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Abstract— This paper addresses the problem of nonconvex
nonsmooth decentralised optimisation in multi-agent networks
with undirected connected communication graphs. Our contri-
bution lies in introducing an algorithmic framework designed
for the distributed minimisation of the sum of a smooth
(possibly nonconvex and non-separable) function and a con-
vex (possibly nonsmooth and non-separable) regulariser. The
proposed algorithm can be seen as a modified version of the
ADMM algorithm where, at each step, an “inner loop” needs
to be iterated for a number of iterations. The role of the inner
loop is to aggregate and disseminate information across the
network. We observe that a naive decentralised approach (one
iteration of the inner loop) may not converge. We establish the
asymptotic convergence of the proposed algorithm to the set of
stationary points of the nonconvex problem where the number
of iterations of the inner loop increases logarithmically with
the step count of the ADMM algorithm. We present numerical
results demonstrating the proposed method’s correctness and
performance.

I. INTRODUCTION

While distributed solutions to large-scale convex optimi-
sation problems have been studied extensively in the last
two decades, the same cannot be said about the nonconvex
variant [15, 14]. We propose a distributed algorithm for
solving problems of the following archetypal form:

minimize
x∈Rp

f(x) :=

n∑
i=1

fi(x) + g(x), (1)

where each fi represents smooth (possibly nonconvex, non-
separable) functions, while g is a convex (possibly nons-
mooth) function. The objective is to have n agents cooperate
in solving the optimisation problem over an underlying
fixed communication graph. It is assumed that each agent i
privately possesses knowledge of the local objective function
fi(x) and the function g(x), where g is used to impose
desired structures on the solution (e.g., ℓ1 norm for sparsity)
and/or used to enforce certain constraints. In machine learn-
ing applications, this controls the complexity of the model
to avoid over-fitting in the training process [3].

The distributed algorithms aimed at solving (1) can be
classified into either (sub)gradient-based methods or oper-
ator splitting-based methods, applied to either the primal
or dual problems. In this work, we explore the Alternat-
ing Direction Method of Multipliers (ADMM), a powerful
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operator splitting-based method widely recognised for its
effectiveness in numerically solving optimisation problems
[2, 4, 7]. However, existing distributed ADMM algorithms
face limitations in their applicability, as they either assume
a communication network structured as a star graph with
a central node or overlook the role of the regularizing
function g. In scenarios where a central node is present in
the graph, previous works [7, 3, 5] have shown that ADMM
converges in asynchronous settings to a stationary point of
the problem with a sublinear rate. Modified ADMM versions
tailored for arbitrary connected communication graphs have
been proposed by authors in [6, 18]. Specifically, the Prox-
PDA algorithm in [6] achieves sublinear convergence to a
stationary point of the problem (1) with g ≡ 0.

In a similar problem context, [18] proves the convergence
of a modified ADMM version to the global minimum
under the condition that the global cost function satisfies
the Polyak-Łojasiewicz condition. However, it is crucial
to emphasize that these existing schemes and convergence
analyses are not directly transferable to address our specific
problem (1) when g ̸= 0, as they do not consider the
presence of the regulariser function, potentially rendering the
objective function nonsmooth. To overcome this limitation,
our work introduces an ADMM-based algorithm explicitly
designed to decentralise the optimisation algorithm. This
enables the algorithm’s applicability to arbitrarily connected
communication graphs while accommodating convex regu-
lariser functions g. Our contributions can be summarised as
follows:

• The proposed algorithm is applicable to any arbitrary
graph that is connected and extends to problems with
convex regulariser functions g.

• We prove the algorithm’s convergence to the set of
stationary points of the problem, provided that the fi’s
are smooth and g is a closed convex function.

• Instead of assuming a central node in the graph, we
propose that nodes emulate the existence of such a
central node by approximating the information that
would have been provided through interactions with
their immediate neighbours.

The remainder of this paper is organised as follows:
Section II introduces the necessary notation and preliminary
definitions. The main results and the proposed algorithm are
discussed in Section III, while Section IV is dedicated to
the accompanying proofs. Section V provides the numer-
ical results, validating the effectiveness and efficiency of
the proposed approach. In Section VI, we summarise our
contributions and outline future research directions.
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II. PRELIMINARIES

Notations: Throughout this paper, we denote the set of
real numbers and extended real numbers as R and R :=
R ∪ {+∞}. Let [n] denote the set of n positive integers
{1, 2, . . . , n}. For vectors a, b ∈ Rn the Euclidean inner
product and its corresponding norms are denoted by ⟨a, b⟩
and ∥a∥ respectively. For a matrix A ∈ Rm×n, ∥A∥ is
the spectral norm of the matrix. A vector of all ones with
appropriate length is shown by 1. We say a matrix W is
row (column) stochastic if W1 = 1 (1TW = 1T ). A
doubly stochastic matrix is defined as both column and row
stochastic.

Graphs: A graph G is determined by its set of vertices
and edges. We write G = (V, E), where V = {1, . . . , n} is
the set of nodes and E ⊆ V × V is the set of edges. The
presence of edge (i, j) ∈ E indicates that nodes i and j are
adjacent and node i can receive information from node j.
In this study, we assume that the graph G is undirected and
connected, i.e., if (i, j) ∈ E , then (j, i) ∈ E and there is a
path between every pair of nodes. The set of neighbours of
node i is denoted by Ni := {j | (i, j) ∈ E}. We also write
N i = Ni ∪ {i}. A matrix W is a weight matrix associated
with the graph if for some η > 0 we have wij > η whenever
j ∈ N i and wij = 0 otherwise. The following lemma plays
an important role in our later analysis.

Lemma 1: ([8, Proposition 2], [16, Lemma 5.2.1]) For
a doubly stochastic weight matrix W associated with a
connected graph G with n nodes, there exist some c > 0 and
ρ ∈ (0, 1) such that for all m ≥ 1, ∥Wm−n−111T ∥ ≤ cρm.

Subdifferentials and Proximal Maps: For indicating a set-
valued mapping we use A : Rp → Rq that maps a point
x ∈ Rp to a set A(x) ⊂ Rq . The graph of A is defined as
gra A := {(x,u) ∈ Rp×Rq | u ∈ A(x)}. The domain and
epigraph of an extended real-valued function f : Rp → R
are defined as the sets dom f := {x ∈ Rp | f(x) < +∞}
and epi f := {(x, t) ∈ Rp × R | f(x) ≤ t}, respectively.
A function f is called proper if f(x) < ∞ for at least one
x ∈ Rp and f(x) > −∞ for all x ∈ Rp. It is said to
be closed or equivalently lower semicontinuous (lsc) if its
epigraph is a closed set in Rp+1, see [11, Thm. 1.6]. Now, we
recall some definitions in relation to subdifferential calculus.

Definition 2: (Subdifferentials, [11, Ch. 8]) Let f : Rp →
R be a proper lsc function.

(i) For x ∈ dom f , the Frechet-subdifferential (also known
as the regular-subdifferential) of f at x, denoted by
∂̂f(x), is defined by

∂̂f(x) := {s ∈ Rp :

lim inf
x′→x,x′ ̸=x

f(x′)− f(x)− ⟨s,x′ − x⟩
∥x′ − x∥

≥ 0}.

If x ̸∈ domf , define ∂̂f(x) = ∅.
(ii) For x ∈ Rp, the limiting-subdifferential, or subdifferen-

tial, of f at x, denoted by ∂f(x) is defined as

∂f(x) := {s ∈ Rp : ∃xr → x,

f(xr)→ f(x),∃sr ∈ ∂̂f(xr)→ s as r →∞}.

Remark 3: For sequences {x}r∈N and {s}r∈N satisfying
sr ∈ ∂f(xr) and (xr, f(xr), sr)→ (x, f(x), s) as r →∞,
then s ∈ ∂f(x).

The proximal mapping of f with parameter γ is a set val-
ued mapping defined as Proxγf (x) := argminu∈Rp{f(u)+
1
2γ ∥u − x∥2}. The result below can be seen from the nec-
essary optimality condition of the problem defining Proxγf .

Lemma 4: If u ∈ Proxγf (x) then x− u ∈ γ∂f(u).
Lemma 5: ([9]) If the function f is proper, lower semi-

continuous and convex, then the following hold.
(i) Proxγf is single-valued for every γ > 0.

(ii) Proxf is firmly nonexpansive [12, Sec 2.3] and there-
fore Lipschitz continuous with L = 1.

We write f ∈ C1,1
L to indicate the class of functions f :

Rp → R that are differentiable and have Lipschitz continuous
gradients with parameter L. For simplicity, we say that such
an f is L-smooth or smooth. We have the following important
lemma on smooth functions.

Lemma 6: (Descent Lemma [1, Proposition A.24]) Let the
function f : Rp → R be an L-smooth function. Then for
every x, y ∈ Rp the following holds

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L/2∥y − x∥2.
III. ALGORITHM AND THE MAIN RESULTS

This section presents a decentralised ADMM-based algo-
rithm for solving (1) under the following assumptions:

(A1) Each fi : Rp → R is in C1,1
L for all i ∈ [n].

(A2) The functions fi and g are proper and the function f :
Rp → R is lower bounded.

(A3) The function g(x) is convex and possibly nonsmooth.
(A4) The underlying communication graph, G = (V, E), is

undirected, connected, and fixed.
The (centralised) ADMM algorithm with penalty parameter
β applied to (1) is

x̃r+1=n−1
n∑

j=1

(xr
j + λr

j/β), (2a)

xr+1
0 ∈Prox 1

nβ g(x̃
r+1), (2b)

xr+1
i =argmin

xi∈Rp

fi(xi) + ⟨xi,λ
r
i ⟩+

β

2
∥xi − xr+1

0 ∥2, (2c)

λr+1
i =λr

i + β(xr+1
i − xr+1

0 ), (2d)

where i ∈ [n]. While the last two iterations can be done in
parallel for n agents, the algorithm requires a central node
to perform the first update (2b). To create a decentralised
algorithm, each node should be able to estimate x̃r+1 locally.
The naive algorithm, where each agent takes average over
its neighbours instead of the step (2a), will not necessarily
converge. Therefore, we add an inner loop for estimating
x̃r+1 where an ϵ-consensus algorithm is used as described
in Algorithm 1.

Assume graph G satisfies (A4) and W is a doubly stochas-
tic weight matrix associated with G. Then from Lemma 1
it is easy to see that for a given ϵ there is a t0(ϵ) such that
if t > t0(ϵ) then the output of the Algorithm 1 satisfies



Algorithm 1: ϵ-consensus algorithm
Data: ϵ,G, n,W := [wij ], {vi}ni=1

Result: {v0,i}ni=1

v0
i ← vi and v̄ := n−1

∑n
i=1 vi;

for l = 0, 1, 2, . . . do
for i = 1, . . . , n do

in parallel
while ∥vl

i − v̄∥ > ϵ do
vl+1
i ←

∑n
i=1 wijv

l
i

v0,i ← vl
i

∥vt
i − v̄∥ ≤ ϵ for all i ∈ [n]. This property of the algorithm

can be used to have a local ∥ϵri ∥-approximation of xr
0:

xr+1
0,i = Prox 1

nβ g(x̃
r+1 + ϵr+1

i ) ∀i ∈ [n]. (3)

In the following, we present the Distributed ADMM Algo-
rithm 2. For simplicity of notation we denote the sequence
{ai}ni=1 by {ai}.

Algorithm 2: Distributed ADMM

Data: β, {ϵri }r∈N, G, n,W := [wij ], {x0
i ,λ

0
i }, δ

for r = 0, 1, 2, . . . do
for i = 1, . . . , n do

in parallel
while maxi∈[n] max{∥∇fi(xr

i ) +

λr
i ∥, ∥sr0,i − nλ̃

r

i ∥, ∥xr
i − xr

0,i∥} ≥ δ do

(x̃r+1
i , λ̃

r+1

i )
∥ϵr+1

i ∥−consensus
←−−−−−−−−−−−−(

({xr
j}nj=1, {λ

r
j}nj=1), G, n,W

)
,

yr+1
0,i = x̃r+1

i + λ̃
r+1

i /β

xr+1
0,i ∈ Prox 1

nβ g(y
r+1
0,i )

xr+1
i ← argminxi∈Rp fi(xi) + ⟨xi,λ

r
i ⟩+

β
2 ∥xi − xr+1

0,i ∥2
λr+1
i ← λr

i + β(xr+1
i − xr+1

0,i )

Theorem 7: Assume that in iteration r of Algorithm 2,
each agent stops the consensus algorithm after tr iterations
such that tr ≥ 1+ζ

log ρ−1 log r + log c
log ρ−1 for some ζ > 0

and ρ and c, as described in Lemma 1. Then, under (A1),
(A2), (A3), and (A4), every limit point of the sequence
({xr

i }, {λ
r
i }, {xr

0,i}) generated by the algorithm is a KKT
point for the optimisation problem and satisfies the following

∇fi(x∗
i ) + λ∗

i = 0 ∀i ∈ [n], (4a)

s∗0,i −
n∑

j=1

λ∗
j = 0 ∀i ∈ [n], (4b)

x∗
0,i = x∗

i = x∗
j ∀i, j ∈ [n], (4c)

where s∗0,i ∈ ∂g(x∗
0,i) (see [3] and references therein for the

KKT condition).

Remark 8: If each agent stops the consensus algorithm
after tr steps where tr satisfies the hypothesis of Theorem
7 then the sum

∑∞
r=0 ∥ϵ

r+1
i ∥ will be in form of

∑∞
r=0

1
r1+ζ

since the value ∥ϵri ∥ vanishes with tr exponentially. Thus,
for all i ∈ [n]

∞∑
r=0

(
∥yr+1

0,i − x̃r+1∥
)
=

∞∑
r=0

∥ϵr+1
i ∥ <∞.

This, in turn, implies that the number of required communi-
cations is of order O(T log T ) if the number of optimisation
iterations is of order O(T ).

Remark 9: The lower bound for tr depends on global
information ρ and c that are a consequence of the underlying
graph. In the case of fixed graphs, this information can be
provided to all nodes before the start of the algorithm.

Remark 10: The stopping criterion of Algorithm 2 corre-
sponds to an approximate solution to the KKT system (4a)–
(4c). Note that ∇fi(xr

i ) + λr
i = 0 for all r. Additionally,

λ̃
r

i is node i’s local estimate of λ̄
r

= 1
n

∑n
i=1 λ

r
i such

that ∥λ̃
r

i − λ̄
r∥ ≤ ∥ϵri ∥, where ∥ϵri ∥ is summable and

therefore vanishing in r for all i ∈ [n]. Finally, each node
can readily check the last condition, ∥xr

i − xr
0,i∥ < δ as

they have access to both xr
i and xr

0,i. Implementation of
the stopping criteria then would involve invoking a max-
consensus algorithm that would terminate in at most n steps.
In a practical implementation, this condition needs only to
be checked every N̄ steps with “a large enough” N̄ to reduce
the communication overhead.

IV. PROOF OF THE MAIN RESULT

The augmented-Lagrangian is defined as follows

L
(
{xr

i }, {λ
r
i }, {xr

0,i}
)
=

n∑
i=1

(
lβi (x

r
i ,λ

r
i ,x

r
0,i) +

1

n
g(xr

0,i)

)
(5)

where lβi (x
r
i ,λ

r
i ,x

r
0,i) := fi(x

r
i )+⟨λ

r
i ,x

r
i −xr

0,i⟩+
β
2 ∥x

r
i −

xr
0,i∥2. We have the following important lemmas.
Lemma 11: Suppose (A1) and (A2) hold. Then for every

β ≥ L, the augmented-Lagrangian defined in (5) is lower
bounded, i.e. there exists a scalar L such that Lr ≥ L.

Proof: The first-order optimality condition of the right-
hand side of (2c) yields

∇fi(xr+1
i ) + λr+1

i = 0. (6)

From (5) we have

L
(
{xr

i }, {λ
r
i }, {xr

i,0}
)

(a)
=

n∑
i=1

(
fi(x

r
i ) + n−1g(xr

0,i) + ⟨∇fi(xr
i ),x

r
0,i − xr

i ⟩

+
β

2
∥xr

i − xr
0,i∥2

)
(b)

≥
n∑

i=1

(
fi(x

r
0,i) + n−1g(xr

0,i) +
β − L

2
∥xr

i − xr
0,i∥2

)



where (a) is a consequence of (6) and in (b), we have used
the descent Lemma 6 and gradient Lipschitz continuity of
fi’s. The claim follows from the Assumption (A2) and the
fact that β ≥ L.

Lemma 12: Suppose the assumptions (A1), (A2), and
(A3) hold. For the sequence generated by the Distributed
ADMM algorithm, if β > L, then ∀tr+1

0,i ∈ ∂g(xr+1
0,i ),

L
(
{xr+1

i }, {λr+1
i }, {xr+1

0,i }
)
− L

(
{xr

i }, {λ
r
i }, {xr

0,i}
)

≤
n∑

i=1

−α∥xr+1
i − xr

i ∥2 −
n∑

i=1

β

2
∥xr+1

0,i − xr
0,i∥2

+

n∑
i=1

⟨λr
i − β(xr+1

0,i − xr
i )− n−1tr+1

0,i ,xr
0,i − xr+1

0,i ⟩,

where α :=
(

β−L
2 − L2

β

)
.

Proof: We first split the successive difference of the
augmented Lagrangian into three simpler-to-analyse terms.

L
(
{xr+1

i }, {λr+1
i }, {xr+1

0,i }
)
− L

(
{xr

i }, {λ
r
i }, {xr

0,i}
)

= L
(
{xr+1

i }, {λr+1
i }, {xr+1

0,i }
)
− L

(
{xr+1

i }, {λr
i }, {xr+1

0,i }
)

︸ ︷︷ ︸
♠

+ L
(
{xr+1

i }, {λr
i },{xr+1

0,i }
)
− L

(
{xr

i }, {λ
r
i }, {xr+1

0,i }
)

︸ ︷︷ ︸
♣

+ L
(
{xr

i }, {λ
r
i }, {xr+1

0,i }
)
− L

(
{xr

i }, {λ
r
i }, {xr

0,i}
)

︸ ︷︷ ︸
♦

For the first term, using (5) we obtain

♠ =

n∑
i=1

⟨λr+1
i − λr

i ,x
r+1
i − xr+1

0,i ⟩

(a)
=

n∑
i=1

1

β
∥λr+1

i − λr
i ∥2

(b)

≤
n∑

i=1

L2

β
∥xr+1

i − xr
i ∥2 (8)

where in (a), we have used optimality condition of (2c) and
(2d) and in (b), we have used gradient Lipschitzness of fi’s
with parameter L.

Similarly, using (5) for the second term we obtain

♣ =
n∑

i=1

(
fi(x

r+1
i ) + ⟨λr

i ,x
r+1
i − xr+1

0,i ⟩+
β

2
∥xr+1

i − xr+1
0,i ∥

2

)
−

n∑
i=1

(
fi(x

r
i ) + ⟨λ

r
i ,x

r
i − xr+1

0,i ⟩+
β

2
∥xr

i − xr+1
0,i ∥

2

)
(a)

≤
n∑

i=1

−γ

2
∥xr+1

i − xr
i ∥, (9)

where in (a) we have used the following inequality

lβi (x
r+1
i ,λr

i ,x
r+1
0,i )− lβi (x

r
i ,λ

r
i ,x

r+1
0,i )

≤ ⟨∇xi
lβi (x

r+1
i ,λr

i ,x
r+1
0,i ),xr+1

i − xr
i ⟩ −

γ

2
∥xr+1

i − xr
i ∥2.

This inequality is a consequence of the strong convexity of
the function lβi (xi,λi,x0,i) with respect to its first argument

with parameter γ = β − L for β > L, and due to
the optimality condition on (2c) which in turn leads to
∇xi l

β
i (x

r+1
i ,λr

i ,x
r+1
0,i ) = 0.

For the last term, we have

♦ = L
(
{xr

i }, {λ
r
i }, {xr+1

0,i }
)
− L

(
{xr

i }, {λ
r
i }, {xr

0,i}
)

=

n∑
i=1

(
n−1g(xr+1

0,i ) + ⟨λr
i ,x

r
i − xr+1

0,i ⟩+
β

2
∥xr

i − xr+1
0,i ∥

2

)
−

n∑
i=1

(
n−1g(xr

0,i) + ⟨λ
r
i ,x

r
i − xr

0,i⟩+
β

2
∥xr

i − xr
0,i∥2

)
(a)

≤
n∑

i=1

(
−⟨n−1tr+1

0,i − λr
i − β(xr

i − xr+1
0,i ), xr

0,i − xr+1
0,i ⟩

− β

2
∥xr

0,i − xr+1
0,i ∥

2

)
. (10)

In (a) we have used the fact that the function ℓβ0 (x) :=
n−1g(x)+⟨λr

i , x
r
i −x⟩+ β

2 ∥x−xr
i ∥2 is β-strongly convex

due to the convexity of g. The result follows from combining
(8), (9), and (10).

Lemma 13: For the Distributed ADMM algorithm 2. If
(i) assumptions (A1), (A2) and (A3) hold;

(ii) sequence ({xr
i }ni=1, {λ

r
i }ni=1, {xr

0,i}ni=1) is bounded;
(iii) the number of consensus steps in iteration r is in order

O(log r) (see Theorem 7); and
(iv) the penalty parameter β satisfies β−L

2 − L2

β > 0,
then

xr+1
i − xr

i → 0, (11a)

xr+1
0,i − xr

0,i → 0, (11b)

λr+1
i − λr

i → 0, (11c)
xr
0,i − xr

i → 0. (11d)

and the set of its limit points, denoted by Λ∗, is nonempty
and compact and the sequence approaches Λ∗ as r →∞.

Proof: Let α := (β−L
2 −

L2

β ). From Lemma 12 we have

Lr+1 − Lr ≤
n∑

i=1

(
−α∥xr+1

i − xr
i ∥2 −

β

2
∥xr+1

0,i − xr
0,i∥2

)
+

n∑
i=1

⟨λr
i − β(xr+1

0,i − xr
i )− n−1tr+1

0,i , xr
0,i − xr+1

0,i ⟩︸ ︷︷ ︸
ζr
i

.

(12)

Let ζr :=
∑n

i=1 ζ
r
i . Using (3), define ηr+1

i := xr+1
0,i −xr+1

0 .
Hence, ηr+1

i = Prox 1
nβ g(x̃

r+1 + ϵr+1
i ) − Prox 1

nβ g(x̃
r+1).

Note that from non-expansivity of proximal operator (see
Lemma 5), we infer that ∥ηr+1

i ∥ ≤ ∥ϵr+1
i ∥. Using the

equation above, we can write

ζr =

n∑
i=1

⟨λr
i − βxr+1

0 −βηr+1
i + βxr

i − n−1tr+1
0,i ,

xr
0 − xr+1

0 + ηr
i − ηr+1

i ⟩

=

n∑
i=1

⟨λr
i − βxr+1

0 + βxr
i − n−1tr+1

0,i , xr
0 − xr+1

0 ⟩



+

n∑
i=1

⟨λr
i − βxr+1

0 + βxr
i − n−1tr+1

0,i , ηr
i − ηr+1

i ⟩

+

n∑
i=1

⟨−βηr+1
i , xr

0,i − xr+1
0,i ⟩.

Lets define the three summation terms in the right hand side
of the last equality above as K1, K2, and K3, respectively.
Next, we bound the values of K2,K2, and K3. Starting with
K1, applying Lemma 4 to the equation (3), it follows

x̃r+1 + ϵri − xr+1
0,i ∈ (nβ)−1∂g(xr+1

0,i ).

Let tr+1
0,i = nβ

[
x̃r+1 + ϵr+1

i − xr+1
0,i

]
. Thus,

K1 = ⟨
n∑

i=1

(
λr
i − βxr+1

0 + βxr
i

−β[x̃r+1 + ϵr+1
i − xr+1

0,i ]
)
, xr

0 − xr+1
0 ⟩

= ⟨β
n∑

i=1

(xr+1
0,i − xr+1

0 − ϵr+1
i ),xr

0 − xr+1
0 ⟩

= β⟨
n∑

i=1

(ηr+1
i − ϵr+1

i ),xr
0 − xr+1

0 ⟩

(a)

≤ 2β∥xr
0 − xr+1

0 ∥
n∑

i=1

∥ϵr+1
i ∥

where in (a) we have used the Cauchy-Schwarz inequality
and the fact that ∥ηr+1

i ∥ ≤ ∥ϵr+1
i ∥ which implies that

∥ηr+1
i − ϵr+1

i ∥ ≤ 2∥ϵr+1
i ∥.

For K2 we have

K2 ≤
n∑

i=1

(
∥λr

i − βxr+1
0 + βxr

i − n−1tr+1
0,i ∥∥η

r
i − ηr+1

i ∥
)
.

Using Young’s inequality for K3 one can write that
K3 ≤ β

∑n
i=1 ∥η

r+1
i − ηr

i ∥2 + β
4

∑n
i=1 ∥xr

0,i − xr+1
0,i ∥2.

Summing up the inequalities above for K1,K2, and K3 and
using (12) we have

Lr+1 − Lr ≤
n∑

i=1

(
−α∥xr+1

i − xr
i ∥2 −

β

4
∥xr+1

0,i − xr
0,i∥2

)
+

n∑
i=1

γr
i .

where γr
i := 2β∥xr

0−xr+1
0 ∥∥ϵr+1

i ∥+∥λr
i −βxr+1

0 +βxr
i −

n−1tr+1
0,i ∥∥ηr

i −ηr+1
i ∥+β∥ηr+1

i −ηr
i ∥2. By telescoping the

inequality above from r = 0 to r = T − 1 we obtain

LT − L0 ≤
T−1∑
r=0

n∑
i=1

(
−α∥xr+1

i − xr
i ∥2

− β

4
∥xr+1

0,i − xr
0,i∥2

)
+

T−1∑
r=0

n∑
i=1

γr
i .

From the boundedness of the sequences and summability
of ϵri we can see that γr

i is summable for all i ∈ [n], i.e.
limT→∞

∑T−1
r=0 γr

i = γi <∞, by taking limit inferior of the

equation above as T →∞ and using lower boundedness of
L (Lemma 11) one has

L − L0 −
n∑

i=1

γi ≤ lim inf
T→∞

LT − L0 −
n∑

i=1

γi

≤ lim inf
T→∞

T−1∑
r=0

n∑
i=1

(
−α∥xr+1

i − xr
i ∥2 −

β

4
∥xr+1

0,i − xr
0,i∥2

)

= − lim sup
T→∞

T−1∑
r=0

n∑
i=1

(
α∥xr+1

i − xr
i ∥2 +

β

4
∥xr+1

0,i − xr
0,i∥2

)
which implies

lim sup
T→∞

T−1∑
r=0

n∑
i=1

(
α∥xr+1

i − xr
i ∥2 +

β

4
∥xr+1

0,i − xr
0,i∥2

)
≤ L0 − L+

n∑
i=1

γi <∞.

Therefore, if β is chosen such that α := β−L
2 − L2

β >

0, we can conclude that limr→∞ ∥xr+1
i − xr

i ∥ = 0 and
limr→∞ ∥xr+1

0,i − xr
0,i∥ = 0. The optimality condition, (6),

the Lipschitz continuity of fi’s, and (11a), yield (11c) and
the dual update (2d) leads to (11d).
Now we can prove the main result.

Proof of Theorem 7: Let ({x∗
i }ni=1, {λ

∗
i }ni=1, {x∗

0,i}ni=1)
be a limit point of the sequence to which the subsequence
({xrl

i }ni=1, {λ
rl
i }ni=1, {x

rl
0,i}ni=1) converges as l→∞.

Applying optimality condition on the primal update step
(2c), gives ∇fi(xr+1

i ) + λr+1
i = 0. Taking limit from both

sides over the subsequence, using Lemma 13 and Lipschitz
continuity of ∇fi, one can prove (4a). Taking limits from
both sides of (2d) over the subsequence and using (11c) in
Lemma 13 results in x∗

0,i = x∗
i for all i ∈ [n]. Lemma 4

applied to (3) yields

x̃r+1 + ϵr+1
i − xr+1

0,i ∈ (nβ)−1∂g(xr+1
0,i ), ∀i ∈ [n].

Thus, there exists sr+1
0,i ∈ ∂g(xr+1

0,i ) such that sr+1
0,i =∑n

j=1 λ
r
j + β(

∑n
j=1 x

r
j − nxr

0,i) + nβϵr+1
i . Passing limit

over the subsequence results in that srl0,i →
∑n

j=1 λ
∗
j as

l → ∞. To prove
∑n

i=1 λ
∗
i ∈ ∂g(x∗

0,i) we need to prove
that g(xrl

0,i) → g(x∗
0,i) and then use Remark 3. From the

convexity of g, we can write

g(x∗
0,i) ≥ g(xr+1

0,i ) + ⟨sr+1
0,i ,x∗

0,i − xr+1
0,i ⟩.

Taking limsup from both sides of the inequal-
ity above over the subsequence implies that
lim sup g(xr+1

0,i ) ≤ g(x∗
0,i). This along with the lower semi-

continuity of g proves the claim that g(xrl
0,i) → g(x∗

0,i).
Taking the limit of (3) and using the fact that the proximal
operator is continuous for proper, lsc, and convex functions
(see Lemma 5) yields x∗

0,i = x∗
0,j for all i, j ∈ [n]. This

completes the proof. ■



V. NUMERICAL RESULTS

To evaluate the performance of our proposed algorithm,
we conducted numerical experiments focusing on the sparse
PCA problem [10, 3]:

minimize
x∈Rp,∥x∥2≤1

n∑
i=1

−∥Pix∥2 + λ∥x∥1, (13)

where λ is the regularisation parameter for ℓ1 penalised prob-
lem and each agent i locally possesses a data matrix Pi ∈
Rmi×p. Existing algorithms in the literature, such as those in
[5, 3, 13], are restricted to scenarios with a central node in the
communication graph and cannot handle the decentralised
problem. Moreover, each fi(x) := −xTPT

i Pix is a smooth
concave function, enabling a closed-form solution for the
sub-problem (2c) for sufficiently large β.

In our numerical experiment, we set n = 20, p = 500,
λ = 10, and mi = 100 for all i ∈ [n]. Each element of matrix
Pi was independently generated from a Gaussian distribution
N (0, 0.12). To ensure convergence, we selected the penalty
parameter β such that β > 2maxi∈[n] λmax(P

T
i Pi). The

communication graph took the form of a ring graph, and
the weight matrix W was constructed using the Metropolis-
Hastings algorithm (e.g. see [17]). As a benchmark, we also
implemented the centralised algorithm from [5], adapted to
the synchronous setting. To measure the performance of
the algorithms towards stationarity and the agreement over
the decision variable, we use the proximal gradient and
disagreement gap, defined as Gr := ∥(x̄r − Proxg(x̄

r −∑n
i=1∇fi(x̄r))∥ and Dr := maxi∈[n] ∥xr

i − x̄r∥, respec-
tively. The results are presented in Fig 1. It can be observed
that for different values of τ , the number of consensus
steps in each iteration, the algorithm’s performance remains
comparable to that of the decentralised algorithm. However,
note that a small number of steps leads to the algorithm
performance deterioration, emphasising the importance of
appropriately tuning this parameter to ensure convergence.

VI. CONCLUSION

This paper presents a modified distributed ADMM algo-
rithm designed to tackle nonsmooth nonconvex optimisation
problems. Through our analysis, we have demonstrated that
by incorporating an adequate number of consensus steps and
employing a sufficiently large penalty parameter, the pro-
posed algorithm exhibits convergence to the set of stationary
points of the problem. To assess the practical performance of
the decentralised ADMM algorithm, we conducted numerical
experiments on the sparse PCA problem. The results reveal
that even with a small number of inner consensus iterations,
the algorithm’s performance significantly approaches that of
the centralised algorithm in [5].
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