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Formal Abstraction of General Stochastic Systems via Noise Partitioning

John Skovbekk1, Luca Laurenti2, Eric Frew1, and Morteza Lahijanian1

Abstract— Verifying the performance of safety-critical,
stochastic systems with complex noise distributions is difficult.
We introduce a general procedure for the finite abstraction
of nonlinear stochastic systems with non-standard (e.g., non-
affine, non-symmetric, non-unimodal) noise distributions for
verification purposes. The method uses a finite partitioning of
the noise domain to construct an interval Markov chain (IMC)
abstraction of the system via transition probability intervals.
Noise partitioning allows for a general class of distributions
and structures, including multiplicative and mixture models,
and admits both known and data-driven systems. The partitions
required for optimal transition bounds are specified for systems
that are monotonic with respect to the noise, and explicit
partitions are provided for affine and multiplicative structures.
By the soundness of the abstraction procedure, verification on
the IMC provides guarantees on the stochastic system against
a temporal logic specification. In addition, we present a novel
refinement-free algorithm that improves the verification results.
Case studies on linear and nonlinear systems with non-Gaussian
noise, including a data-driven example, demonstrate the gen-
erality and effectiveness of the method without introducing
excessive conservatism.

I. INTRODUCTION

The deployment of autonomous systems for safety-critical
applications, such as medical robotics and self-driving ve-
hicles, requires diligent verification of their behavior. Such
systems are inherently stochastic due to uncertainty in phys-
ical components (e.g., noise in sensors and actuators) or
black-box software components. Formal methods provides
rigorous techniques for verifying stochastic systems subject
to temporal logic specifications [1], [2]. In particular, power-
ful model checking algorithms exist for finite-state Markov
processes that can scale to large systems [1]. However, to
apply them to continuous-space systems, finite abstractions
with correctness guarantees are required [2], [3], which is
difficult in both accuracy and scalability. For this reason,
most existing work focuses on specific classes of stochastic
systems often with strong assumptions on the dynamics or
noise models [4]–[7], which we aim to relax in this work.

Uncertain Markov models, namely interval Markov chains
(IMCs [8]) have proven to be effective abstraction models
for stochastic systems [4]–[6], [9], [10]. Beyond capturing
stochasticity, they also provide a means to incorporate other
sources of uncertainty (e.g., discretization error), thereby
facilitating correctness. Yet, the difficulty remains for general
stochastic models due to the need to correctly compute
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stochastic transition kernels. Existing techniques rely on
standard (unimodal, symmetric and zero-mean) or affine
noise distributions [6], [10]–[12], linear systems [7], [9]. Ad-
ditionally, stochastic systems may possess multiple sources
of uncertainty, such as data-driven settings [5], [7], [10], [13],
[14]. Thus, IMC abstraction approaches for nonlinear sys-
tems that admit a wider class of distributions and structures
are necessary to lift these limitations.

Another difficulty facing abstraction is the state-explosion
dilemma in higher dimensions. Common approaches to this
problem are focused on parallelizing computation [15] and
adaptive refinement [4], [16]. Despite these efforts, the state-
explosion problem remains, and new ideas are needed for
further mitigation. Specifically, using the continuous system
in tandem with the abstraction to improve the verification
without refinement is largely unexplored.

Contributions: We present an abstraction method for non-
linear stochastic systems with non-affine, non-standard noise
that admits known and data-driven systems. Our method
generalizes an approach for systems learned from data with
affine, sub-Gaussian noise [5]. It is based on partitioning the
noise domain to bound the transition kernel of the IMC, side-
stepping the need to evaluate it. We show optimality criteria
for the noise partitions for systems with noise monotonicity,
and provide explicit partitions for affine and multiplicative
structures. To help address the state-explosion problem,
we also propose a refinement-free method to improve the
verification results of an abstraction by using the continuous
process. Finally, we demonstrate the efficacy of the method
by verifying linear, nonlinear and data-driven systems with-
out introducing excessive conservatism.

In summary, our contributions are (1) a procedure for
constructing abstractions via noise partitioning (Theorem 1);
(2) optimal noise partition sizes and values for a general class
of distributions (Theorem 2); (3) a procedure to improve the
verification of the abstraction without refinement (Algorithm
1), and (4) evaluations and applications to nonlinear systems
with non-standard and multiplicative noise (Section VI).

II. PROBLEM FORMULATION
We first introduce the stochastic process and its finite

abstraction, and then formulate two main problems.

A. Stochastic Process Model
Consider the following discrete-time stochastic process

x(k + 1) = f(x(k),w(k)), (1)

where x ∈ Rn, w ∈ W ⊆ Rnw is i.i.d. process noise
sampled from distribution p(w) with possibly bounded sup-
port, and f : Rn × W → Rn is a possibly nonlinear
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function. Distribution p(w) is allowed to be non-standard,
i.e., non-uniform and non-symmetric. Let X ⊂ Rn be a
Borel measureable set. The one-step transition kernel, which
defines the probability of x(k+ 1) ∈ X given x(k) = xk is

T (X | xk) =

∫
X

f(xk,w(k))p(w)dw. (2)

The transition kernel T is the basis for probability measures
of paths of System (1) [17], i.e., given an initial condition
x(0) = x0, Pr

(
x(0) ∈ X | x0

)
= 1(x0 ∈ X) and Pr

(
x(k+

1) ∈ X | xk

)
= T (X | xk) where 1(·) is the indicator

function that returns 1 if the argument is true and 0 otherwise.

B. Interval Markov Chains

A finite abstraction of System (1) is often an interval
Markov chain [2], which defines a space of Markov chains.

Definition 1 (IMC). An interval Markov chain is a tuple
I = (Q, P̌ , P̂ , AP, L) where

• Q is a finite set of states;
• P̌ : Q × Q → [0, 1] is the transition interval lower-

bound function, where, ∀q,q′∈ Q, P̌ (q, q′) ≤ Pr(q, q′);
• P̂ : Q × Q → [0, 1] is the transition interval upper-

bound function, where ∀q,q′∈ Q, P̂ (q, q′) ≥ Pr(q, q′);

It holds that, for every q ∈ Q,
∑

q∈Q′ P̌ (q, q′) ≤ 1 ≤∑
q∈Q′ P̂ (q, q′). Define the adversary γ : Q×Q→ [0, 1] as

a true transition probability function such that, for all q, q′ ∈
Q, γ(q, q′) ∈ [P̌ (q, q′), P̂ (q, q′)] and

∑
q′∈Q γ(q, q′) = 1.

The set of all adversaries is denoted by Γ. Under adversary
γ, the IMC reduced to a Markov chain with a well-defined
probability measure over its paths.

Consider a path property ϕ. The probability that all paths
initiated at q ∈ Q satisfy ϕ is denoted by Pr(q |= ϕ). When
ϕ is expressed in probabilistic computation tree logic (PCTL)
or linear temporal logic (LTL) [1], Pr(q |= ϕ) is equivalent to
the reachability probability on an IMC that composes I with
ϕ. W.L.O.G., let Qϕ ⊆ Q be the set of states, reaching which
satisfies ϕ. While the exact value of Pr(q |= ϕ) cannot be
computed, it can be bounded, i.e., Pr(q |= ϕ) ∈ [p̌(q), p̂(q)],
using dynamic programming [4]. For the lower bound,

p̌0(q) = 1(q ∈ Qϕ), p̌
k(q) = min

γ∈Γ

∑
q′∈Q

γ(q, q′)p̌k−1(q′). (3)

The upper bound p̂ is computed by replacing the min
with max operator and p̌ with p̂. The computation of the
satisfaction bounds p̌(q), p̂(q) for all q ∈ Q is called the
IMC verification procedure.

C. Problem Statements

Verifying System (1) against ϕ can be performed by
discretizing the state space of (1) to build an IMC abstraction
I that soundly models (1), and then verifying I against ϕ.
Let the discretization of a compact subset of Rn be QX , and
let q refer to both an IMC state in QX and a subset of Rn.
The verification results can be extended to (1), i.e., for every
x ∈ q, Pr(x |= ϕ) ∈ [p̌(q), p̂(q)], if the abstraction satisfies
the soundness definition below as shown in [5, Theorem 2].

Definition 2 (Abstraction Soundness). An IMC abstraction
I is sound with respect to System (1) if, for all x ∈ q,
P̌ (q, q′) ≤ T (q′ | x) ≤ P̂ (q, q′) holds for all q ∈ QX .

To satisfy this definition, we assume that one of the
requirements of ϕ is to remain within a bounded (safe) set
X ⊂ Rn and refer to Rn \X as an unsafe set.

Existing methods for IMC abstraction of stochastic sys-
tems are largely limited to simple dynamics – affine in noise
with unimodal or symmetric distributions, or linear dynam-
ics. The first problem considered here aims to establish a
method that jointly addresses of these limitations.

Problem 1 (Abstraction Construction). Construct a sound
IMC abstraction for System (1) with a nonlinear f and non-
affine and non-standard p(w).

In Section III, we propose a method that partitions the
domain of p(w) to construct the transition bounds of the
IMC which are valid for arbitrary distributions. Solving this
problem allows the application of IMC abstractions to a
wider class of systems, including data-driven systems.

The conventional approach to improving the satisfaction
intervals of an IMC is to refine the discretiztion QX , which
contributes to the state-explosion dilemma. The next problem
aims to improve the intervals on the same discretization QX

by leveraging the model of (1).

Problem 2 (Verification Improvement). Given abstraction I
of System (1), reduce the verification error p̂(q) − p̌(q) for
all q ∈ QX without refining QX .

In Section V, we propose an approach based on clustering
states in QX that uses the structure of the transition bounds
and (1) to reduce the gap between p̂ and p̌.

Remark 1. While we focus on IMC abstractions, the results
are trivially applied to interval Markov decision process
(IMDP) abstraction methods via concatenation of IMCs.

III. ABSTRACTION VIA NOISE PARTITIONS

The IMC abstraction for System (1) involves discretizing
the continuous state-space and computing transition proba-
bility bounds between the resulting states.

A. State Discretization

Constructing a finite-state abstraction for System (1) re-
quires a bounded subset X ⊂ Rn. The abstraction will be
sound on X , but not the entire state-space as discussed in
Definition 2. X is partitioned into a finite set of bounded
and convex regions QX , which implies, for every q, q′ ∈ Q,
q ∩ q′ has zero measure and

⋃
q∈QX

q = X . Let q¬X =
Rn \ X . Then, the complete state set of the IMC is Q =
QX ∪ {q¬X}. The next IMC abstraction step computes the
transition bounds between states.

B. Transition Bounds with Noise Partitioning

The definition and computation of the transition bound
functions P̌ , P̂ begins with states in QX . The transitions to
q¬X is a modified case. The connection between System (1)
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and the abstraction arises from the transition kernel T in
(2) over IMC states. From a given x ∈ q, the transition
kernel to q′ is T (q′ | x). Finding bounds on the kernel
amounts to searching over all x ∈ q, i.e., minx∈q T (q

′ | x),
and maxx∈q T (q

′ | x). To satisfy Definition 2, P̌ (q, q′) and
P̂ (q, q′) must bound these extrema. For tractable evaluation
of T in (2) with non-standard distributions, the probability
measure of w is evaluated over partitions of its domain W .

Definition 3 (Noise Partition). Let w(k) ∈ W . A noise
partition set C is a measure-preserving discretization of
W , i.e.,

⋃
c∈C c = W and ∀c ∈ C,

∑
c∈C

∫
c
p(w)dw =∫

p(w)dw = 1.

For brevity, c is used in place of w(k) ∈ c, and its
probability is Pr(c) =

∫
c
p(w)dw. For a given c ∈ C, the

posterior of region q is Post(q, c) = {f(x,w) | x ∈ q, w ∈
c}. The following theorem bounds the transition kernel.

Theorem 1. Let q, q′ ∈ QX and C be a partition of W
according to Definition 3. Then, the transition kernel is
lower- and upper-bounded, respectively, by

min
xk∈q

T (q′ | xk) ≥
∑
c∈C

1(Post(q, c) ⊆ q′) Pr(c) (4a)

max
xk∈q

T (q′ | xk) ≤
∑
c∈C

1(Post(q, c) ∩ q′ = ∅) Pr(c) (4b)

Proof. We begin with finding the upper bound. Using T and
finding the maximizing point,

max
xk∈q

T (q′ | xk) = max
xk∈q

∫
1(x(k + 1) ∈ q′ | xk, wk)p(w)dw

(5)

The integral is split according to the partitions in C,

(5) = max
xk∈q

∑
c∈C

∫
c

1(x(k + 1) ∈ q′ | xk wk)p(w)dw (6)

which maintains equality due to the linearity of the integral.
The indicator function is upper-bounded by the existence of
a point in the intersection of Post(q, c) with q′,

(6) ≤
∑
c∈C

1(Post(q, c) ∩ q′ ̸= ∅) Pr(c)

where the max operator is dropped, as xk is subsumed
by q. The lower-bound is similar, instead doing under-
approximation by checking if Post(q, c) ⊆ q′.

The transition bounds found using Theorem 1 require two
components: Post(q, c) and Pr(c). Note that for the bounds
in (4a)-(4b), an over-approximation of Post(q, c) can be
used, which can be obtained for nonlinear systems using
local linear bounds of f(x(k),w(k)) [18], [19], discreiza-
tion with Taylor model flowpipes [20], or mixed-monotone
maps [21] depending on the knowledge of System (1). Pr(c)
can be computed analytically for distribution-dependent
soundness guarantees, or statistically for sampling-based
guarantees [7]. The next section discusses how partitions are
selected to optimize the bounds in Theorem 1.

To complete the abstraction, transitions to the unsafe state
q¬X are defined using the following corollary.

Corollary 1 (Unsafe State Transitions). For every state q ∈
QX , the transition bounds to q¬X are P̌ (q, q¬X) = 1 −
maxxk∈q T (X | xk) and P̂ (q, q¬X) = 1 − minxk∈q T (X |
xk). Additionally, the transition bounds between q¬X and
itself are P̌ (q¬X , q¬X) = P̂ (q¬X , q¬X) = 1.

Remark 2. Theorem 1 can be applied to general (non-
probabilistic) uncertainty sets by interpreting Pr(c) as a de-
terministic indicator function. For example, for the bounded
uncertainty set W , choose c = W so Pr(c) = 1, and
Pr(c′) = 0 for every other c′ ∈ C. Effectively, using Theorem
1 in this case results in a non-deterministic transition system.

IV. OPTIMAL PARTITIONS
The transition bounds in Theorem 1 return valid bounds

for any choice of partition, and C can differ between
(4a) and (4b). However, haphazard partitions can result in
the trivial transition probability interval [0, 1]. The optimal
noise partitions minimize the distance between the transition
bounds, i.e., given q, q′ ∈ QX ,

C∗ = argmax
C

∑
c∈C

1(Post(q, c) ⊆ q′) Pr(c), (7a)

C
∗
= argmin

C

∑
c∈C

1(Post(q, c) ∩ q′ = ∅) Pr(c), (7b)

Hence, noise partitions can be optimized for each pair (q, q′).
To begin the analysis on these partitions, we assume

component-wise noise as defined below.

Definition 4 (Component-wise Noise). For i ∈ {1, . . . , n},
let M i ∈ {0, 1}n×n be a matrix whose i, i element is one
and all the other elements are zeros. Then, noise w(k) ∈
W ⊂ Rn is called component-wise if M if(x(k),w(k)) =
f(x(k),M i w(k)).

In other words, the noise vector shares the size of x(k),
and each component wi(k) only affects xi(k + 1), which
admits (but is not limited to) affine and multiplicative noise
(see Example 1). Definition 4 does not preclude the noise
from being correlated, and the following remark concerns
more general structures.

Remark 3. Relaxing the component-wise noise in Definition
4 relies on effective noise. For example, consider the term
Bw(k) with w(k) ∈ Rnw and B ∈ Rn×nw . The effective
noise terms are biw(k), where bi is the i-th row of B, each
of which affects xi(k + 1).

Assuming the noise satisfies Definition 4, the next step
is examining how Post(q, c) changes with respect to c.
Intuitively, if increasing wi

k always increases (or decreases)
xi(k + 1), then there can be partitions C where non-empty
intersections Post(q, c) between q′ are induced. This is due
to the monotonicity of the system with respect to the noise,
which is formally defined below.

Definition 5 (Noise Monotonicity). Monotonicity is the
condition wi

k > wi
j =⇒ xi

k+1 ≥ xi
j+1 or xi

k+1 ≤ xi
j+1
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with xi
k = xi

j . System (1) is monotonic with respect to w(k)
if each xi(k + 1) is monotonic with respect to wi(k).

Example 1. Consider the system x(k + 1) = f(x(k)) ⊙
w(k), where each wi(k) ≥ 0 and ⊙ is the element-wise
product. Then the noise acts component-wise, and the system
is monotonic with respect to w(k).

Hitherto, we have made no assumptions about the convex-
ity of Post(q, c). Let the i component of a set in Rn refer
to its projection on the i-th unit axis. The following theorem
discusses non-convexity in terms of discontinuities (or holes)
in each component of Post(q, c). The theorem bounds the
sizes of C∗ and C

∗
for a system that is monotonic with

respect to uncorrelated noise w(k).

Theorem 2 (Partition Size). Let q, q′ ⊂ Rn be bounded
and convex, each component of Post(q, c) contain at most d
discontinuities, and C∗, C

∗
be as in (7a)-(7b). If System (1) is

monotonic with respect to w(k), and the components of w(k)
are uncorrelated, then |C∗| and |C∗| is at most (3 + 2d)n.

Proof. The proof is provided for the upper-bound parti-
tion (7b). The lower-bound is the same, but instead uses
Post(q, c) ⊆ q′.

C
∗

is found my choosing the constraint set that satisfies to
(7b). As the noise is uncorrelated, it is sufficient to minimize
the area intersection of Post(q, c) with q′ to minimize (7b).
Let q, q′ be convex and bounded, let Post(q, c) contain at
most d discontinuities for any choice of c, and let System
(1) be monotonic with respect to w(k).

First, consider d = 0, so Post(q, c) is convex for a given
c in all components. Then, Post(q, c) ∩ q′ must be convex.
As q′ is bounded, Post(q, c) ∩ q′ is also bounded. For each
i, due to the monotonicity of System (1), at most 3 partitions
of W i are needed to induce the minimum intersection with
q
′i due to the convexity and boundedness of q

′i. Thus, C
∗

consists of 3n partitions at most when d = 0.
Next, consider d > 0 for a component of Post(q, c) and

begin with C
∗

as found above. The intersection Post(q, c)∩
q′ is possibly non-convex due the projection of discon-
tinuities of Posti(q, c). For each discontinuity, only two
additional partitions are needed to induce the minimum
intersection with q

′i due to the monotonicity of System (1).
This is repeated for each component in [1, n] for the result
|C∗| ≤ (3 + 2d)n. Repeating this procedure for the lower
bound yields the same number of partitions in C∗.

Theorem 2 shows that the sizes of C∗ and C
∗

are
bounded, but it leaves them unspecified. The following
corollaries specify the partitions for affine and multiplicative
noise in the case Post(q, c) is convex. To facilitate this,
let Postf (q) = {f(x) | x ∈ q} be the f -dependent
posterior. Each corollary specifies the paritioning of W i into
three intervals, i.e. {[−∞, ϵ1], [ϵ1, ϵ2], [ϵ2,∞]} ⊂ C

∗
and

{[−∞, ϵ3], [ϵ3, ϵ4], [ϵ4,∞]} ⊂ C∗.

Corollary 2 (Partitioning for Affine Noise). Assume Sys-
tem (1) satisfies the requirements of Theorem 2 and has affine
noise, i.e. f(x(k))+w(k). Let the i-th component vertices be

q′
Postf (q)Postf (q) Shadow

A B
C D

ϵ2
ϵ1

ϵ3ϵ4

Fig. 1: Distances between a component of Postf (q) and q′

used to find optimal noise partitions.

[A,B] for the target q′, [C,D] for the f -dependent posterior,
and let W = D − C. Let Case 1 be W > B − A, Case 2
be D > B, and Case 3 be C < A. Then ϵ1 = A − D,
ϵ2 = B − C in all cases. For Case 1, ϵ3 = 0 and ϵ4 = 0.
If Case 2 is true, ϵ3 = A +W −D, and if Case 3 is true,
ϵ4 = B−W −C. Otherwise, ϵ3 = A−C and ϵ4 = B−D.

Proof. Figure 1 illustrates Case 2 of the relative geometry of
a component of Postf (q) and a target state q′. The lower-
bound (4a) is maximized when ϵ3 < w(k) ≤ ϵ4 as this is
the largest interval that results in an intersection. The upper-
bound (4b) is minimized when w(k) < ϵ1 or ϵ2 < w(k) as
the intersection is zero outside of this interval. The partitions
for other relative component geometries of Postf (q) and q′

are found similarly.

Corollary 3 (Partitioning for Multiplicative Noise). Assume
System (1) satisfies the requirements of Theorem 2 and has
(w.l.o.g.) positive multiplicative noise, i.e., Example 1. Let
the component vertices be [A,B] for the target and [C,D]
for the f -dependent posterior, and let A,B,C,D > 0. Then,
ϵ1 = A/D, ϵ2 = B/C, ϵ3 = A/C, and ϵ4 = B/D.

Proof. The proof is based on the relative geometry in Fig-
ure 1 similar to that of Corollary 2. The lower-bound is
maximized when both Dw(k) < B and Cw(k) > A, so
A/C < w(k) ≤ B/D. Note that if A/C > B/D, then
the CDF evaluates to zero, so the partition set is trivial.
Likewise, the upper-bound is minimized when Cw(k) > B
or Dw(k) < A, so w(k) < A/D or w(k) > B/C.

The case studies in Section VI demonstrate that using these
optimal partitions find accurate abstractions for nonlinear
systems with non-standard noise, even when compared to
specialized methods.

V. STATE CLUSTERING

Improving the satisfaction intervals of the IMC directly
impacts the guarantees on (1), but relying solely on refining
the space discretization can lead to an explosion in the
number of states. We propose a novel method based on
clustering the states of the IMC to improve the satisfaction
intervals without refinement.

Consider state q ∈ QX and its possible successor states
Q′. By the structure of (4a), P̌ (q, q′) grows as the size of
q′ increases as it depends on Post(q, c) ⊂ q′ being true.
Algorithm 1 is based on this principle. The sorting of QX on
Line 1 makes the algorithm start with states with large p̌, as
its successor states have larger p̌, making improvement more
likely. Then, the states in Q̃ are clustered (or merged) into a
single state q̃. The transition interval to q̃ is computed using
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Algorithm 1 Clustering-based IMC improvement

Require: IMC I, verification results p̌, p̂
1: QX ← sort by p̌(q) in descending order
2: for each q ∈ QX do
3: q̃ ← cluster Q̃ ⊂ Q′ into a single state
4: p̌(q̃)← min

q′∈Q̃
p̌(q′)

5: P̌ (q, q̃), P̂ (q, q̃)← Theorem 1
6: p̌new(q)← min

γ∈Γ

∑
q′∈Q′\Q̃

γ(q, q′)p̌(q′) + γ(q, q̃)p̌(q̃)

7: p̂new(q)← similarly with (3)
8: if p̌new(q) > p̌(q) or p̂new(q) < p̂(q) then
9: Save these values into p̌, p̂

10: end if
11: end for
12: return Improved intervals p̌, p̂

|= ϕ

?ϕ

̸|= ϕ

(a) Our method (b) Method in [6]

Fig. 2: Comparison of verification results.

Theorem 1, and the satisfaction intervals are recalculated.
This procedure can be repeated until no improvements in p̌
or p̂ are realized.

Our evaluations suggests the efficacy of this algorithm
for a coarse abstractions. An interesting question, however,
arises with this approach: what is the optimal set of states
to cluster? We leave this question for future work.

VI. EVALUATIONS

We evaluate the proposed methods on linear, non-linear,
and data-driven systems, with different noise distributions
and structures. All systems are verified against the PCTL
specification ϕ that states “the probability of reaching goal
G within k steps while avoiding obstacles O is ≥ 0.9.”
Figures include classifications of IMC states satisfying (|= ϕ)
or violating ( ̸|= ϕ) the specification, and possibly either (?ϕ).
The value of k is infinity unless otherwise noted.

1) Linear System Comparison: We first compare our
approach developed for general dynamics and noise distribu-
tions against the direct-search method in [21] that is tuned
for specific dynamics and noise models. The considered
system is linear with additive truncated Gaussian noise taken
from [21]. Figure 2 compares the results on abstractions
found using these two methods. Our method provides near-
identical classification results with average and maximum
differences of 8× 10−4 and 0.02, respectively, in the lower-
bound satisfaction probability, and took approximately 90
seconds to compute. In this example, the set-based criteria of
Theorem 1 are sufficient to provide an accurate abstraction.

(a) Verification (b) Sampled Trajectories

Fig. 3: Verification of the system with multiplicative noise.

(a) Initial (b) Cluster (1 step)

(c) Final (GP) (d) Final (Known)

Fig. 4: Verification of the learned linear system.

2) Multiplicative Noise: To show the flexibility of the
approach, we consider a system with multiplicative noise,
which existing abstraction approaches cannot explicitly han-
dle, to the best of our knowledge. The dynamics are x(k +
1) = Ax(k) ⊙ w(k), where the 1st and 2nd rows of A
are (0.7, 0.1) and (0.1, 0.8), wi(k) ∼ N (1, 0.1) bounded in
[0.9, 1.1] for i ∈ {1, 2}. Figure 3 shows the results of the
procedure, which took two minutes to compute, including
1000 Monte Carlo validation trajectories with mean paths
and 1-sigma confidence ellipsoids.

3) Data-driven Verification: The linear system from the
comparison example with wi(k) ∼ N (0, 0.12) on each com-
ponent is learned via Gaussian process (GP) regression with
200 data points. The transition bounds must take into account
both the resulting uncertainty from the learning procedure
and the inherent system noise. The efficacy of Algorithm
1 is demonstrated on the initial discretization. Figures 4a
and 4b show additional satisfying and violating states are
identified without refinement. The lower-bound satisfaction
was improved in eight states, with a 10% (absolute) average
increase. Figures 4c and 4d compare the classifications of
the learned system using Theorem 1, employing refinement,
and the classifications using ideal knowledge.
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(a) Classifications (b) Sampled Trajectories

Fig. 5: Verification of the noisy Duffing oscillator.

(a) 3D Classifications (b) Slice at θ = 0.91 ( →)

Fig. 6: Verification of the constant-turn Dubin’s car system.

4) Duffing Oscillator: Next, we consider the nonlinear
Duffing oscillator that has complex harmonic motion and
chaotic behavior. The continuous-time dynamics are ẍ+δẋ+
αx+ βx3 = γ cos(ωt), where, δ = 0.3, α = −1.0, β = 1.0,
γ = 0.37, and ω = 1.2. This system is discretized over
the time-span [0, 0.5], after which the forcing function is
reset and noise wi(k) ∼ N (0.1, 0.012) is drawn. Taylor
models were used to over-approximate the Post of each
discrete region [22]. The abstraction and verification for
k = 10, shown in Figure 5, took 4.5 hours to compute.
The trajectories show the means of 1000 sampled path with
2-sigma confidence ellipsoids at each discrete endpoint, and
the initial classification according to the IMC verification.

5) Dubin’s Aircraft with Mixture: A 3D nonlinear Du-
bin’s car model [23] with a constant right-turn control
input is verified with mixture noise model consisting
of UNIFORM(−0.05,−0.01) and UNIFORM(0.0, 0.04) each
with a 50% weighting on each state x, y, θ. Figure 6 shows
the verification results in 3D and a 2D slice. Many initial
states are identified that are guaranteed to make the turn
safely, or fail to meet the minimum safety threshold. This
shows the potential of the proposed method to incorporate
non-standard distributions for autonomous system.

VII. CONCLUSIONS

We present a method to construct IMC abstractions of
nonlinear stochastic systems based on partitioning the noise
domain, and a novel refinement-free approach to improve the
verification results. This procedure admits a wider class of
systems, including those with non-affine and non-standard
noise distributions, and data-driven systems. Multiple exam-
ples demonstrate the effectiveness of the method, including
nonlinear systems, multiplicative noise and a data-driven

system. Future work includes incorporating measurement
models, generalizing the optimal partitioning, and improving
the efficacy of the clustering procedure.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA: The MIT Press, 2008.

[2] A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated
verification and synthesis of stochastic hybrid systems: A survey,”
Automatica, vol. 146, p. 110617, 2022.

[3] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, 2000.

[4] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification and
synthesis for discrete-time stochastic systems,” IEEE Transactions on
Automatic Control, vol. 60, no. 8, pp. 2031–2045, 2015.

[5] J. Jackson, L. Laurenti, E. Frew, and M. Lahijanian, “Strategy synthe-
sis for partially-known switched stochastic systems,” in Int. Conf. on
Hybrid Systems: Computation and Control, 2021.

[6] M. Dutreix, J. Huh, and S. Coogan, “Abstraction-based synthesis for
stochastic systems with omega-regular objectives,” Nonlinear Analy-
sis: Hybrid Systems, vol. 45, p. 101204, 2022.

[7] T. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala,
M. Stoelinga, and N. Jansen, “Robust control for dynamical systems
with non-gaussian noise via formal abstractions,” Journal of Artificial
Intelligence Research, vol. 76, pp. 341–391, 2023.

[8] R. Givan, S. Leach, and T. Dean, “Bounded-parameter markov deci-
sion processes,” Artificial Intell., vol. 122, no. 1-2, pp. 71–109, 2000.

[9] N. Cauchi, L. Laurenti, M. Lahijanian, A. Abate, M. Kwiatkowska,
and L. Cardelli, “Efficiency through uncertainty: Scalable formal
synthesis for stochastic hybrid systems,” in ACM Int. Conf. on hybrid
systems: computation and control, 2019, pp. 240–251.

[10] J. Jiang, Y. Zhao, and S. Coogan, “Safe learning for uncertainty-aware
planning via interval mdp abstraction,” IEEE Control Systems Letters,
vol. 6, pp. 2641–2646, 2022.

[11] J. Jackson, L. Laurenti, E. Frew, and M. Lahijanian, “Formal verifica-
tion of unknown dynamical systems via gaussian process regression,”
arXiv preprint arXiv:2201.00655, 2021.

[12] B. C. van Huijgevoort, S. Weiland, and S. Haesaert, “Temporal
logic control of nonlinear stochastic systems using a piecewise-affine
abstraction,” IEEE Control Sys. Letters, vol. 7, pp. 1039–1044, 2023.

[13] K. Hashimoto, A. Saoud, M. Kishida, T. Ushio, and D. V. Dimarog-
onas, “Learning-based symbolic abstractions for nonlinear control
systems,” Automatica, vol. 146, p. 110646, 2022.

[14] S. Adams, M. Lahijanian, and L. Laurenti, “Formal control synthesis
for stochastic neural network dynamic models,” IEEE Control Systems
Letters, vol. 6, pp. 2858–2863, 2022.

[15] S. E. Z. Soudjani, C. Gevaerts, and A. Abate, “Faust: F ormal a
bstractions of u ncountable-st ate st ochastic processes,” in Tools and
Alg. for the Const. and Analys. of Sys. Springer, 2015, pp. 272–286.

[16] S. Esmaeil Zadeh Soudjani and A. Abate, “Adaptive and sequential
gridding procedures for the abstraction and verification of stochastic
processes,” SIAM Journal on Applied Dynamical Systems, vol. 12,
no. 2, pp. 921–956, 2013.

[17] A. Klenke, Probability Measures on Product Spaces. Springer
Science & Business Media, 2013.

[18] Z. Jin, Q. Shen, and S. Z. Yong, “Mesh-based piecewise affine
abstraction with polytopic partitions for nonlinear systems,” IEEE
Control Systems Letters, vol. 5, no. 5, pp. 1543–1548, 2021.

[19] F. B. Mathiesen, S. C. Calvert, and L. Laurenti, “Safety certification for
stochastic systems via neural barrier functions,” IEEE Control Systems
Letters, vol. 7, pp. 973–978, 2022.
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