n, we can find the optimal β by solving (14):

V ∗= min
β

(
K(β)+nK

(
c̄−β
n

)
+(m−n−1)K(0)

)
, (14)

s.t. max(0, c̄−nb) ≤ β ≤ min(a, c̄−na),

to get the optimal V ∗ and β∗ (given n). If some n results in
an empty feasible region for β, we set V ∗ =∞. Since (14) is
an optimization in one variable over a bounded range, it can

6We thank the anonymous reviewer who pointed this out.



be solved using brute force. These observations directly lead
us to Alg. 2 and Theorem 3.7

Theorem 3. The allocation policy in SYMALLOC (Alg. 2)
achieves the minimum defined by (13).

VI. CONCLUSION & FUTURE WORK

In this paper, we have considered a resource allocation
problem to minimize user dissatisfaction due to shortfalls
in the allocated (time-varying) resource. This framework is
applicable in varied scenarios such as wireless multimedia
streaming, renewable energy grid, and supply chain logistics.
We first reduced the resource allocation problem to a static
non-convex optimization problem, and exploited the combi-
natorial structure of the problem to develop algorithms that
are either near-optimal (when the users’ consumption statistics
are known) or optimal (when the consumption statistics are
unknown, but the users are symmetric).

This still leaves us with many interesting open questions.
We highlight four here. (i) Can we solve (7) with a smaller
gap than O

(
1
m

)
in polynomial time? While [8] tackles this

under some restrictive assumptions (see Remark 1), it is still
open if it can be solved in the general setting considered
in this paper. (ii) While this paper minimizes the cumulative
dissatisfaction, it is also important to consider fairness in the
resource allocation [17]. Solving the problems considered in
this paper in conjunction with fairness considerations is an
important future direction. (iii) Can we solve (8) when the
users are not symmetric? In particular, it would be interesting
to see if (8) can be solved for asymmetric users when {Vi(·)}
have more structure. (iv) Can we derive similar results when
the buffer capacity is finite? Specifically, does knowledge of
{Qi(t)} help with the scheduling in this case? We briefly
comment on how a finite buffer affects Claim 1 in Appendix B.
Note that we did not make use of the infinite buffer assumption
beyond Claim 1 in this paper.

APPENDIX A
PROOF OF CLAIM 3

For s ∈ [0, bi], the function we are interested in is

Ki(s)=Efi∼pi [Vi((fi−s)+)]=
∫ bi
ai

Vi((fi−s)+)pi(fi)dfi.

Using Vi(0) = 0, this can be simplified to

Ki(s)=
∫ bi
max{s,ai}

Vi(fi−s)pi(fi)dfi.

Using the Leibniz rule of differentiation (see [18], for
example) in the s ∈ (0, ai) region, we get

K′′
i (s)=

∫ bi
ai

V ′′
i (fi−s)pi(fi)dfi.

However, Vi(·) is concave, which implies V ′′
i (·) ≤ 0, giving

K′′
i (s)≤0 for s∈(0,ai). (15)

7While LINALLOC has an O
(

1
m

)
gap, SYMALLOC achieves optimal cost.

This is because the “symmetric” assumption helps us solve (13) exactly. If
we make the same assumption in the LINALLOC setting, we can solve the
optimization program faster than SYMALLOC since we know β = c̄−na as
a = b. Note that the time complexity of SYMALLOC is O (mT ), where T
is the complexity of (14).

In the s ∈ (ai, bi) region, we get (using Vi(0) = 0)

K′
i(s)=−

∫ bi
s

V ′
i (fi−s)pi(fi)dfi.

Using the Leibniz rule again gives us

K′′
i (s)=V ′

i (0)pi(s)+
∫ bi
s

V ′′
i (fi−s)pi(fi)dfi.

Using the non-increasing property of pi, we have∫ bi
s

V ′′
i (fi−s)pi(fi)dfi ≥ p(s)

∫ bi
s

V ′′
i (fi−si)dfi, which gives

K′′
i (s)≥0 for s∈(ai,bi). (16)

Using (15) and (16) together gives us the required result.

APPENDIX B
PROOF OF s < f =⇒ limT→∞

Q(T )
T = 0

While proving Claim 1, we assumed that when si < fi, we
have limT→∞

Qi(T )
T = 0. In Theorem 4 below, we prove this

statement formally.
To avoid clutter, we drop the subscript i and define the

system as follows. We have a queue Q(t) that is being served
by a process S(t) and utilized by a consumption process F (t).
We have the following system dynamics:

Q(t+ 1) = (Q(t) + S(t)− F (t))
+
.

The following theorem holds.

Theorem 4. Assume the long-term averages for S(·) and F (·)
exist:

lim
T→∞

1

T

T∑
t=1

S(t) = s and lim
T→∞

1

T

T∑
t=1

F (t) = f.

If s < f , then

lim
T→∞

Q(T )

T
= 0.

Proof: Let us first show that {Q(t)} is 0 infinitely often
if s < f . For this, assume the contrary, i.e., there exists an
NQ ∈ N such that Q(t) > 0 for all t ≥ NQ. This means that
the system dynamics reduces to

Q(t+ 1) = Q(t) + S(t)− F (t) (17)

for all t ≥ NQ. For any T > NQ, adding up the equations for
t = NQ, NQ + 1, . . . , T − 1, we get

Q(T ) = Q(NQ) +

T−1∑
t=NQ

S(t)−
T−1∑
t=NQ

F (t).

However, since s < f , for a large enough T , the sum of {S(t)}
would be less than the sum of {F (t)} (by a large enough
margin), giving us Q(T ) < 0, which is a contradiction. Thus
{Q(t)} is 0 infinitely often.

To prove the theorem, we need to prove that for any ϵ > 0,
we can find an Nϵ ∈ N such that

∣∣∣Q(T )
T

∣∣∣ < ϵ for all T ≥ Nϵ.
Since the long-term averages for {S(t)} and {F (t)} exist, we
can find an Ñϵ such that∣∣∣∣∣s− 1

T − 1

T−1∑
t=1

S(t)

∣∣∣∣∣ < ϵ

4
and

∣∣∣∣∣f − 1

T − 1

T−1∑
t=1

F (t)

∣∣∣∣∣ < ϵ

4
,

(18)



for all T ≥ Ñϵ. Let us define Nϵ as follows:

Nϵ := min{t : Q(t) = 0 and t ≥ Ñϵ}.

Since {Q(t)} is 0 infinitely often, Nϵ exists (i.e., the minimum
is over a non-empty set). We show that this Nϵ satisfies the
limit condition:

∣∣∣Q(T )
T

∣∣∣ < ϵ for all T ≥ Nϵ. For any T ≥ Nϵ,
define T ′ as follows:

T ′ := max{t : Q(t) = 0 and t ≤ T}.

So T ′ is the last time Q(t) is 0 before t = T . Since T ≥ Nϵ

and Q(Nϵ) = 0 (by definition), we have T ′ ≥ Nϵ.
Using (18), we get

(T − 1)
(
s− ϵ

4

)
<

T−1∑
t=1

S(t) < (T − 1)
(
s+

ϵ

4

)
and

(T − 1)
(
f − ϵ

4

)
<

T−1∑
t=1

F (t) < (T − 1)
(
f +

ϵ

4

)
for all T ≥ T ′ (since T ′ ≥ Nϵ ≥ Ñϵ by definition). Since
these inequalities are also true for T = T ′, we can subtract
the summation till t = T ′ − 1 to get

T−1∑
t=T ′

S(t) < (T − T ′)s+ (T + T ′)
ϵ

4

and
T−1∑
t=T ′

F (t) > (T − T ′)f − (T + T ′)
ϵ

4
.

Observe that from the definition of T ′, we have Q(t) > 0 for
T ′ < t < T . So the system dynamics again reduce to (17) in
this range and a telescopic summation gives

Q(T ) < Q(T ′) + (T − T ′)(s− f) + 2(T + T ′)
ϵ

4
.

Using Q(T ′) = 0 and T ′ ≤ T , we get for all T ≥ Nϵ,

Q(T )

T
<

T − T ′

T
(s− f) + ϵ,

and since s < f and Q(T ) ≥ 0, this gives us∣∣∣∣Q(T )

T

∣∣∣∣ < ϵ

for all T ≥ Nϵ, which concludes the proof. ■
One of the assumptions we made in order to arrive at

Claim 1 is that the system has infinite buffer capacity, i.e., Q(·)
can grow without bound. While this is indeed a reasonable
assumption in some applications, it may not be valid in
general. If our buffer only has finite capacity B, the dynamics
would change as

Q(t+ 1) = min{(Q(t) + S(t)− F (t))
+
, B}.

Retracing the steps in the proof of Claim 1, we instead end
up with

κ(t) ≥ Q(t+ 1)− (Q(t) + S(t)− F (t)),

giving us

κ̄ ≥ (f − s)+.

In this case, even if s > f , i.e, the service is greater
than the consumption, it is still possible to have non-zero
average shortfall. Thus it becomes more important to consider
the buffer occupancy while scheduling so as to not provide
wasteful service to an already full buffer.
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