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Abstract—The objective of pose SLAM or pose-graph opti-
mization (PGO) is to estimate the trajectory of a robot given
odometric and loop closing constraints. State-of-the-art iterative
approaches typically involve the linearization of a non-convex
objective function and then repeatedly solve a set of normal
equations. Furthermore, these methods may converge to a local
minima yielding sub-optimal results. In this work, we present
to the best of our knowledge the first Deep Reinforcement
Learning (DRL) based environment and proposed agent for 2D
pose-graph optimization. We demonstrate that the pose-graph
optimization problem can be modeled as a partially observable
Markov Decision Process and evaluate performance on real-
world and synthetic datasets. The proposed agent outperforms
state-of-the-art solver g2o on challenging instances where tradi-
tional nonlinear least-squares techniques may fail or converge
to unsatisfactory solutions. Experimental results indicate that
iterative-based solvers bootstrapped with the proposed approach
allow for significantly higher quality estimations. We believe
that reinforcement learning-based PGO is a promising avenue to
further accelerate research towards globally optimal algorithms.
Thus, our work paves the way to new optimization strategies in
the 2D pose SLAM domain.

I. INTRODUCTION

Bundle adjustment (BA) is a process that plays a significant
role in computer vision applications today, such as Structure
from Motion (SfM) and on the back-end of Simultaneous
Localization and Mapping (SLAM) algorithms [1]. This pro-
cess involves estimating the 3D coordinates describing the
scene and pose of the camera concurrently. This estimation is
typically performed by optimally minimizing a cost function
which minimizes re-projection error. In large complex scenes,
however, the number of landmarks are significantly more
prominent, which will, in turn increase the computation time
and may affect real-time performance. When converting the
problem of this type, one can either avoid taking into account
all historical data from previous time steps and apply a
sliding window technique or eliminate the optimization of the
landmarks [2]. The latter is commonly referred to as pose-
graph optimization. These relative pose measurements are
typically obtained from cameras, laser sensors, IMUs, or wheel
odometry. Given odometric or loop closing measurements at
successive time intervals, the objective of PGO is to return the
optimal configuration of pose estimates, which maximally ex-
plain the available measurements observed. The computation
of the maximum likelihood estimate of robot poses results
in a high-dimensional non-convex optimization problem with
multiple local minima.

State-of-the-art methods in today’s modern era view SLAM
and BA as Maximum a posteriori (MAP) or Maximum Likeli-
hood inference. A specific class of graphs often analyzes both
problems, known as factor graphs [3].

There exist instances of SLAM problems which consist
of highly non-convex cost functions, attributed to system
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(a) Initial noisy estimate of M3500B. (b) Proposed reinforcement learning agent’s estimate

(c) g2o’s Levenberg-Marquardt solver estimate after 100
iterations

(d) Levenberg-Marquardt set to perform 30 iterations when
bootstrapped by the proposed agent’s result as an initial guess.

Fig. 1: Evaluation on the standard Manhattan world M3500B [6]. In this dataset, we
notice that the estimate produced by Levenberg-Marquardt set to perform 100 iterations
yields an unsatisfactory solution. When bootstrapped by our proposed agent’s initial
guess, Levenberg-Marquardt set to complete just 30 iterations results in significantly
improved accuracy.

nonlinearity, high levels of noise corruption, large inter-nodal
distance spacing, and incorrect data associations from the
front end [4]. This further results in cost functions with
large valleys [5], which may cause classical gradient-based
approaches to fail or converge at unsatisfactory solutions, as
depicted in Fig. 1-(c).

This work, shows that our proposed reinforcement learning
(RL) agent can perform exceptionally well on graphs with poor
initial guesses. The agent can be utilized to search and explore
the pose trajectory space configurations by applying the opti-
mal retractions [7] directly to the desired poses, with the goal
of returning and recovering the optimal global trajectory. In
certain situations, obtaining ground truth trajectory labels in
the SLAM domain may be laborious and expensive. The main
advantage of leveraging a reinforcement learning-based agent
is that existing supervised networks require to be trained on a
large collection of labeled data. Suitable or empirical datasets
used for label-based training are not always guaranteed [8].

Our contributions can be summarized as follows:
• The first DRL model to learn a policy that predicts

the optimal orientation retractions [7] from pose-graph
observations for the application of planar PGO. The pro-
posed modular encoder-agent architecture is comprised
of two main components. The first component is a neural
network initially proposed in [9] for graph optimality
classification. The second is a recurrent-based soft actor-
critic (SAC) [10] agent whose policy predicts the optimal
orientation retractions [7].

• A planar pose-graph environmental framework based
on [11] and GUI for visualization during evaluation.
The environment and the proposed agent will be made
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publicly available1 to encourage more research into de-
veloping and comparing other RL approaches in the pose-
graph domain.

• Extensive experiments on simulated and real-world
benchmarks illustrate the accuracy of the proposed agent,
and further demonstrate the generalization capability of
the agent to graphs never seen before during training.

The paper is organized as follows: Sec. II provides an
overview of the related works. Sec. III includes preliminary
definitions and related terminology. In Sec. IV, we present
our proposed environment, and describe the encoder and agent
architecture. Sec. V and VI present the experimental results,
followed by the conclusions and future works.

II. RELATED WORK

Conventional Pose-Graph Optimization Approaches.
Popular MAP iterative solvers such as g2o [12], Ceres [13],
and GTSAM [14] can be explicitly utilized to tackle problems
that can be represented as a graph using nonlinear optimization
methods. Line search methods such as Stochastic Gradient
Descent and Gauss-Newton (GN) are typically used to per-
form nonlinear optimization. Given an initial guess, second
order methods repeatedly linearize a nonlinear least-squares
objective function and then solve the unique least-squares
equations until convergence [3]. Depending on the quality of
this initial guess, there is no assurance for convergence to
global optimal solutions [4]. As the non-convexities of the
problem increase, iterative methods such as Powell’s dogleg,
Levenberg-Marquardt (LM), and Gauss-Newton, are subject
higher computational efforts required due to recurring matrix
computations involved in the linearization step. This in turn,
led to an increased interest in regards to direct and indirect lin-
ear solvers as well as factorization techniques to be introduced.
Direct and indirect sparse linear solver methods include the
preconditioned conjugate gradient (PCG), SuiteSparseQR [15],
and CHOLMOD [16]. For larger scaled problems, bundle ad-
justment methods were introduced to perform at a much more
accelerated rate. This is done by performing computations
synchronously parallel, distributing the workload, and making
use of the recent developments in hardware, i.e, IPUs. An
example of this was implemented in [17] and [18].

Bootstrapping or initialization strategies were also shown
to improve convergence of iterative methods. Multi Ancestor
Spatial Approximation Tree for 2D and 3D pose-graph op-
timization [19] demonstrate a computationally efficient and
light-weight initialization method, which when followed by a
gradient-based solver, achieves good results on classical 2D
and 3D pose-graph optimization datasets.

In recent years, the semidefinite relaxation (SDR) technique
has been involved in exciting developments in the area of
SLAM, and has also shown great significance on a variety of
applications. In general, it can be applied to many non-convex
quadratically constrained quadratic programs (QCQPs) such
as the pose SLAM and Landmark SLAM problem instances.

SE-Sync [20] is a certifiably correct algorithm for per-
forming synchronization over the special Euclidean group.

1https://sites.google.com/view/rl-pgo

Leveraging duality to devise an algorithm was also shown to
enable global verification of a given estimate [21]. The sparse
bounded degree sum-of-squares (Sparse-BSOS) optimization
method [22], formulate SLAM problems as polynomial op-
timization programs and demonstrate the ability to achieve
global minimum solutions without initialization. A deep learn-
ing approach for pose-graph global optimality classification
was also recently proposed in [9].

Learning-Based Optimization Approaches. There has
been a recent surge of interest on incorporating deep neural
networks into state estimation and SLAM pipelines. Others
have approached alternative solutions which are learned vari-
ations of the traditional approaches. LS-Net [23] introduced
the first approach to a learned optimizer for minimizing
photometric residuals. Several learning-based methods involve
reparametrization to allow for gradient back propagation and
end-to-end learning. An example of this was illustrated in [24]
and [25], which involved a reparametrization of the damping
mechanism to enable differentiability in Levenberg-Marquardt
solvers. Recent line of works, present an end-to-end approach
for learning estimators modeled as factor-graph smoothers for
state estimation applications. A surrogate loss was proposed
in [26] for end-to-end training of smoothing-based estimators,
and was evaluated on Visual Tracking, and Visual Odometry
tasks.

Graph Neural Networks. There has also been a plethora of
works involving Graph Neural Networks for multiple rotation
averaging (MRA). NeuRoRA [27] were the first to apply
a graph neural network to regress the rotations in a view
graph. The model consisted of a cleaning network which
was responsible for mitigating outlier measurements, followed
by an additional network used for fine tuning and regress-
ing the absolute rotations given the measurements. Using a
single Message Passing Neural Network (MPNN) with edge
attention, [28] further improved the robustness, training time,
and execution speed of the previous deep learning model
and eliminated the requirement for an additional network.
Recently, PoGO-Net [29] introduce a novel joint loss MRA
formulation which was shown to outperform state-of-the-art
and operate in real-time.

Reinforcement Learning. All the aforementioned learning
techniques either require ground truth labels or apply tech-
niques to enable differentiability for end-to-end training. Re-
inforcement learning revolves around the concept of learning
from interaction [30]. It is different from the supervised and
unsupervised machine learning paradigms in that it does not
have an external supervisor to pair situations with labeled
actions and does not try to propose a valid structure hid-
den in unlabelled situations. Instead, RL mainly focuses on
maximizing a reward signal through interactions between the
agent and an environment. It is essentially based on associating
transitional experiences to actions in such a manner that would
maximize a reward signal, and is used in several applications,
e.g. healthcare [31], robotics [32], finance [33], and many
more [34].

https://sites.google.com/view/rl-pgo


III. PROBLEM STATEMENT

In Sec. III-A, we provide relevant background knowledge
and preliminary definitions in regards to PGO and Lie Theory.
Related RL terminology is also further provided in Sec. III-B.

A. 2D Pose-Graph Optimization and Lie Theory

Assuming independent Gaussian measurement noise for
relative orientation and translation measurements, i.e. Σij =
diag (σt,σR), we formulate the problem for planar scenarios
as follows: Given m relative pose measurements encoded
by edges (i, j) ∈ E on a directed graph shared between
n robot poses, and co-variance matrix for all measurement
pairs, the goal of pose-graph optimization is to return the
optimal estimate or configuration of poses which best fit the
measurements observed. This can be more formally denoted as
seeking the minimum of the objective cost function F (x) [4]:

F (x) =
∑

(i,j)∈E

∥∥∥R>i (tj − ti)− t̃ij
∥∥∥2

Σσt
+

∑
(i,j)∈E

∥∥∥(Rj −Ri)− R̃ij

∥∥∥2

ΣσR

,

(1)

where ‖.‖2Σ symbolizes the Mahalanobis distance, and F (x)
is a unitless weighted squared sum of all error residuals used
to determine the accuracy of the state estimation (smaller the
better). x ∈ SE(2) denotes the set of all incremental pose
coordinates. For each pose in the set, xi =

[
t>i Ri

]>
, ti ∈ R2

and Ri ∈ SO(2),∀i = 1 . . . n denote the absolute translation
and orientation configurations. The relative translation and
orientation measurements observed between neighboring poses
i and j are represented as t̃ij ∈ R2 and R̃ij ∈ SO(2).
The level of difficulty in solving this optimization task lies
in the estimation of the absolute orientations. It was shown
in [35] and [4] that estimating rotations first in the case of
pose-graph initialization, allows for greater convergence guar-
antees and closed form solutions in the planar case. Further
proven in [4], the pose-graph optimization would be a linear
least-squares problem if orientation states are known which
allows for significant computational advantage. This principal
is illustrated in our proposed method where a reinforcement
learning agent seeks to recover the optimal orientation config-
urations for each robot pose in SO(2), followed by a linear
least-squares translation estimation step shown in [4]. When
applying perturbations on the orientation states, one cannot
just simply apply matrix addition, as this operation does take
into consideration the wrap-around in the SO(2) Lie Group.
Instead, we apply updates via local reparametrization more
commonly known as the exponential mapping, followed by
the retraction operation which is denoted by the symbol ⊕ [7].
In SO(2), this is defined as

Ri ⊕ ξ , Ri · exp ξ̂, (2)

where ξ ∈ R, and the hat operator is responsible for the
transformation from Cartesian vector space to the Lie algebra,
which is a 2×2 matrix. The inverse of the exponential mapping
is referred to as the logarithmic mapping, which transfers

elements from the Lie group to Cartesian coordinates denoted
as: Log (Ri).

B. Reinforcement Learning Definitions

The basic components of reinforcement learning consist
of an agent and an environment. The main objective of a
reinforcement learning algorithm involves training an agent to
learn an optimal policy π(a|s), such that the agent can achieve
a high cumulative reward under a user defined evaluation
metric, known as the reward function. A policy is defined as a
probabilistic mapping from states to actions. For every discrete
time step of interaction t, the agent is responsible for making
optimal sequential decisions by applying actions at ∈ A,
observing a state st ∈ S, and then receiving a feedback signal
or reward R (st,at) for the corresponding state-action pair.
We also define a Q value function which returns the expected
sum of rewards assuming the agent is in state s and performs
actions a following policy π.

The standard RL objective seeks to maximize the expected
sum of rewards: Eπ [

∑
t γ

tR (st,at)], where γ ∈ [0, 1) is the
weighting which defines how much importance we give for
future rewards. It is also assumed that the state must include
information about all aspects of the past interactions which
enables informative decisions for the future [30]. When an
observation does not contain the complete state information,
the environment is said to be partially observable.

IV. PROPOSED APPROACH

The end-to-end agent-environment interaction is illustrated
in Fig. 2. For each episode step, the orientation residual
components of the input graph are first passed into the encoder
network. The encoder then returns a highly expressive low
dimensional input representation of the state. Once the state
is then provided to the recurrent-based SAC policy network,
the optimal retractions on neighbouring poses are applied. In
Sec. IV-A and IV-B, we review the environment details and the
framework used to encode our observations into a descriptive
latent embedding. Sec. IV-C overviews the recurrent SAC
policy network used to apply the optimal retractions on the
graph orientation state space.

A. Environment Details

To frame the pose-graph optimization problem in terms of
reinforcement learning, we need to first define an environment.
The environmental framework was inspired from the syntheti-
cally generated pose-graphs provided in [4]. Each pose-graph
instance is categorized by five environmental parameters: the
number of poses n, orientation measurement uncertainty σR,
translation measurement uncertainty σt, inter-nodal distance
spacing d, and probability of loop closures lc.

As shown in Fig. 2, the agent’s location along the graph
is highlighted in red, where steps occur between each edge.
The number of steps per episode is dependant on the number
of edges in the graph and a user defined value referred to as
the number of cycles. This value determines the number of
times the agent traverses across each edge, and termination of



Fig. 2: Agent (red), cycling through every edge in the pose-graph and applying optimal retractions to the orientation components of each neighbouring pose.

an episode. The definition of one cycle consists of when an
agent traverses every edge in the pose-graph once.

For each step-by-step transition along the edges, the output
from the policy is passed through the tanh activation layer
and then multiplied by a user defined action range factor.
The resultant vector is utilized to apply a retraction on the
neighbouring poses connected by the edge, in which the agent
resides at that particular instance in time: Ri ⊕ at[0] and
Rj⊕at[1]. In one cycle, each pose is perturbed twice assuming
no loop closures. Following the completion of an episode, the
final orientation estimate returned by the agent is then utilized
in the concluding linear least-squares translation estimation
provided in [4].

The state in this case is comprised of two components.
The first component includes the encoded history of the
orientation residuals at each time step. The second component
is essentially the angular difference between the observed and
measured orientations corresponding to the edge in which the
agent is located at time t:

Log
(
R̃
>
ijRij

)
, (3)

where Rij
.
= R>i Rj , (i, j) ∈ E . The graph observation

encoding details are further discussed in Sec. IV-B.
The reward function for each time step is hybrid (dense/s-

parse) and is calculated as

Reward =
100

OC + 1
, (4)

with an additive constant of +25 for every step the function
output experiences a relative decrease by factor of 10, i.e.
(0.001, 0.0001,0.00001). The orientation cost (OC) is

OC =

√√√√ ∑
(i,j)∈E

∥∥∥R̃ij −Rij

∥∥∥2

F
, (5)

where ‖B‖F , denotes the Frobenius norm of matrix B.

B. Graph Encoder Architecture

We adopt the architecture proposed in [9], formally pre-
sented for the task of global optimality prediction. The poses
or in other words, nodes of each graph input, store a cost
feature and the absolute orientation Ri of the node itself.
We utilize an augmented message passing function which
is dependant on orientation components only, as opposed to
both translation and orientation as depicted in Eq. (6). Further

provided by [9], once the input pose-graph observation passes
forward, a two step process occurs. The first step is the
message passing step which involves computing the Frobenius
norm of the absolute orientations shared by each edge, where
β is a learnable weight:

msgi,j = β × ‖RiRij −Rj‖F . (6)

Proceeding the computation of messages for each of the
connected nodes, an aggregate sum is then stored in the cost
feature associated with the corresponding node itself,

costj =
∑
i

msgi,j . (7)

The mean of all cost features from graph observation at
time t is then passed through a linear layer and concatenated
with the angular difference between the observed and mea-
sured orientations, corresponding to the agent’s edge location
computed from Eq. (3). The output dimension of the linear
layer is user-defined and for all of our evaluations we set this
value to 20. This resultant state vector st at time t is passed
into the recurrent SAC policy for an action to be applied.

C. Recurrent SAC

Soft actor-critic (SAC) [36], [37] is a state-of-the-art con-
tinuous control RL algorithm with an augmented objective:

E
π

[∑
t

γt [R (st,at) + αH (π (· | st))]

]
, (8)

where the temperature parameter α dictates the relative im-
portance between the entropy H and reward R. Thus, the
agent is encouraged to explore the state space and unseen
trajectories which can speed up learning and prevent sub
optimal convergence. We utilize a recurrent version of the
original implementation as shown in [10]. After observing
the current state and history of previous state-action pairs, the
recurrent SAC policy network applies the optimal retractions
to each of the poses shared by the edge in which the agent is
located at for every time step.

The recurrent SAC algorithm utilizes two networks, the
Q-function and the policy. We will consider the policy πφ,
parameterized by φ modelled as a Gaussian with mean at,
and covariance as depicted in Fig. 2. The two dimensional
action vector at time t is given by:

at = πφ (εt; st,at−1, zt) , (9)



where εt is an input noise vector sampled from a normal
distribution with mean 0, and standard deviation of 1. Both
policy and Q value architectures follow the structure of the
recurrent-based DDPG algorithm proposed in [38].

The recurrent branch further allows the agent to make
informed optimal decisions on the next actions from previ-
ous state and action pairs, by the internal state representa-
tion [38]: zt = z (ht) modelled by an LSTM. We denote
ht = [at−1, st−1, at−2, st−2, . . .] to represent the history of
the previous states and actions.

The objective loss functions are essentially the same as
presented in [37], with slight modification to the gradient
estimators, accounting for back propagation through time
(BPTT). Details can be referred to in [38] and [39].

V. EXPERIMENTAL RESULTS

In this section, we evaluate our RL approach and provide
comparisons against the gradient-based g2o [12] Gauss New-
ton, and Levenberg-Marquardt iterative solvers. As proven
in [4], the non-convexity of a given problem instance are
related to the ratio of orientation to translation uncertainty σR

σt
,

and the squared sum of all measurement distances. In Sec. V-B
and V-C, we conduct analytical tests similarly done and
inspired by [4], where comparisons were made against Gauss
Newton 10 (GN10) and 5 (GN5) iterations in their evaluations.
For our comparisons we set the maximum to 100. The quality
of estimation provided by our approach is assessed under
the influence of the adjustable environmental parameters, and
further illustrate the effectiveness of the proposed approach
under challenging scenarios. A head-to-head comparison with
the Levenberg-Marquardt solver is also provided on standard
real-world and synthetic benchmarks in Sec. V-D.

We train five separate agents, and for all evaluations depict
results for the agent which performed best on the testing
environment. Each of the agents are trained on small pose-
graph environments of size n = 20 randomly sampled from
their assigned environmental noise distributions every episode.
The agents are then evaluated on synthetic and real-world
graphs, much larger in size and unseen during training to
demonstrate generalizability. The five training environment
details are indicated in Table I, and cumulative reward plots
for these agents during training are depicted in Fig. 3.

Env. n σR [rad] σt [m] d [m] lc Cycles Action
Range

1 20 0.3 0.01 3 0.5 7 0.25
2 20 0.3 0.01 3 0.5 8 0.25
3 20 0.2 0.1495 1 0.5 5 0.4
4 20 0.2 0.1495 1 0.5 6 0.25
5 20 0.1 0.01 10 0.5 6 0.25

TABLE I: Training environment parameters include the number of poses n, orientation
measurement uncertainty σR, translation measurement uncertainty σt, inter-nodal
distance spacing d, and probability of loop closures lc. See Sec. IV-A for more details.

A. Implementation and Training Details

For the policy and Q-value network, all related layers consist
of 512 fully connected units followed by 512 LSTM units in
the recurrent branch. Kaiming Initialization [40] was employed
on both Q-function and policy network weights. Rectified
non-linearity [41] (ReLU) were used for all hidden layers.

(a) Cumulative reward for training environments 1-3

(b) Cumulative reward for training environments 4-5

Fig. 3: (a)-(b) Cumulative reward plots for Training Environments 1-5.

We utilized Adam optimizer [42] with a learning rate of
3.0E − 04, minibatch size of 128 and a discount factor of
γ = 1.0. All Q-function and policy networks are updated after
every episode with target networks updated by an exponential
moving average, with τ = 1.0E − 02. The networks are
trained on a single Nvidia GeForce RTX 3090 GPU with
24GB memory. For best performance the final policy was set
to deterministic and all objective cost function values F (x),
as well as optimization times recorded, are averaged over 10
runs or episodes.

B. Effect on Measurement Uncertainty Ratio

In this analytical case study, we allow Gauss Newton to
perform 100 iterations (GN100) which can be interpreted
as applying 100 pose retractions or actions to each pose
in the graph. We utilize the agent trained in environment
number 2 where the number of evaluation cycles was set to
8, and therefore performs far fewer retractions per pose than
GN100. This analysis involves evaluation of the performances
on a test pose-graph environment with decreasing translation
uncertainty while all other parameters are kept fixed. In this
case, n = 300, σR = 0.3rad, d = 3m, lc = 0.5, while σt
ranges from [0.2, 0.1, 0.05, 0.03, 0.01]m. Objective cost func-
tion values and total elapsed optimization times are presented
in Table II and an example of the σt = 0.05m instance is
shown in Fig. 4. It is observed that as the ratio of orientation
to translation uncertainty increases, estimates produced by
GN100 are extremely inaccurate as the non-convexities of
the pose-graph optimization problem also increase. Standalone



(a) Ground Truth trajectory (green)
and initial noisy estimate (red)

(b) GN100 estimate (c) RL (black) and RL+GN50 (magenta)
estimates

Fig. 4: Analysis on the influence of measurement uncertainty ratio for the instance σt =
0.05m. The RL+GN50 estimate (magenta) as shown in (c), only required 8 iterations
for convergence and successfully recovered the global minimum solution. As the ratio
of uncertainty increases, the RL standalone estimate (black) provides a much accurate
estimation when compared to GN100 (blue).

RL was shown to outperform GN100 in situations where
σt = 0.05m, 0.03m, and 0.01m. It is also noticed when
utilizing the RL estimate as an initial guess, the ground truth
trajectory and hence, global minimum, is returned in almost
all cases in far fewer retractions per pose. Regardless of GN
being set to perform 50 iterations, once bootstrapped by the
RL estimate graph instances σt = 0.2m, 0.1m, 0.05m, and
0.03m converged in less than 11.

σt [m] Metric GN100 RL RL+GN50

0.2
F (x) 0.00 6.04E+03 0.00
time [s] 0.04 10.08 10.12

0.1
F (x) 0.00 2.68E+04 0.00
time [s] 0.04 9.87 9.91

0.05
F (x) 1.59E+08 5.31E+04 0.00
time [s] 0.04 9.69 9.73

0.03
F (x) 5.76E+06 1.89E+05 0.00
time [s] 0.04 10.01 10.05

0.01
F (x) 1.47E+10 5.52E+06 1.21E+04
time [s] 0.04 9.97 10.01

TABLE II: Effect on measurement uncertainty ratio while other environmental parameters
are held fixed.

C. Effect on Inter-nodal distance

In this section we conduct our evaluations on test pose-graph
environments synthetically generated with various inter-nodal
distance spacing d, while all other parameters are kept fixed.
The test environment parameters in this case are, n = 300,
σR = 0.1rad, σt = 0.01m, lc = 0.5, while d ranges from
[1, 3, 5, 8, 10]m. Agent trained on environment 5 was utilized
for evaluations and the final metrics are provided in Table III.

One may notice that standalone RL outperforms GN100
on instances with larger inter-nodal distance spacing. These
results also conform to the analysis performed in [4] where
it was further indicated that the inter-nodal distances are
directly related to the sum of square measurements distances,
which further increase the non-convexities of the pose-graph
problem. GN10 bootstrapped by the RL estimate was also
capable of achieving the global minimum cost in almost all
instances. An example of the most challenging case d = 10m
is illustrated in Fig. 5.

d [m] Metric GN100 RL RL+GN10

1
F (x) 0.00 6.82E+04 0.00
time [s] 0.04 6.96 7.0

3
F (x) 0.00 7.80E+05 0.00
time [s] 0.04 6.97 7.01

5
F (x) 1.17E+06 1.03E+06 0.00
time [s] 0.04 6.96 7.0

8
F (x) 1.58E+07 5.82E+06 0.00
time [s] 0.04 6.96 7.0

10
F (x) 3.35E+14 1.24E+07 4.31E+05
time [s] 0.04 6.96 7.0

TABLE III: Effect on inter-nodal distance spacing while other environmental parameters
are held fixed.

(a) Ground Truth trajectory (green) and initial
noisy estimate (red)

(b) GN100 estimate

(c) RL (black) and RL+GN10 (magenta) esti-
mates

Fig. 5: Analysis on the influence of inter-nodal distance spacing for the instance d =
10m. The RL+GN10 estimate (magenta) as shown in (c), only required 8 iterations for
convergence, to a visually meaningful solution. As the sum of of total measurement
distances increase, the proposed RL agent (black) provides a much accurate estimation
when compared to GN100 (blue).

D. Standard Benchmark Datasets

To further assess the efficacy of the proposed approach,
we evaluate performance on standard real-world and synthetic
benchmarks provided by [6] and [4], never seen by our agent.
Comparisons are made with g2o’s LM solver fixed at 30
(LM30), and 100 (LM100) iterations, with stopping criteria
based on reaching a relative error decrease or number of
iterations. Additionally, we provide the objective cost function
values and optimization time required for the LM30 estimate
initially bootstrapped by our approach. The datasets include
Manhattan world M3500 along with its three variants A, B,
and C, which by default have standard deviations of 0.1rad,
0.2rad, and 0.3rad added to the relative orientation measure-
ments of the original. Further, we evaluate on City10K [43],
as well as Intel and MIT, which were obtained by processing
raw measurements from wheel odometry and laser range
finder measurements obtained at the Intel Research Lab in
Seattle and Killian Court. In this assessment, we double the
number of cycles the agent is set to perform during test time
except for the evaluation on City10K. Increasing the number
of cycles for evaluations was found to further improve the
quality of the RL estimate due to a larger number of pose



Dataset Metric RL LM30 LM100 RL+LM30
(# of poses, # of edges)

M3500 F (x) 1.97E+03 1.38E+02 1.38E+02 1.38E+02
(3500, 5453) time [s] 870.02 0.26 0.46 870.28
M3500A F (x) 2.94E+04 1.46E+05 9.68E+04 5.72E+03

(3500, 5453) time [s] 745.29 0.38 1.51 745.67
M3500B F (x) 4.66E+04 1.52E+04 1.43E+04 9.84E+03

(3500, 5453) time [s] 744.70 0.33 1.48 745.03
M3500C F (x) 5.64E+04 6.01E+04 3.74E+04 7.12E+03

(3500, 5453) time [s] 744.01 0.41 1.63 744.42
City10K F (x) 4.50E+04 4.53E+04 3.19E+04 5.12E+02

(10000, 20687) time [s] 3914.25 2.72 9.85 3916.97
Intel F (x) 9.96E+05 1.30E+05 5.24E+04 4.65E+02

(1228, 1483) time [s] 122.07 0.09 0.27 122.16
MIT F (x) 5.91E+03 1.11E+04 5.26E+02 7.71E+02

(808, 827) time [s] 34.49 0.05 0.13 34.54

TABLE IV: Comparison Amongst Standard Benchmark Datasets.

refinements provided by the agent. Allowing the agent to
perform more cycles however, come at the cost of longer
optimization times required. This is apparent for graphs much
larger in size such as City10K. In regards to evaluations on
M3500A, B, C, City10k, and MIT, we employ the agent
trained on environment number 3 which was found to perform
best on those datasets. For the M3500 and Intel datasets, agents
trained on environments 4 and 1 were utilized for evaluation.
Objective cost function values, and total elapsed optimization
times are given in Table IV.

It is observed that our proposed agent is effective in
exploring the state space subject to highly non-convex cost
functions. This is illustrated in instances M3500A, and C
for example, which have a larger ratio of orientation to
translation uncertainty due to the added standard deviation
on the orientation measurements. In these graph instances the
factors that influence non-convexity have a larger impact. In
such cases, RL standalone was able to outperform LM30 in
terms of state estimation accuracy. The RL estimate was also
capable of achieving a smaller objective cost function value
than LM100 on M3500A, further illustrated in Fig. 6. Due
to the sequential step-by-step nature of the agent applying
only two actions at once, far much more computation time is
required for the optimization episode to complete in all cases.

In regards to dataset City10K, the number of edges in this
graph and therefore, total sum of squared distance measure-
ments, are also much larger than other datasets. Although RL
standalone was able to outperform LM30 in City10K and MIT
as well, by allowing more iterations, LM100 was eventually
able to attain much accurate estimations. Nonetheless, when
the RL estimate is utilized as a initial guess LM30 was capable
of achieving even higher quality estimations than LM100
on all datasets except for MIT. We hypothesize that this is
attributed to the fact that MIT has the fewest number of
edges and loop closures, which provide the agent with less
information on the residual state and decrease the number of
actions applied. Further analysis which involved LM to run
until convergence, indicate that the LM solver bootstrapped by
our agent’s estimate was still of higher quality (see website of
the project: https://sites.google.com/view/rl-pgo).

VI. CONCLUSION AND FUTURE WORKS
In this work, we have demonstrated a proposed RL agent

to effectively explore the orientation state space in chal-
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Fig. 6: Comparison amongst the standard real-world and synthetic graphs. Performance
metrics are depicted from Table IV. From left to right: Standalone RL best estimate from
10 evaluations (red), LM100 estimate (blue), LM30 estimate when bootstrapped by the
RL result as an initial guess (magenta). It is observed that RL standalone outperforms
LM100 on M3500A. In all datasets except for MIT, RL+LM30 produced estimations with
the highest quality (lowest objective cost function value). Interestingly, the standalone
proposed RL agent was able to achieve solutions of adequate structure, despite having
never seen any of these test graphs throughout training.

lenging pose-graph instances subject to highly non-convex
cost functions for the application of planar pose-graph op-
timization. In particular scenarios our agent was capable of
outperforming state-of-the-art Gauss Newton and Levenberg-
Marquardt gradient-based solvers, in fewer retractions per
pose. Nevertheless, although the RL-based approach was able
to attain promising results, due to the small action space
and inability to apply actions to all poses simultaneously the
proposed agent does not seem to computationally scale well
for graphs much larger in size. Thus, the methods presented
in this work are more well-suited for offline Batch-SLAM
applications. Our agent was shown to tolerate higher than usual

https://sites.google.com/view/rl-pgo


levels of noise and inter-nodal distance spacing, which further
degrades the quality of estimation. Comparisons on simulated
environments further exploit the factors which influence non-
convexity [4], where state-of-the-art gradient descent-based
solvers may catastrophically fail or return poor quality es-
timations. As shown in Fig. 3, the pose-graph optimization
problem can be modelled as a partially observable MDP.

In situations where obtaining ground truth trajectories or
labels may be a laborious and expensive process, we have
demonstrated and highlighted the agent’s ability to perform
well on much larger real-world and standard synthetic graphs,
unseen during training. RL agents trained on smaller toy pose-
graph environments of size n = 20 were able to generalize
well to graphs with dissimilar noise distributions and odomet-
ric trajectories at test time.

Future works would involve extensions to pose-graph opti-
mization instances in the 3D domain. Increasing action space
size or a multi-agent framework may significantly reduce
computational time. Moreover, a robust encoder architecture
that is capable of mitigating the influence on outliers and false
positive loop closures would allow for better standalone per-
formance on real-world datasets. This may involve integrating
robust kernels into the message passing function or de-noising
layers adopted from [29].
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