
Minimax Linear Optimal Control of Positive Systems
Alba Gurpegui, Emma Tegling and Anders Rantzer

Abstract—We present a novel class of minimax optimal con-
trol problems with positive dynamics, linear objective function
and homogeneous constraints. The proposed problem class can
be analyzed with dynamic programming and an explicit solution
to the Bellman equation can be obtained, revealing that the
optimal control policy (among all possible policies) is linear.
This policy can in turn be computed through standard value
iterations. Moreover, the feedback matrix of the optimal con-
troller inherits the sparsity structure from the constraint matrix
of the problem statement. This permits structural controller
constraints in the problem design and simplifies the application
to large-scale systems. We use a simple example of voltage
control in an electric network to illustrate the problem setup.

Index Terms—Dynamic Programming, Large-scale systems,
Minimax, Optimal Control, Positive Systems.

I. INTRODUCTION

A. Motivation

Optimal control problems with minimax objectives are
ubiquitous in control theory and engineering. They provide a
powerful framework for modeling and solving problems that
involve competition and uncertainty [1], [2]. These problems
appear in contexts such as robust control, game theory, and
multi-agent systems. In our particular case, they are used to
design control systems that are robust to uncertainties and
disturbances, with the objective to minimize the worst-case
performance of the system. Finding solutions to these types of
problems can be a challenging task, especially when dealing
with large-scale systems.

In this paper, we present a novel class of minimax optimal
control problems, with positive dynamics, linear objective
function, and linear, homogeneous, constraints. Inspired by
the explicit solution presented in [3] for the minimization
case, the solution of this class of problems is based on
dynamic programming, with an explicit solution to the prob-
lem’s Bellman equation. Thus, it is possible to find the
optimal control policy, which, for this class of problems,
is manifested as a linear feedback policy that minimizes
the objective function over the system’s trajectory when
subjected to the worst-case disturbance or uncertainty that
is homogeneous in the system state.

To understand the relevance of our problem class, recall
that a linear system is positive if the state and output remain
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nonnegative as long as the initial state and the inputs are
nonnegative. This type of dynamics have gained attention
in control theory literature because of all the technological
and physical phenomena that can be captured by positive
dynamics. Classical books on the topic are [4] and [5]. In
the latter, David Luenberger in 1979 devotes a chapter to
positive dynamical systems, which is considered by many the
initiation of “Positive System Theory.” Significant research
has been conducted to represent natural extensions of the
class of positive systems, for instance positive systems with
delays [6], positive switched systems [7] and monotone
systems [8]. Positive systems theory has been useful to
describe dynamical systems in a wide range of applications,
such as, biology, ecology, physiology and pharmacology [9]–
[14], thermodynamics [12], [15], epidemiology [16]–[18],
econometrics [19], filtering and charge routing networks or
power systems [20]–[22].

One of the main advantages of positive systems is that
stability can be verified using linear Lyapunov functions [23],
making this class of systems more tractable in a large scale
setting because of their computational scalability [24], [25].
Another well known advantage is that linear controllers
u = −Kx can be designed with sparsity constraints on
K. See for example [26], [27]. This paper is optimizing
sparse controllers of the same form, but with one important
difference compared to past literature: Dynamic programming
is carried out without a priori constraints on linearity or
sparsity. Instead these properties are a consequence of the
optimization critera and constraints. Hence it is possible
to conclude that no nonlinear nonsparse controller can ever
achieve a lower value of the cost. The minimax optimization
is also related to past work on gain minimization [26], [28],
but again the dynamic programming approach is different.
More powerful conclusions are obtained at the expense of
more restrictive assumptions.

B. Problem Setup

We present the optimal control problem of this paper as a
discrete-time, infinite-horizon, minimax optimal control prob-
lem with nonnegative cost and positive dynamics with linear,
continuous objective function and homogeneous constraints,

inf
µ

max
w

∞∑
t=0

[
s⊤x(t) + r⊤u(t)− γ⊤w(t)

]
(1)

subject to

x(t+ 1) = Ax(t) +Bu(t) + Fw(t),

u(t) = µ(x(t)) ; x(0) = x0

|u| ≤ Ex ; |w| ≤ Gx
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where x represents the n-dimensional vector of state vari-
ables, u the m-dimensional control variable, w the l-
dimensional disturbance, µ is any, potentially nonlinear,
control policy, E prescribes the structure of the control action
and G is assumed to determine the linear dependency of the
disturbance and the state. The objective is to minimize the
worst-case cost over all possible control strategies.

C. Notation

Let R+ denote the set of nonnegative real numbers. The
inequality X > Y (X ≥ Y ) mean that all the elements of
the matrix (X − Y ) are positive (nonnegative). A matrix X
is called positive if all the elements of X are nonnegative
but at least one element is nonzero. The notation |X| means
elementwise absolute value.

II. MAIN RESULT

In this section we state and prove the main theorem of the
paper, which gives an explicit solution to the presented class
of linear minimax optimal control problems (1).

Theorem 1. Let A ∈ Rn×n, B =
[
B⊤

1 , . . . , B⊤
m

]⊤ ∈ Rm×n
+ ,

F ∈ Rn×l, E =
[
E⊤

1 , . . . , E⊤
m

]⊤ ∈ Rm×n
+ , G ∈ Rl×n

+ ,
s ∈ Rn, r ∈ Rm, γ ∈ Rl. Suppose that

A ⩾ |B|E + |F |G (2)

s ⩾ E⊤ |r| −G⊤ |γ| . (3)

Then the following statements are equivalent:
(i) The optimal control problem (1), has a finite value for

every x0 ∈ Rn
+.

(ii) The recursive sequence {pk}∞k=0 with p0 = 0 and

pk = s+A⊤pk−1 − E⊤ ∣∣r +B⊤pk−1

∣∣
+G⊤ ∣∣−γ + F⊤pk−1

∣∣ (4)

has a finite limit.

(iii) There exists p ∈ Rn
+ such that

p=s+A⊤p− E⊤∣∣r+B⊤p
∣∣+G⊤∣∣−γ+F⊤p

∣∣ . (5)

If (iii) is true then (1) has the minimal, finite, nonnegative
value pTx0, with p being the limit of the recursive sequence
{pk}∞k=0 in (ii). Moreover, the control law u(t) = −Kx(t),
is optimal when

K :=

 sign(r1 + p⊤B1)E1

...
sign(rm + p⊤Bm)Em

 . (6)

Remark 1. Even though the optimization is done without
any a priori assumption of linearity of the control policy, the
resulting optimal controller is linear.

Remark 2. The condition (2) ensures the invariance of
the positive orthant under the system dynamics. The second
condition (3) will be needed when applying Proposition 3

in the Appendix to our objective function g(x, u, w) =
sTx+ rTu− γTw.

Remark 3. In (6), it can be observed that the sparsity
structure of the control gain K is directly determined by
the E matrix. The sparsity of E is in turn determined by the
problem designer and may capture limitations in actuation
and sensing.

Proof: The general nonlinear minimax optimal control
problem (14) presented in the Appendix V reduces to our
problem set up (1) if

f(x, u, w) := Ax+Bu+ Fw

g(x, u, w) := s⊤x+ r⊤u− γ⊤w.

Furthermore, under condition (3) we observe that

max
|w|≤Gx

[
s⊤x+ r⊤u− γ⊤w

]
= s⊤x+ r⊤u+ |γ|⊤ Gx

≥
(
E⊤ |r| −G⊤ |γ|

)⊤
x+ r⊤u+ |γ|⊤ Gx

≥ −
(
G⊤ |γ|

)⊤
x+ |γ|⊤ Gx = 0.

Therefore,

max
|w|≤Gx

[g(x, u, w)] = max
|w|≤Gx

[
s⊤x+ r⊤u− γ⊤w

]
≥ 0

as required in Lemma 2 in the Appendix V. Now, it is clear
that (i) in Theorem 1 is equivalent to (i) in Lemma 2 in the
Appendix V. Next, we will verify that the recursive sequence
in (ii) is equivalent to (ii) in Lemma 2. To prove this we
use induction over p⊤k x = Jk(x). By definition, it is direct
that p⊤0 x = 0 = J0(x) for all x. For the induction step
we assume that p⊤k x = Jk(x). Now we want to prove that
p⊤k+1x = Jk+1(x). From (15) and the induction hypothesis
we have that

Jk+1(x) = min
u

max
w

[g(x, u, w) + Jk(f(x, u, w))]

= min
u

max
w

[
s⊤x+ r⊤u− γ⊤w + p⊤k (Ax+Bu+ Fw))

]
= s⊤x+ p⊤k Ax+ min

|u|≤Ex

[
r⊤u+ p⊤k Bu

]
+ max

|w|≤Gx

[
−γ⊤w + p⊤k Fw

]
= s⊤x+ p⊤k Ax−

∣∣r +B⊤pk
∣∣⊤ Ex+

∣∣−γ + F⊤pk
∣∣⊤ Gx

= p⊤k+1x.

Therefore, p⊤k x = Jk(x) for all k ∈ N and all x ∈ Rn
+,

and p⊤x = J∗(x) for all x. Hence, (ii) and (iii) both in
Theorem 1 and Lemma 2 are equivalent. Furthermore, note
that under homogeneous constraints the linearity of Jk is
preserved during value iteration.

Because (i), (ii) and (iii) in this theorem and in Lemma 2
are equivalent, the proof of equivalence between (i), (ii) and
(iii) in Theorem 1 follows from the proof of Lemma 2 in
the Appendix V.



Fig. 1. Example of a DC network consisting of 3 terminals
(buses) and 5 lines. The controls ui are used to control the
voltage when the system is subjected to the disturbances wi.

To finish this proof it is just left to give an expression for
the optimal control policy u(t) = µ(x(t)),

µ(x) = argmin
|u|≤Ex

[
s⊤x+ r⊤u− γ⊤w + p⊤(Ax+Bu+ Fw)

]
= argmin

|u|≤Ex

m∑
i=1

[(
ri + p⊤Bi

)
ui

]
.

Finally, since for all i = 1 ... m the inequality |u| ≤ Ex
restricts ui to the interval [−Eix,Eix], the minimum is
attained when (ri+p⊤Bi) and ui have opposite signs. Thus,
ui = −sign(ri + p⊤Bi)Ei for all i = 1 ... m. ■
Next, we present an example of a simple scenario where
the main theorem is applied to a network problem – a DC
power network – to illustrate the role of the asssumptions
and contraints.

III. EXAMPLE: OPTIMAL VOLTAGE CONTROL IN A DC
POWER NETWORK

The optimal control problem (1) admits sparsity constraints
on the controller, making it particularly useful for problems
defined over network graphs. Here, we consider a simple
example of voltage control in a DC (i.e., direct current) power
network. Here, the nodes represent voltage source converters
with positive voltage dynamics, interconnected through resis-
tive lines. The model can, for example, capture an envisioned
multi-terminal high-voltage DC network, whose design aims
to transmit power over long distances while maintaining low
losses [29], [30] or a simplified DC distribution network [31].
The (continuous) voltage dynamics at the DC bus i (node i)
is given by:

CiV̇i(t) = −
n∑

j=1

Iij + ui(t) + wi(t)

= −
n∑

j=1

1

Rij
(Vi(t)− Vj(t)) + ui(t) + wi(t), (7)

for all i = 1, 2, . . . , n, where ui denotes the controlled
injected current, Rij the resistance of transmission line (i, j)
(with Ri,j = ∞ if there exists no line connecting nodes
i and j), and Ci is the total capacitance at bus i.1 We

1Any line capacitances can for the purpose of this example be absorbed
in to the buses.

have also included the disturbance current wi, arising from
variations in local generation and load. Defining the vector
V = [V1(t), ..., Vn(t)]

⊤, u and w analogously, and C =
diag([C1, ...Cn]), we may write (7) on vector form as

CV̇ (t) = −LRV (t) + u(t) + w(t). (8)

Here, LR is the weighted Laplacian matrix of the graph
representing the transmission lines, whose edge weights are
given by the conductances 1

Rij
, i.e.,

[LR]i,j =

{
− 1

Ri,j
if i ̸= j∑n

j=1
1

Ri,j
if i = j

.

Note that −LR is Metzler, and the system (8) thus positive.
The dynamics in 8 can be discretized as

C(V (τh+ h)− V (τh))/h = −LRV (τh)+u(τh)+w(τh).

Setting t = τh and re-defining the state x(t) = V (τh) gives
the discrete-time dynamics

x(t+ 1) =
[
I − hC−1LR

]
x(t) + hC−1u(t)

+ hC−1w(t). (9)

Now, we formulate the optimal control problem (1) for the
dymamics (9):

inf
µ

max
w

∞∑
t=0

[
s⊤x(t) + r⊤u(t)− γ⊤w(t)

]
(10)

Subject to

x(t+ 1) =
[
I − hC−1LR

]
x(t) (11)

+ hC−1u(t) + hC−1w(t)

u(t) = µ(x(t)) ; x(0) = x0

|u| ≤ Ex ; |w| ≤ Gx

Identifying A and B, condition (2) reads[
I − hC−1 · LR

]
⩾ hC−1E + hC−1G. (12)

Clearly, the right hand side of the inequality must inherit the
zero pattern of LR, i.e. its sparsity pattern. In other words,
the disturbances and control signal must be compatible with
the physical network structure and depend only on connected
nodes. E, or G can, however be more sparse than LR.
Furthermore, (12) reveals that the diagonals of the left hand
side must satisfy

(eii + gii) +

N∑
j=1

1

Rij
≤ Ci

h

This can always be satisfied by making h sufficiently small.
However, the off-diagonals reveal conditions on eij , gij that
depend on the line resistances Rij in a manner best illustrated
by (13).



In Fig. 1 a 3-terminal DC power network system is
introduced. For this network, the condition (12) reads:1−

∑3
j=1

h
R1,j ·C1

h
R1,2·C1

0
h

R2,1·C2
1−

∑3
j=1

h
R2,j ·C2

h
R2,3·C2

0 h
R3,2·C3

1−
∑3

j=1
h

R3,j ·C3


⩾


h
C1

(e1,1 + g1,1)
h
C1

(e1,2 + g1,2) 0
h
C2

(e2,1 + g2,1)
h
C2

(e2,2 + g2,2)
h
C2

(e2,3 + g2,3)

0 h
C3

(e3,2 + g3,2)
h
C3

(e3,3 + g3,3)

 .

(13)

This element-wise matrix inequality shows necessary
constraints on the elements of E and G.

In parallel, condition (3) means that E and G need to
satisfy

s ⩾ E⊤ |r| −G⊤ |γ| .
Here, the structure of E determines the states available to
the local current controllers and G the manner in which
disturbances enter the system.

Particularly, in our 3 terminal DC power network we
need the problem design to satisfys1s2
s3

⩾

e1,1 e2,1 0
e1,2 e2,2 e3,2
0 e2,3 e3,3

∣∣∣∣∣∣
r1r2
r3

∣∣∣∣∣∣−
g1,1 g2,1 0
g1,2 g2,2 g3,2
0 g2,3 g3,3

∣∣∣∣∣∣
γ1γ2
γ3

∣∣∣∣∣∣ .
In this example, the resulting optimal controller (6) can take
8 different configurations depending on the sign of each
element of the parameter r. If r is positive, because in
this problem B = hC−1 is positive, all the signs of the
rows in K are positive so that u(t) = −Ex(t) becomes
optimal. However, if r is not positive, it is possible to use
this parameter to modify the signs of the rows in the resulting
control action.

IV. CONCLUSIONS
In this paper, we have extended the optimal control prob-

lem class presented in [3] by exploring the minimax worst-
case. Specifically, we have derived a solution p for this novel
class of optimal control problems using value iteration. Our
resulting optimal controller bears resemblance to the one
derived in [32] for a continuous-time problem, however, the
homogenous constraints we impose allow for a prescribed
controller structure. We believe that our approach is an
interesting first step in analyzing a new class of optimal
control problems, but that there is still room for improving
our methodology. Considering the high computational cost
of value iteration, the exploration of alternatives such as
policy iteration [33], offers a compelling direction for future
research.

Our results demonstrate that this class of problems can
be scaled to large dynamical systems efficiently, partly since
the sparsity of the optimal feedback is directly related to the
constraints imposed in the problem statement. We demon-
strated the problem setup on a simple example of a 3-node
power network, but the same method can be applied when
the network scales.

The explicit solution we obtain to the Bellman equation
appears to rely on the homogeneity of the constraints on u
and w. We believe, however, that constant upper bounds on
the signals can be accounted for, and this is the subject of
ongoing research.
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V. APPENDIX

A. General Problem Set Up

We define, a general discrete time, infinite horizon, mini-
max optimal control problem with continuous cost function
and constraints as

inf
µ

max
w

∞∑
t=0

g(x(t), u(t), w(t)) (14)

subject to

x(t+ 1) = f(x(t), u(t), w(t)),

x(t) ∈ X; x(0) = x0 ; u(t) = µ(x(t))

u(t) ∈ U(x(t)); w(t) ∈ W (x(t))

where f : X × U × W → X , x represents the vector of
n-dimensional state variables, u the m-dimensional control
variable and w the q-dimensional disturbance.

Lemma 2. Suppose

max
w∈W (x)

[g(x, u, w)] ≥ 0

∀x ∈ X , ∀u ∈ U(x). Then, the following statements are
equivalent.

(i) The general optimal control problem in (14) has a finite
value for every x0 ∈ Rn

+.
(ii) The recursive sequence {Jk}∞k=0 with J0 = 0 and

Jk(x) = min
u

max
w

[g(x, u, w) + Jk−1(f(x, u, w))]

(15)

has a finite limit ∀x ∈ X .

(iii) The Bellman equation

J∗(x) = min
u

max
w

[g(x, u, w) + J∗(f(x, u, w))] (16)

has nonnegative solution J∗(x), ∀x ∈ X .

Proof: Note that, by dynamic programming, the increasing
monotone recursive sequence {Jk}∞k=1 (see Proposition 3)
defined in (15) also satisfies

Jk(x) = inf
µ

max
w

k∑
t=0

[g(x(t), u(t), w(t))] . (17)

To prove the equivalence we will prove implications (i) ⇒
(ii), (ii) ⇒ (iii), (iii) ⇒ (ii), (iii) ⇒ (i).
(i) ⇒ (ii) Assume (i). Then, in (17) when k → ∞ we

get Jk(x) < α < ∞ for all x, with α representing a finite
value for (14). Hence, the recursive sequence (15) has a finite
limit.
(ii) ⇒ (iii) Assume (ii). Taking the limit when k → ∞

on both sides of the equation (15) we get (iii).
(iii) ⇒ (ii) Assume (iii). We want to prove that

limk→∞ Jk(x) < ∞ for all x with Jk(x) defined in (17). To
achieve this, we use induction over Jk(x) ≤ J∗(x) < ∞. It
is clear that 0 = J0(x) ≤ J∗(x) with J∗ nonnegative by defi-
nition. For the induction step we assume that Jk(x) ≤ J∗(x).
We want to prove that Jk+1(x) ≤ J∗(x). From the induction
hypothesis it is direct that

Jk+1(x) = min
u

max
w

[g(x, u, w) + Jk(f(x, u, w))]

≤ min
u

max
w

[g(x, u, w) + J∗(f(x, u, w))]

= J∗(x).

Thus, Jk+1(x) ≤ J∗(x) for all x, and limk→∞ Jk(x) < ∞
for all k and for all x, as we wanted to prove.
(iii) ⇒ (i) Assume (iii). Define for all x

µ∗(x) = argmin
u

max
w

{g(x, u, w) + J∗(f(x, u, w))}

such that

J∗(x) = min
u

max
w

[g(x, u, w) + J∗(f(x, u, w))] .

Indeed, from (17) and implication (iii) ⇒ (ii) it can be
observed that

max
w

k∑
t=0

[g(x, µ∗(x), w)] ≤ inf
µ

max
w

k∑
t=0

[g(x(t), u(t), w(t))]

= Jk(x) ≤ J∗(x) < ∞.

Hence,

max
w

k∑
t=0

[g(x, µ∗(x), w)] ≤ J∗(x)

for all k and for all x. This proves (i). ■

Proposition 3. Let

max
w

[g(x, u, w)] ≥ 0



∀x ∈ X and ∀u ∈ U(x). Then, the recursive sequence
{Jk(x)}∞k=0 with J0(x) = 0 and

Jk(x) = min
u

max
w

[g(x, u, w) + Jk−1(f(x, u, w))] (18)

satisfies that 0 ≤ J0(x) ≤ J1(x) ≤ J2(x) ≤ ... for all x ∈ X
and all k ∈ N.

Proof: To prove this we use induction over Jk(x). From
the proposition statement J0(x) = 0 gives

J1(x) = min
u

max
w

[g(x, u, w) + J0(f(x, u, w))] =

= min
u

max
w

[g(x, u, w)] ≥ 0 = J0(x)

for all x. For the induction step we assume that Jk(x) ≥
Jk−1(x). We then want to prove that Jk+1 ≥ Jk. From (15)
and the induction hypothesis we have that

Jk+1(x) = min
u∈U(x)

max
w∈W (x)

[g(x, u, w) + Jk(f(x, u, w))]

≥ min
u∈U(x)

max
w∈W (x)

[g(x, u, w) + Jk−1(f(x, u, w))]

= Jk(x)

Thus, Jk+1(x) ≤ Jk(x) for all k and for all x. ■
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