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Externally Positive Linear Systems from Transfer
Function Properties
Ross Drummond and Matthew C. Turner,

Abstract— The characterisation of single-input-single-
output externally positive linear systems is considered. A
complete characterisation of the class of externally positive
second-order and a class of underdamped third-order sys-
tems is given and connections to negative-imaginary sys-
tems are highlighted. It is shown that negative-imaginary
systems have non-negative step responses, leading to a
condition for external positivity based on negative imag-
inary systems theory. Finally, a class of externally pos-
itive systems which can be verified using the developed
results but which fail a recently developed numerical test
for external positivity based upon linear matrix inequalities
are introduced. These results extend the class of system
for which external positivity can be verified, facilitating
large-scale control and less conservative absolute stability
analysis.

Index Terms— Externally positive linear systems, nega-
tive imaginary systems.

NOTATION

R
EAL vectors of dimension n are denoted R

n, non-

negative real vectors are R
n
+ and positive-real vectors are

R
n
++. Rn1×n2 denotes a real n1 × n2 matrix and Sn

≻0 (Sn
⪰0)

denotes a symmetric positive (semi)-definite matrix of size

n. The ordered space is defined as Dn
++ = {(x1, . . . , xn) :

x1 ≥ · · · ≥ xn > 0}. Use x[1] ≥ · · · ≥ x[n] to denote the

components of vector x ∈ R
n arranged in decreasing order.

Vectors x and y are said to be similarly ordered if there is

a permutation π such that x[i] = xπ(i), y[i] = yπ(i), i =
1, ..., n. Equivalently, x and y are similarly ordered if (xi −
xj)(yi − yj) ≥ 0 for all i, j [27]. Given vectors x, y ∈ R

n, x

is said to weakly submajorise y, as in x ≺w y, if
∑K

k=1 x[k] ≤
∑K

k=1 y[k], ∀K = 1, . . . , n. The inner product of two signals

⟨y, u⟩ defined on [0, t] is ⟨y, u⟩t =
∫ t

0
y(τ)u(τ) dτ. The

Hilbert space of square integrable functions f : [0,∞) → R

such that ⟨f, f⟩∞ < ∞ is denoted L2. A linear system is

indicated by its linear operator G, its transfer function G(s),
its frequency response G(jω) or its impulse response g(t).

R. Drummond is with the Department of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield, S1 4DT,
UK. Email: ross.drummond@sheffield.ac.uk. R. Drummond was
supported by a UKIC Fellowship from the Royal Academy of Engineer-
ing.

M. Turner is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton, SO17 1BJ, UK.
Email: m.c.turner@soton.ac.uk.

I. INTRODUCTION

Consider the single-input-single-output (SISO) linear sys-

tem with minimal state-space realisation

G ∼

{

dx(t)
dt

= Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

with x(t) ∈ R
n, y(t) ∈ R, u(t) ∈ R, x(0) = 0 and strictly

proper transfer function

G(s) = C(sI −A)−1B. (2)

A system is said to be externally positive if the following

definition holds.

Definition 1 (External positivity [15]): System (1) is exter-

nally positive if the output y(t), corresponding to a zero initial

condition on the state x(0) = 0, is non-negative for every non-

negative input u(t) for all t ≥ 0.

Lemma 1 ( [15]): System (1) is externally positive iff its

impulse response, g(t), is non-negative.

Determining external positivity (or equivalently, determin-

ing whether the impulse response is non-negative) for general

classes of systems is challenging, and is NP-hard for the

specific case of A being self-adjoint [3]. At the same time,

there has also been a growing interest in this class of system

for two main reasons. Firstly, they are used to model several

important physical systems, like batteries and supercapacitors

[11], and, secondly, their analysis is often simplified. Examples

of this simplicity include the fact that designing feedback

controllers for them is scalable [31], [33] and they can be

analysed using integral linear constraints instead of integral

quadratic constraints [20]. Hence, by first identifying a system

as externally positive, large scale system analysis and control

becomes more feasible.

To fully exploit these simplifying results, a general char-

acterisation of the class of externally positive systems is

required. Several seminal results have been obtained for pos-

itive systems, especially on the positive-realisation problem,

whereby a state-space realisation with a positivity preserving

input-state and state-output map is sought [4]. A complete

solution to this problem was given in [14] which built upon the

earlier results of [1] and [28] where observable and reachable

cones were introduced. However, many questions still remain

unresolved, such as how to efficiently compute the realisation

matrices for general classes of systems.

Another recent condition for external positivity was devel-

oped in [16], [17] for the purpose of model order reduction,

with the characterisation defined from internal positivity and
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cone-invariance. Also, it was shown in [13, Corollary 1] that,

by applying a Kronecker product transformation on the state-

space matrices, a generic linear system can be transformed

into an externally positive one which allows the H2 norm to

be bounded analytically.

The authors’ interest in this class of systems lies in their

close association with Zames-Falb multipliers [7], [34], [35],

[39]. These multipliers are the least conservative known

method for verifying the stability of a class of Lurie system:

the feedback interconnection of a linear system and a static,

non-odd monotonic nonlineartity [21]. A key condition on

the multipliers is a non-negative impulse response, and hence

they should be externally positive. For this reason, finding

appropriate multipliers remains an open issue. Therefore,

amongst other applications, the development of simple and

complete tests for externally positive systems promises to

reduce conservatism in the absolute stability problem [35].

Contributions: This paper collects and proposes several

conditions for external positivity of linear systems. The main

results are iff conditions for second order systems and a class

of underdamped third order system as well as the characteri-

sations from negative-imaginary systems developed in Section

III-B. Emphasis is placed on realisation-independent charac-

terisations, as the many similarity transformations involved in

the Zames-Falb multiplier convex search will break the fragile

internally positive-realisation structure [35]. Connections to

the notion of positivity in input-output systems theory are also

explored, with a non-equivalence shown via counter-examples.

II. CHARACTERISATIONS FROM THE TRANSFER

FUNCTION

As external positivity represents a restriction on the input-

output response, it is desirable to provide characterisations

in terms of the parameters of the transfer function (being

independent of the state-space realisation). As observed by

several authors, including [8], [9], [30], [37], seemingly

independently, such a characterisation follows from Post’s

Inversion Formula for the impulse response [30], [37] and

Bernstein’s Theorem on completely monotonic functions [32],

[37]. External positivity is then equivalent to G(s) being

completely monotonic, as in

(−1)k
dk G(s)

dsk
≥ 0, ∀s ∈ R+, k ∈ N ∪ 0. (3)

Whilst complete monotonicity of G(s) represents a full

characterisation of external positivity, determining when a

generic rational polynomial G(s) is completely monotonic is

challenging in practise, as it requires computing an infinite

number of derivatives. For minimum phase systems with

real poles and zeros, [2] proposed complete monotonicity

conditions based upon the weak majorisation of the poles

by the zeros. This restriction is less restrictive than the later

results from the control literature [5], [18], [25], and is close

to necessary, with necessity requiring that the sum of the zeros

exceeds that of the poles [2].

Weak majorisation based sufficient conditions for external

positivity of other system types were developed in [12] by

exploiting the properties of relaxation systems [38]

Gre(s) =
K
∑

k=1

ak
s+ pk

(4)

with ak > 0, pk > 0, to characterise mixed relaxation systems

Gmre(s) =

K
∑

k=1

ak
s+ pk

−
K
∑

k=1

bk
s+ qk

(5)

with ak, bk, pk, qk ∈ R++. One of the criteria introduced in

[12] was the following.

Theorem 1 ( [12]): For a, b, p, q ∈ DK
++, if there exists a

similar ordering between a and p as well as b and q and if

ln(b) ≺w ln(a), (6a)

−q ≺w −p, (6b)

then the mixed relaxation system (5) is externally positive.

Theorem 1 is extended here to obtain iff conditions for

second order systems. Even though second order externally

positive systems are fully characterised by internally positive

realisations [15], the presented results offer an alternative

perspective posed in terms of an input-output analysis.

Proposition 1: A second-order strictly proper, linear system

G(s) with poles in Re[s] ≤ 0 is externally positive iff it

is either i) a relaxation system of the form (4); ii) a mixed

relaxation system of the form (5) with K = 1, a1 ≥ b1 > 0
and p1 < q1; or iii) a system of the form

Grep(s) =
a1

s+ p1
+

b1
(s+ p1)2

(7)

with a1, p1 ≥ 0 and b1 > 0.

Proof: Firstly, if the poles of the second order system are

a pair of complex conjugates, then the system is not externally

positive from Perron-Frobenius theorem. This also follows

from a simple inspection of the impulse response. Therefore,

attention is confined to systems containing real poles only.

Secondly, consider systems with only distinct poles. These

systems are either relaxation systems of the form (4) (which

are trivially externally positive), mixed relaxation systems of

the form (5), or negative relaxation systems of the form (4)

except with ak < 0. Trivially, the impulse response of negative

relaxation systems are non-positive for all time and hence are

not externally positive.

Thus, consider the case when G(s) is a second-order mixed

relaxation system: it has the structure of (5) with K = 1, and

the impulse response is simply

g(t) = a1e
−p1t − b1e

−q1t. (8)

External positivity requires g(0) ≥ 0, hence a1 ≥ b1 ≥ 0.

For the restriction on the poles, if g(0) ≥ 0 then, because

e−p1t and e−q1t are both monotonically decreasing, g(t) ≥
0 for all t ∈ [0,∞) if and only if the only time for

which g(t) = 0 is non-positive. The solution to g(t) = 0
in (8) satisfies eln(a1)−p1t = eln(b1)−q1t and so, from the

exponential being injective, the time t∗ when g(t) = 0 is

t∗ = ln(a1)−ln(b1)
p1−q1

. Monotonicity of the logarithm means

ln(a1) ≥ ln(b1), under the necessary conditions a1 ≥ b1 > 0,
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and so t∗ ≥ 0 when p1 < q1. Sufficiency follows from

a1e
−p1t ≥ b1e

−p1t > b1e
−q1t.

Thirdly, note that if the poles are repeated, as in Re[s] ≥ 0,

and are not complex, the system has the form

Grep(s) =
a1

s+ p1
+

b1
(s+ p1)2

, p1 ≥ 0, b1 ̸= 0. (9)

It is easy to see that the necessary condition g(0) ≥ 0 requires

a1 > 0. Similarly to above, a necessary condition for g(t) ≥ 0
for all t ∈ [0,∞) is for g(t) = 0 for only non-positive times.

The impulse response of Grep(s) is

g(t) = (a1 + b1t)e
−p1t (10)

and thus g(t) becomes zero at t = −a1/b1 and thus for a1 > 0,

it follows that b1 > 0. Sufficiency is then clear. In the case

that a1 = 0 (no zeros in the transfer function), it is trivial to

see that b1 > 0 for external positivity.

A. Third-order underdamped systems

In [12], Theorem 1 was generalised to transfer functions

with complex poles and numerators using the crude bound

min cos(t) = min sin(t) = −1 ∀t ∈ R+. However, this

approach did not take into account the periodically positive

contribution of the sinusoidal response, resulting in loose

external positivity criteria, as observed in [17]. In particular,

for systems of the form

Gcd(s) =

n
∑

k=1

a1
s+ p1

+
b1j

s+ q1 + ωj
+

−b1j

s+ q1 − ωj
, (11)

the test of [12] requires a1 ≥ b1 but [17] showed the existence

of an externally positive system with b1 > a1. Motivated by

this observation, the following external positivity conditions

are obtained for a class of third-order systems with complex

poles that exploit the fact that the periodic term is positive in

some time intervals.

Theorem 2: For a, b, p, q, ω ∈ R++ and q > p, consider

systems with impulse responses

g−sin(t) = ae−pt − b sin(ωt)e−qt, (12a)

g+sin(t) = ae−pt + b sin(ωt)e−qt, (12b)

g−cos(t) = ae−pt − b cos(ωt)e−qt, (12c)

g+cos(t) = ae−pt + b cos(ωt)e−qt, (12d)

and define

t∗ =
1

ω
cot−1

(

q − p

ω

)

. (13)

Then the following statements are true

i) g−sin(t) ≥ 0 ∀t ≥ 0 iff

ln(a)− ln(b) ≥ ln(sin(ωt∗))− (q − p)t∗ (14)

ii) g+sin(t) ≥ 0 ∀t ≥ 0 iff

ln(a)− ln(b) +
(q − p)π

ω
≥ ln(sin(ωt∗))− (q − p)t∗

(15)

iii) g−cos(t) ≥ 0 ∀t ≥ 0 iff a ≥ b

iv) g+cos(t) ≥ 0 ∀t ≥ 0 iff

ln(a)− ln(b) +
(q − p)π

2ω
≥ ln(sin(ωt∗))− (q − p)t∗

(16)

Proof: Consider first the impulse response g−sin(t). Since

q > p, it follows that g−sin(t) ≥ 0 for all time as long as it

is non-negative in the interval 0 < t < π
ω

. This is because

if g−sin(t) is positive during the first period of the sine wave,

t ∈ [0, 2π
ω
], then since q > p, it will be positive in subsequent

periods. Moreover, the only interval during this first period in

which the sinusoidal term is negative is in the first half-period,

t ∈ (0, π
ω
). In this interval, g−sin(t) can be written

g−sin(t) = eln(a)−pt − eln(b sin(ωt))−qt, (17)

which is non-negative iff

ln(a)− ln(b) ≥ ln(sin(ωt))− (q − p)t. (18)

When 0 < t < π
ω

, the maximum value of the right hand side

of (18) is obtained when

d

dt
(ln(sin(ωt))− (q − p)t) = ω cot(ωt)− (q − p) = 0,

(19)

as in the point t∗ of (13). Condition (14) then holds iff (18) is

satisfied, and hence g−sin(t) is non-negative. Condition (15) for

g+sin(t) is obtained in a similar way, except that in this case,

it is only necessary to verify non-negativity of the impulse

response in π
ω

< t < 2π
ω

, and so there is a time shift of
π
ω

. Similarly, the non-negativity of g−cos(t) is satisfied if the

impulse response is non-negative at t = 0. Condition (16) for

g+cos(t) follows from the same argument as above, except in

this case the time region is π
2ω < t < 3π

2ω .

Remark 1: These conditions build upon existing results for

externally positive third order systems. Notably, [23] derived

necessary and sufficient conditions for third-order systems

with real poles. The results of [23] were simplified in [36] by

developing interesting connections between externally positive

systems and probability density functions. The most pertinent

result to Theorem 2 is [19] which extended the earlier condi-

tions of [23] to systems with complex poles. Whilst being in

the same spirit as Theorem 2, the formulation of the results of

[19] are different– with [19] involving the coefficients of the

transfer function whereas Theorem 2 uses those of the impulse

response. ⋆

III. CONNECTIONS TO INPUT-OUTPUT SYSTEMS THEORY

The term “positivity” is frequently used in the analysis of

input-output systems theory as a generalisation of passivity. In

that context, positivity refers to the non-negativity of the inner

product ⟨u,Gu⟩t > 0, not of the output at each time instant.

This section discusses the similarities and differences between

these two different notions of positivity.

A. Positive-real functions

A property of central importance in the analysis of linear

systems is that of G(s) being strictly positive-real [10], [21].
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Definition 2 (Strictly positive-real function [10]): A SISO

transfer function G(s) is strictly positive-real (SPR) if

• The poles of G(s) satisfy Re[s] < 0.

• G(jω) +G(−jω) > 0 for all ω ∈ R.

A consequence of G being strictly positive-real is that it can

be realised by (A,B,BT ) since any realisation (A,B,C) of

a positive-real G satisfies PB = CT for some P ∈ Sn
≻0 from

the KYP Lemma.

The importance of positive-realness follows from its char-

acterisation of passive systems.

Definition 3 (Passive Systems): If G(s) is strictly positive-

real then the linear system y = Gu mapping u ∈ L2 to y ∈ L2

is strictly passive and satisfies ⟨y, u⟩t > 0.

Definition 3 implies that all externally positive systems

are passive when the input is restricted to be positive, but

not all passive systems are externally positive. This non-

equivalence between passive (i.e. G ∈ SPR) systems and

external positivity was discussed extensively by De la Sen in

[9] who gave the following counter-example

GSPR(s) =
s+ a

s+ b
. (20)

When evaluated on s = jω, GSPR is simply a Möbius

transformation on the imaginary axis and positive-real when

a > 0 and b > 0. However, the impulse response is

g(t) = 1δ(t) + (a− b)e−bt (21)

which takes negative values when b > a. There then exists a

range in the parameter space where GSPR is positive-real but

not externally positive. Similarly, the strictly proper plant

GSPR(s) =
s

s2 + 0.1s+ 1
(22)

is positive-real but not externally positive, as its poles are a

complex-conjugate pair (noting proof of Proposition 1).

B. Negative-imaginary transfer functions

Another transfer function property that would appear on first

glance to be connected to external positivity is that of G(s)
being negative-imaginary (NI).

Definition 4 (Negative-imaginary function [26]): A trans-

fer function G(s) is said to be negative-imaginary if

• G(s) has no pole in Re[s] > 0.

• For all ω ≥ 0 such that jω is not a pole of G(s) then

j[G(jω)−G(−jω)] ≥ 0.

• If s = jω0, with ω0 > 0, is a pole of G(s),then it is a

simple pole and the residue matrix K = lims→jω0
(s −

jω0)jG(s) is Hermitian and positive semidefinite.

• If s = 0 is a pole of G(s), then lims→0 s
kG(s) = 0 for

all k ≥ 3 and lims→0 s
2G(s) is Hermitian and positive

semidefinite.

Negative imaginary systems can be characterised in state-

space terms using the following result from [29].

Lemma 2 ( [29]): Let (A,B,C,D) be a minimal realisa-

tion of H(s). Then H(s) is NI if and only if D = DT and

there exists a matrix Q ∈ Sn
⪰0 such that the following matrix

inequality is satisfied
[

ATQ+QA QB −ATCT

(QB −ATCT )T −CB −BTCT

]

⪯ 0. (23)

Negative-imaginary and externally positive systems share

several similar features, e.g. verifying their stability in feed-

back is scalable [6], [22]. However, there exists a gap between

these two classes of system. For example the negative imagi-

nary system

GNI(s) =
1

s2 + 0.1s+ 1
(24)

is clearly not externally positive since it has a pair of complex

poles (Proposition 1).

In general, NI systems do not have non-negative impulse

responses but do have non-negative step responses. To show

this, first consider the intermediate result below.

Lemma 3: Consider a system G(s) as in (1). If it is

negative-imaginary and strictly proper, then ⟨ẏ, u⟩t ≥ 0 for

all inputs u ∈ L2.

Proof: Strict properness of G(s) implies G(s) ∼
(A,B,C, 0) and guarantees that the output is at least once

differentiable. Consider the storage function

S(x) = xTQx (25)

with Q ∈ S
n
≻0. If the matrix inequality (23) is satisfied, then

[

x(t)
u(t)

]T [

ATQ+QA QB −ATCT

(QB −ATCT )T −CB − (CB)T

] [

x(t)
u(t)

]

≤ 0

(26)

and the dissipitivity inequality

Ṡ(x, u) ≤ 2ẏ(τ)u(τ) (27)

is then verified. Integrating (27) in time gives

S(x) ≤ 2⟨ẏ, u⟩t (28)

which implies ⟨ẏ, u⟩t ≥ 0.
The step response can then be bounded from below.

Proposition 2: If G(s) is NI and such that G(∞) ≥ 0,

then its unit step response is non-negative for all t ≥ 0.

Proof: The system G(s) can be written as

G(s) = G̃(s) +G(∞) = G̃(s) +D,

where G̃(s) ∼ (A,B,C, 0) is strictly proper. By assumption

G(∞) = D ≥ 0 so a sufficient condition for the unit step

response of G(s) to be non-negative is for the unit step

response of G̃(s) to be non-negative.

Defining the output of G̃(s) to be ỹ(t) and the input to be

u(t), by Lemma 3, we have ⟨ ˙̃y, u⟩t ≥ 0. Thus, with the step

input u(t) = 1 for all t ∈ [0,∞) and u(t) = 0 for t < 0, we

have

0 ≤

∫ t

0

˙̃y(τ)u(τ)dτ =

∫ t

0

˙̃y(τ)dτ = ỹ(t).

This result can be leveraged into a characterisation of

external positivity.

Proposition 3: If G(s) ∼ (A,B,C, 0) is such that CB ≥ 0
and sG(s) is negative imaginary, then it is externally positive.

Proof: Since G(s) ∼ (A,B,C, 0) then H(s) = sG(s)
admits a state-space realisation

H(s) ∼

[

A B
CA CB

]
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where C̃ = CA and D̃ = CB are defined for convenience.

Since H(s) is negative imaginary, Proposition 2 implies the

step response of H(s) is positive. With y(t) the output of

H(s) and u(t) the input, this positive step response implies

y(t) = C̃

∫ t

0

eAτBu(t− τ)dτ + D̃u(t) ≥ 0. (29)

By noting that u(t) = 1 ∀t ≥ 0, this becomes

y(t) = C̃

∫ t

0

eAτBdτ + D̃ ≥ 0. (30a)

Now, since d
dt

(

eAt
)

= A eAt, the above expression can be

simplified, viz,

y(t) = CA

∫ t

0

eAτBdτ + CB, (31a)

= C

∫ t

0

d

dτ

(

eAτ
)

Bdτ + CB, (31b)

= [CeAτB]t0 + CB, (31c)

= CeAtB ≥ 0. (31d)

This last expression is the impulse response of G(s)1.

To the authors’ knowledge this is the first result providing a

way to verify the time-domain property of external positivity

using the frequency domain property of negative imaginari-

ness.

C. Positive-realness and negative-imaginariness

The previous subsections have shown the general non-

equivalence between external positivity and either positive-

realness or negative-imaginariness. Here, it is shown that the

additional constraint of G being both negative-imaginary and

positive-real is also not equivalent to external positivity. The

consideration of this class of system was motivated from

the results of [24] which showed that if a system admits

a symmetric realisation, then its transfer function is both

negative-imaginary and positive-real. A simple characterisa-

tion of external positivity would then follow if one could go in

the reverse direction and show that all negative-imaginary and

positive-real transfer functions admit a symmetric realisation.

Unfortunately, this can be disproved by the counterexample

GSPR+NI(s) =
30

s+ 75
−

10

s+ 45
(32)

which is not externally positive. Finally, it is highlighted that

the main results of [24] can be derived immediately from the

equivalence between symmetric and relaxation systems [38].

IV. CONNECTION TO [17]

Finally, we identify a class of externally positive systems

(those with relative degree greater than two) which can satisfy

the conditions of this paper but fail those of [17, Theorem 1].

The recent result of [17, Theorem 1] provides a convenient

LMI-based method for determining externally positivity of

linear systems, with this theorem recalled here.

1This proof is more elegant than our first attempt and was suggested by
one of the anonymous reviewers.

Theorem 3 ( [17]): Given G(s) ∼ (A,B,C,D) with D ≥
0, assume there exists K = KT with inertia (n− 1, 0, 1) and

γ, τ ∈ R such that

ATK +KA+ 2γK ⪯ 0, (33a)

BTKB ≤ 0, (33b)

K + τCTC ≻ 0, (33c)

CB ≥ 0. (33d)

Then G(s) is externally positive.

However, these conditions fail to certify externally positive

G(s) with a relative degree 2 or greater. 3. To show this, it

is noted that if G(s) ∼ (A,B,C, 0) has relative degree 2 or

greater, then B (which is assumed to be full column rank to

avoid the trivial case when G(s) = 0) belongs to the null-

space of C, and hence CB = 0. Now, multiply the inequality

(33b) on the left by BT and on the right by B to give

BT (K + τCTC)B = BTKB + τBTCTCB = BTKB > 0.

This directly contradicts (33b) and hence Theorem 3 cannot

be applied if G(s) has relative degree greater than 1. It is then

possible to generate externally positive systems which fail the

conditions of Theorem 3, such as

G(s) =
1

(s+ a)2
and G(s) =

1

s
GNI(s), (34)

with GNI from (24). Externally positivity of these systems

can be verified from Proposition 1 and 3 respectively, yet since

both are relative degree 2, they fail Theorem 3. Since Theorem

3 is only applicable to systems with strictly positive impulse

responses, it can be argued that relative degree two systems are

not applicable to Theorem 3 – and there even exists numerical

solutions to work around this limitation [16]. Nevertheless, the

above analysis highlights how care has to be taken with a naive

application of Theorem 3.

CONCLUSIONS

Several characterisations of externally positive linear sys-

tems were introduced. Particular emphasis was placed on

realisation independent conditions defined by transfer function

parameters with a complete characterisation of externally pos-

itive second-order and a class of third-order underdamped sys-

tem developed. Criteria based around a negative-imaginariness

property were defined, with negative-imaginary systems also

shown to have a non-negative step response. Finally, counter-

examples for a recently proposed numerical external positivity

test were developed - systems of relative degree greater than

two fail this test. Future work will focus on incorporating

the external positivity conditions into convex Zames-Falb

multiplier searches.
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