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Abstract— In this letter, we study distributed optimization
and Nash equilibrium-seeking dynamics from a contraction
theoretic perspective. Our first result is a novel bound on the
logarithmic norm of saddle matrices. Second, for distributed
gradient flows based upon incidence and Laplacian constraints
over arbitrary topologies, we establish strong contractivity
over an appropriate invariant vector subspace. Third, we give
sufficient conditions for strong contractivity in pseudogradient
and best response games with complete information, show the
equivalence of these conditions, and consider the special case
of aggregative games.

I. INTRODUCTION

Problem Description and Motivation: The past decade has
witnessed rapid progress in distributed optimization prob-
lems, spurred on by the seminal paper [14]. This growing
body of literature is surveyed in [21]. A significant majority
of the literature shows the convergence of distributed opti-
mization algorithms to a fixed point. Beyond convergence,
practical implementations of these algorithms may require
robustness to noise, delays, and unmodeled dynamics, and
may involve time-varying parameters. No unifying frame-
work currently exists that achieves these favorable properties
in distributed optimization. Parallel to these developments,
game theory and its applications in multi-agent systems
have seen recent significant advancements [17] and there
continues to be great interest for a “unified mathematical
framework for learning a Nash equilibrium in games”. Re-
cently, game theoreticians have utilized passivity and its
derivatives to study the convergence of Nash equilibrium
(NE) seeking dynamics [8], [17].

In recent years, contraction theory [13] has emerged [3]
as a promising framework for a broad range of dynamical
systems, including both distributed optimization dynamics
and NE-seeking dynamics. Specifically, the strong contractiv-
ity property is known to guarantee exponential convergence,
robustness in time-varying optimization problems, periodic
entrainment, and robustness to noise [3, Section 3.4]. For
NE-seeking systems with time-invariant dynamics, strong
contractivity implies the existence and uniquness of a Nash
equilibrium, associated with two Lyapunov functions. In
time-varying systems, the error between the equilibrium tra-
jectory and the system trajectory is explicitly and uniformly
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upper bounded [6]. Finally, contracting systems support the
use of efficient numerical integration algorithms [10].

Strong infinitesimal contraction is a strict property. This
letter employs a relaxed version of contractivity called semi-
contractivity, whereby the system is proved to be strongly
contracting in a vector subspace of the system; see the recent
theoretical works [9], [7], [3], [20].

Related Work: Here, we study continuous-time dynamics
for distributed optimization problems. Such dynamics have
previously been discussed in [11], [5]. The distributed op-
timization problem may be recast as a linearly constrained
optimization problem, which in turn may be solved using
a primal-dual approach [1]. Previous work in establishing
the contraction of linearly constrained primal-dual setups in-
clude [18], [6], [15], but is limited to full row rank constraint
matrices. The exponential stability of such setups with rank-
deficient constraints is established in [16]. Here, we extend
these results to contractivity in the case of non-full rank
constraints. Our analysis requires tools from semicontraction
theory [9], [3], [7], [20].

An early influential reference on the application of con-
traction analysis to games is [12]. More recently, several
works invoke the use of passivity-based tools [17], [8] in
multi-agent game theoretic systems for seeking a Nash equi-
librium. With a fresh look at these dynamics, we approach it
using ideas from interconnections of contracting systems [3].

Contributions: Our main contributions in this paper are
threefold. (i) We start with a general result about the
lognorms of saddle matrices that appear while studying
continuous time primal-dual dynamics with a linear equality
constraint. Specifically, we show that these dynamics are
semicontracting in the presence of redundant constraints,
while also improving upon the best-known rate in [18]. The
use of redundant constraints allows the extension of contrac-
tion theory to distributed optimization. We also consider a
non-symmetric (1,1) block in the saddle matrix as this is
useful for developing Nash-seeking dynamics. (ii) Next, we
consider the applications of these contracting dynamics in
different optimization settings. We show that the Jacobian
matrices obtained by linearizing the linearly constrained
primal-dual flow and distributed optimization both form
a saddle matrix and thus have semicontracting dynamics.
We show the relationship of our contraction rate with net-
work synchronizability and study the effect of modeling
network constraints using Laplacian and incidence matrix-
based constraints. (iii) Finally, we explore Nash-seeking
dynamics in game theoretic setups. We identify equivalent
sufficient conditions for the contraction of best response and
pseudogradient dynamics. We also extend these results to
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aggregative games obtaining explicit conditions for relating
the Lipschitz constants and strong convexity parameter of
the cost functions to the contractivity of the system.

The paper is organized as follows, some preliminaries are
discussed in Section II. Then we study saddle matrices in
Section III. Next, we discuss the contractivity of primal-dual
dynamics and distributed optimization in Section IV and NE-
Seeking dynamics in Section V.

II. PRELIMINARIES

Notation : Given x ∈ Rn, we define [x] ∈ Rn×n to be a
diagonal matrix whose diagonal entries equal to x. We denote
a vector of ones by 1n ∈ Rn. For a matrix A ∈ Rn×n,
let α(A) denote its spectral abscissa. We denote the inner
product ⟨·, ·⟩ : Rn × Rn → R.

A. Semicontraction theory

Definition 1 (Seminorm): A function |||·||| : Rn → R is a
seminorm on Rn if , for all v, w ∈ Rn and a ∈ R:

(i) |||av||| = |a||||v|||.
(ii) |||v + w||| ≤ |||v|||+ |||w|||.

The kernel of a seminorm |||·||| is given by
K = {v ∈ Rn : |||v||| = 0}.

Definition 2 (Matrix induced Seminorm): Let |||·||| be a
seminorm on Rn. Then, the induced matrix seminorm as-
sociated with |||·||| is given by

|||A||| = max{|||Av||| | |||v||| = 1 and v ⊥ K}.

Definition 3 (Matrix log seminorm): Let |||·||| be a semi-
norm on Rn and its corresponding induced seminorm on
Rn×n. The log seminorm associated with |||·||| is defined by

µ|||·|||(A) = lim
h→0+

|||I + hA||| − 1

h
.

Definition 4 (Semicontracting and contracting systems): A
system ẋ = F (x) is said to be

(i) strongly infinitesimally semicontracting with respect to
a seminorm |||·||| with rate c ≥ 0 if

sup
x

µ|||·|||(DF (x)) ≤ −c. (1)

(ii) strongly infinitesimally contracting with respect to a
norm ∥ · ∥ with rate c ≥ 0 if (1) holds and |||·||| = ∥ · ∥.

In this paper, we will consider weighted Euclidean semi-
norm, i.e., seminorms of the form |||x||| = ∥Rx∥2, where R
is some matrix. We present an equivalent condition for the
semicontraction of a system in such norms presented in [9].

Lemma 5 (Demidovich Condition): Let |||·||| be a seminorm
associated with a log seminorm µ, R ∈ Rk×n, k ≤ n be a full
rank matrix, and P = R⊤R ∈ Rn×n. For each A ∈ Rn×n,
and c ∈ R and if ker(R) is invariant under A, then,

µ2,R(A) ≤ c ⇐⇒ PA+A⊤P ⪯ 2cP

We also consider the following result relating semicon-
tracting systems with an invariance property and contracting
systems from [7].

Lemma 6 (Semicontraction with invariance property):
Consider a system ẋ = f(x). Let K ⊂ Rn be such that K⊥

is an f−invariant subspace. Let f : Rn → Rn be strongly
infinitesimally semicontracting with rate c > 0 with respect
to a seminorm |||·||| on Rn with kernel K. Then, the system
admits the cascade decomposition,

ẋ∥ = f∥(x∥ + x⊥) (2a)
ẋ⊥ = f⊥(x⊥), (2b)

and the perpendicular dynamics (2b) are strongly infinites-
imally contracting on K⊥ with rate c, with respect to the
norm given by the domain restriction of |||·||| to K.

B. Network Interconnection Theorem

Theorem 7 (Network Contraction Theorem [3, Theorem
3.22]): Consider an interconnection of r dynamical systems,

ẋi = fi(t, xi, x−i) for i ∈ {1, 2, . . . , r}

where xi ∈ Rni and x−i ∈ Rn−ni . We let x−i denote the
vector with all components xj of x, except xi. We assume

(i) at fixed x−i and t, each map xi → fi(t, xi, x−i) is
strongly infinitesimally contracting with rate ci with
respect to ∥ · ∥i.

(ii) at fixed xi and t, each map x−i → fi(t, xi, x−i) is
Lipschitz with constant γij .

(iii) The gain matrix

Γ =

−c1 . . . γ1r
...

. . .
...

γr1 . . . −cr


is Hurwitz.

Then, for every ϵ ∈ ]0, α(Γ)[, there exists a norm such
that the interconnected system is strongly infinitesimally
contracting with a rate |α(Γ) + ϵ|.

III. LOGARITHMIC NORM OF SADDLE MATRICES WITH
REDUNDANT CONSTRAINTS, AND ASYMMETRY

We begin with a general result about Hurwitz saddle
matrices. We improve upon the bound for the contraction
rate presented in [6] using a similar proof technique, with
extensions to allow for redundant constraints by modifying
the weight matrix.

Theorem 8 (Semicontractivity of Saddle Matrices): Given
Q ∈ Rn×n, A ∈ Rm×n, and a parameter τ > 0, consider
the saddle matrix

S =

[
−Q −A⊤

τ−1A 0

]
∈ R(m+n)×(m+n).

(i) Let λmin(Q+Q⊤)/2 = qmin > 0 and Q⊤Q ⪯ qmax(Q+
Q⊤)/2, that is, qmax = σ2

max(Q)/qmin.
(ii) Let AA⊤ ⪰ aminΠA, with amin > 0, and AA⊤ ⪯

amaxIm, where the matrix ΠA ∈ Rm×m is the orthog-
onal projection onto the image of A, that is, in the
linear map interpretation, ΠA : Rm → img(A). Note
amin ≤ amax.



The following semicontractivity LMI holds:

S⊤P + PS ⪯ −2cP, (3)

where P ∈ R(n+m)×(n+m) is defined by

P =

[
In αA⊤

αA τΠA

]
⪰ 0 (4)

such that S ker(P ) ⊆ ker(P ), with

α =
1

2
min

{ 1

qmax
, τ

qmin

amax

}
, and c =

1

2
τ−1αamin.

Proof: The proof is deferred to the Appendix A.
Next, we discuss methods to sharpen the rate obtained.

First, we identify an α that achieves a better rate, in ex-
change for a more complicated expression. Notably, this rate
improves upon the previous rate by a factor of 4/3 when τ
is arbitrarily small, i.e. the dual dynamics are much faster
than the primal dynamics.

Theorem 9 (Semicontractivity of Saddle Matrices for small
τ ): Given Q ∈ Rn×n, A ∈ Rm×n, and a parameter τ > 0,
consider the saddle matrix

S =

[
−Q −A⊤

τ−1A 0

]
∈ R(m+n)×(m+n).

(i) Let λmin(Q+Q⊤)/2 = qmin > 0 and
Q⊤Q ⪯ qmax(Q+Q⊤)/2, that is,
qmax = σ2

max(Q)/qmin. Note qmin ≤ qmax.
(ii) Let AA⊤ ⪰ aminΠA, with amin > 0, and

AA⊤ ⪯ amaxIm, where the matrix ΠA ∈ Rm×m is the
orthogonal projection onto the image of A, that is, in
the linear map interpretation, ΠA : Rm → img(A). Note
amin ≤ amax.

Then, the following semicontractivity LMI holds:

S⊤P + PS ⪯ −2cP,

where P ∈ R(n+m)×(n+m) is defined by as per equation (4).
The rate c = 1

2τ
−1αamin, and

α = min

{
ϵ

qmax
,
2− ϵ

3
τ
qmin

amax

}
for 0 < ϵ < 2.

Proof: The proof follows similar to that of Theorem 8,
and the differences in proofs are discussed in Appendix B

Remark 10: In the case where τ → 0, we get an improved
rate of convergence c that approaches 1

3
amin
amax

qmin, for an
appropriately chosen ϵ.

Finally, we identify a sharper bound that depends on
a quadratic constraint, complicating the expression of the
bound even further.

Theorem 11 (Semicontractivity of Saddle Matrices with
a sharper rate): Given Q ∈ Rn×n, A ∈ Rm×n, and a
parameter τ > 0, consider the saddle matrix

S =

[
−Q −A⊤

τ−1A 0

]
∈ R(m+n)×(m+n).

(i) Let λmin(Q+Q⊤)/2 = qmin > 0 and
Q⊤Q ⪯ qmax(Q+Q⊤)/2, that is,
qmax = σ2

max(Q)/qmin. Note qmin ≤ qmax.

(ii) Let AA⊤ ⪰ aminΠA, with amin > 0, and
AA⊤ ⪯ amaxIm, where the matrix ΠA ∈ Rm×m is the
orthogonal projection onto the image of A, that is, in
the linear map interpretation, ΠA : Rm → img(A). Note
amin ≤ amax.

Then, the following semicontractivity LMI holds:

S⊤P + PS ⪯ −2cP,

where P ∈ R(n+m)×(n+m) is defined by as per equation (4).
The rate c = 1

2τ
−1αamin, and α depends on the roots of the

following quadratic equation,

2− α(qmax + 3τ−1 amax

qmin
) + τ−1α2amin = 0. (5)

This quadratic has two roots, β1 < β2, and
α = min

{
β1,

τqmin
amin

}
.

Proof: The proof follows similar to that of Theorem 8,
and the differences in proofs are discussed in Appendix C

Our rate improves upon the rate presented in [18]. In
order to work with a simple interpretable expression, our
analysis in the rest of the paper uses the result in Theorem 8.
Since our norm allows the use of redundant constraints, we
may consider problems with a consensus constraint over a
graph, such as distributed optimization problems. Further,
nonsymmetry of the (1, 1) block in the saddle matrix finds
applications in NE-seeking dynamics in games.

IV. CONTRACTIVITY IN OPTIMIZATION DYNAMICS

In this section, we study the implications of Theorem 8 on
constrained optimization problems. Specifically, we establish
contractivity for the linearly constrained primal-dual flow and
the distributed optimization problem. We prove contractivity
on a subspace which includes the primal space by proving
semicontractivity on the full space. Apart from guaranteeing
convergence, showing contractivity leads to useful properties,
such as robustness to noise, delays, and strong guarantees
over equilibrium tracking and periodic entrainment to time-
varying parameters [3, Section 3.4].

A. Standard Primal-Dual Dynamics

Consider the primal-dual flow for a linearly constrained
optimization problem [1],

ẋ = −∇f(x)−A⊤λ (6a)

τ λ̇ = Ax− b (6b)

This system, when linearized results in a saddle matrix,
therefore, we may use Theorem 8 in order to show that these
dynamics are semicontracting.

Lemma 12 (Semicontraction of primal-dual dynamics): If
the function f(x) is strongly convex with parameter µ and
Lipschitz with constant ℓ, and amin, amax respectively are the
smallest and largest nonzero eigenvalues of AA⊤, then the
dynamics (6) that solve the primal-dual optimization problem
in continuous time are semicontracting in the Euclidean norm
weighted by P , where P is defined in (4), with a rate

c =
1

4
min

{
amin

τℓ
,
amin

amax
µ

}
.



Proof: The Jacobian of the system is given by

S =

[
−∇2f(x) −A⊤

τ−1A 0

]
.

The Jacobian is in the form of a saddle matrix, and
µI ⪯ ∇2f(x) ⪯ ℓI . Using Theorem 8, we get the required
result.

B. Distributed Optimization Dynamics

In our distributed optimization setup, a team of agents
seeks to minimize a decomposable function of the form
f(x) =

∑N
i=1 fi(x), where fi : Rn → R, and the sum of all

cost functions is strongly convex. In this setup, each agent has
a local estimate x[i] ∈ Rn of the solution to the problem, and
agents exchange information over a network with a strongly
connected graph with a Laplacian L. This setup can be
represented as the following optimization problem.

min
x∈RnN

∑N

i=1
fi(x[i])

subject to (L⊗ In)x = 0

We observe that this is similar to a linearly constrained
convex optimization problem. Therefore, we may use a
primal-dual flow to solve this system. The corresponding
dynamics to solve this problem are of the form,

ẋ = −∇f(x)− (L⊗ In)
⊤λ (8a)

τ λ̇ = (L⊗ In)x (8b)

Note that these dynamics allow the graph to be directed.
However, to obtain an accurate minimizer for the cost
function, the graph must be strongly connected. We also
make the following assumption about the cost function.

Assumption 13:
∑N

i=1 fi(x[i]) is twice differentiable,
strongly convex with parameter µ and is Lipschitz in x with
parameter ℓ.

We may now study dynamics (8) using Theorem 8.
Theorem 14 (Distributed Optimization with Laplacian

Constraints): The continuous time dynamics (8) are semi-
contracting in a weighted L2 norm with weight

P =

[
I α(L⊗ In)

⊤

α(L⊗ In) τΠL⊗In

]
with a rate

c =
1

4
min

{λ2
2

τℓ
,
λ2
2

λ2
n

qmin

}
.

where λ2 and λn are the smallest and largest non-zero
eigenvalues of L respectively.

Proof: The linearized version of this system is[
˙δx
˙δλ

]
=

[
−∇2f(x) −(L⊗ In)

⊤

τ−1(L⊗ In) 0

] [
δx
δλ

]
We know that ∇2f(x) is strongly convex with parameter µ

and Lipschitz with parameter ℓ. Therefore, qmin = µ, qmax =
ℓ. Further, from the properties of the Kronecker product,

(L⊗ I)(L⊗ In)
⊤ = (L⊗ In)(L

⊤ ⊗ In) = LL⊤ ⊗ In

and LL⊤ ⊗ In has the same eigenvalues as the LL⊤, but
each with multiplicity n times the original multiplicity. The
result follows from an application of Theorem 8.

Alternatively, we may model the graph using the incidence
matrix B ∈ RN×M . Each column of the incidence matrix
B ∈ RN×M is associated with an edge in the original graph,
and each row is associated with a row in the original matrix.
The problem is now represented as,

min
x∈RnN

∑N

i=1
fi(x[i])

subject to (B⊤ ⊗ In)x = 0

The corresponding flow dynamics for this problem are,

ẋ = −∇f(x)− (B⊤ ⊗ In)
⊤λ (9a)

τ λ̇ = (B⊤ ⊗ In)x (9b)

Theorem 15 (Distributed Optimization with incidence ma-
trix constraints): The continuous time dynamics (9) are
semicontracting in a weighted L2 norm with weight

P =

[
I α(B⊤ ⊗ In)

⊤

α(B⊤ ⊗ In) τΠL⊗In

]
with a rate

c =
1

4
min

{λ2

τℓ
,
λ2

λn
qmin

}
.

where λ2 and λn are the smallest and largest non-zero
eigenvalues of L respectively.

Proof: The linearized version of this system is[
˙δx
˙δλ

]
=

[
−∇2f(x) −(B ⊗ In)

τ−1(B⊤ ⊗ I) 0

] [
δx
δλ

]
We know that ∇2f(x) is strongly convex with parameter µ

and Lipschitz with parameter ℓ. Therefore, qmin = µ, qmax =
ℓ. Further, from the properties of the Kronecker product,

(B⊤ ⊗ In)(B ⊗ In) = B⊤B ⊗ In

Now, we know that B⊤B and BB⊤ have the same nonzero
eigenvalues. Further, L = BB⊤. Therefore, B⊤B ⊗ In
has the same nonzero eigenvalues as the L, but each with
multiplicity n times the original multiplicity. The result
follows from an application of Theorem 8.

Remark 16: In both Theorem 14 and 15, the contraction
rate depends on λ2/λn. Notably, this parameter appears also
in the study of oscillator networks and their optimal synchro-
nizability [4] via the master stability function approach [2]. A
higher value for λ2/λn implies both better synchronizability
in oscillator networks as well as an improved estimate for
the contraction rate in distributed optimization.

C. Numerical Simulations

The lower bound we achieve for the convergence rate
using the incidence matrix is faster than the Laplacian
constraints, as λ2/λn < 1. To study this comparison further,
we considered a simple distributed optimization problem,
where each agent attempts to minimize a local function
qi(xi − vi)

2, for xi, vi, qi ∈ R, qi > 0, and vi and qi are
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Fig. 1. Plot comparing mean dominant eigenvalues of saddle matrices
from Laplacian and incidence matrix constraints in a distributed optimization
setup on Erdős-Rényi graphs with varying edge probabilities.

sampled from uniform distributions in [0, 10], and τ is chosen
sufficiently small. The underlying network is a symmetric
connected Erdős-Rényi graph with N = 40 nodes repre-
senting agents, with varying edge probability parameters.
We construct the saddle matrix of this graph using both
the incidence and Laplacian constraints and compute their
dominant eigenvalue. On considering 50 graphs for each
probability value, the average dominant eigenvalue and its
confidence bound are presented in Figure 1. The Laplacian-
based dynamics are faster than the incidence matrix-based
dynamics, which implies that the bounds we obtain for the
semi-lognorms are weak for this example system. There
appears to be an inherent tradeoff between the generality of
a bound and its tightness, as observed here, and it remains
an open problem to identify better bounds for specific cases.

V. CONTRACTIVITY IN NASH SEEKING DYNAMICS

In this section, we discuss the contractivity of NE-seeking
dynamics that are known to converge to a Nash equilibrium.
Contractivity in such systems can be used to prove the
robustness of such equilibrium points to delays and noise.

We consider a multiplayer continuous-time game among
N players with perfect information exchange. At each instant
of time, players pick an action xi ∈ Rn in order to minimize
a cost Ji : Rn × Rn(N−1) → R, which is a function of both
the player’s actions and the actions of other players. We
consider both pseudogradient and best response plays, and
use the network contraction theorem to find conditions where
they represent strongly infinitesimally contracting dynamics.

First, we consider the evolution of pseudogradient plays.
The pseudogradient dynamics are given by

ẋi = FPseudoG(x) = −∇xi
Ji(xi, x−i) (10)

where x−i represents the current actions of the other players
in the game.

Theorem 17 (Contraction of Pseudogradient Plays): Con-
sider a game with N agents, where each agent aims to
minimize a cost Ji : Rn × Rn(N−1) → R, following the
dynamics (10). Then, if Ji is

(i) µi strongly convex with respect to xi for each i,

(ii) Lipschitz with respect to xj for each j ̸= i with a
constant ℓij , and

(iii) the gain matrix for the system,

ΓPseudoG =

−µ1 . . . ℓ1r
...

. . .
...

ℓr1 . . . −µr

 is Hurwitz.

Then the system is infinitesimally contracting with respect
to some norm, with a rate |α(Γ) + ϵ|, for −α(Γ) > ϵ > 0.

Proof: The proof for this statement is a direct application
of the network contraction theorem.

Next, we consider the evolution of unconstrained best
response plays. We construct a best response cost function,
BRi : xi → argminxi

Ji(xi, x−i), which represents the
best response of player i with respect to the actions of other
players x−i. We represent the best response dynamics,

ẋ = FBR(x) = BR(x)−x ⇐⇒ ẋi = BRi(x−i)−xi (11)

Theorem 18 (Contraction of Best Response Plays): Con-
sider a game with N agents, where each agent aims to
minimize a cost Ji : Rn × Rn(N−1) → R, following the
dynamics (11). Then, if Ji is

(i) µi strongly convex with respect to xi for each i,
(ii) Lipschitz with respect to xj for each j ̸= i with a

constant ℓij , and

(iii) the gain matrix for FBR, ΓBR =

−1 . . . ℓ1r
µ1

...
. . .

...
ℓr1
µn

. . . −1

 is

Hurwitz.
Then the system is infinitesimally contracting with respect
to some norm, with a rate |α(Γ) + ϵ|, for −α(Γ) > ϵ > 0.

Proof: The gain matrix may be computed using the
results in [6, Lemma 1], and [3, Equation (3.39)]. On using
the network contraction theorem for this system, we get our
required results.

Next, we show a result about the equivalences of the
sufficient conditions for contraction in pseudogradient and
best response plays.

Theorem 19 (Best Response-Pseudogradient Equivalence):
If each Ji is

(i) µi strongly convex with respect to xi for each i,
(ii) Lipschitz with respect to xj for each j ̸= i with a

constant ℓij
The following statements are equivalent

(i) The gain matrix for FPseudoG, ΓPseudoG is Hurwitz.
(ii) The gain matrix for FBR, ΓBR is Hurwitz.

(iii) The discrete-time FBR gain matrix

ΓBR,d =

 0 . . . ℓ1r
µ1

...
. . .

...
ℓr1
µn

. . . 0

 is Schur.

Proof: First, we note that ΓPseudoG = [µ]ΓBR, where µ =
[µ1, µ2, · · · , µr]

⊤ ∈ Rn. Next, we prove (i) =⇒ (ii). Since
ΓPseudoG is Metzler and Hurwitz, ΓPseudoG is Lyapunov diag-
onally stable, i.e. there exists a diagonal matrix [p] such that
Γ⊤

PseudoG[p]+ [p]ΓPseudoG ⪯ 0. Using the relationship between



ΓPseudoG and ΓBR, we note that ΓBR is Lyapunov diagonally
stable with weight [p][µ]. Therefore, ΓBR is Hurwitz. We may
use a similar argument to show that (ii) =⇒ (i).

Next, to show that (ii) ⇐⇒ (iii), we note that ΓBR =
−I + ΓBR,d, and ΓBR,d is a non-negative matrix. We know
that ΓBR is Hurwitz iff α(ΓBR) < 0. Further, since ΓBR,d is
non-negative, due to the Perron-Frobenius Theorem, we have
α(ΓBR) < 0 iff ρ(ΓBR,d) < 1.

Next, we discuss the contractivity of aggregative games.
Theorem 20 (Aggregative games): For a pseudogradient

play, If Ji(xi, x−i) is of the form fi(xi,
1
n

∑n
j=1 xj), and

for each agent i, if

(i) fi is µi-strongly convex with respect to its first argument
(ii) fi is Lipschitz in its second argument with constant ℓi,

(iii) µi > ℓi.

Then, the gain matrix of the system is Hurwitz, and the
system is contracting.

Proof: First, we claim that the Lipschitz constant for in
xj for j ̸= i is ℓi/n. This follows from the fact that the
second argument of fi varies linearly with constant 1

n in
xj , and our assumption regarding the Lipschitz constant of
fi. Further, since xi appears both in the first and second
argument, we may claim that

⟨xi − yi,∇f(xi,
xi

n
+

1

n

∑
j ̸=i

xj)−∇fi(yi, yi +
1

n

∑
j ̸=i

xj)⟩

≤ −µi∥xi − yi∥2 +
ℓi
n
∥xi − yi∥2.

Now, we may construct the gain matrix of an aggregative
game, ΓAgg ∈ Rn×n,

(ΓAgg)ij =

{
−µi + ℓi/n i = j,

ℓi/n i ̸= j

Since µi > ℓi, ΓAgg1n < 0, in an elementwise manner.
Using properties of Metzler matrices [3, Theorem 2.7], ΓAgg
is Hurwitz, and the system is contracting by Theorem 17.

VI. CONCLUSION

In this work, we propose the use of contraction theory
as a framework to analyze game theoretic and distributed
optimization dynamics. We identify a general result for
saddle matrices and use it to show contraction in distributed
optimization dynamics. Our numerical results suggest that
our estimate for the contraction rate is not sharp. Next,
we use the network interconnection theorem 7 to show
contractivity in some basic game setups. We believe that this
work opens up new avenues to explore in both distributed
optimization and game theory. In distributed optimization,
we plan to study other distributed optimization flows [21].
In game theory, we wish to study setups with partial infor-
mation and fictitious play [19]. We also intend to relax our
assumption on strong convexity in future work.

APPENDIX

A. Proof of Theorem 8

We begin by using the Schur Complement to show that
P ⪰ 0. Clearly the (1, 1) block is positive definite. Therefore,

P ⪰ 0 ⇐⇒ τΠA − α2AA⊤ ≻ 0

⇐⇒ τ − α2amax > 0 ⇐⇒ α2 < τ/amax.

The inequality α2 < τ/amax follows from the stronger
inequality (2α)2 < τ/amax with the following argument:

(2α)2 ≤ min
{ 1

qmax
, τ

qmin

amax

}
·max

{ 1

qmax
, τ

qmin

amax

}
=

qmin

qmax
· τ

amax
≤ τ

amax
.

Finally, we need to show that S ker(P ) ⊆ ker(P ).
Let [x⊤ y⊤]⊤ ∈ ker(P ). Then x = −αA⊤y and
y ∈ ker(−αAA⊤ + τΠA). Note that ΠA has the same
kernel as AA⊤. Therefore, y ∈ ker(AA⊤) = ker(A⊤).
Next, to show the invariance of the norm with respect to
the dynamics as per Lemma 6,

S
[
x
y

]
=

[
−A⊤y

0

]
= 0 ∈ ker(P ).

Next, we aim to show the LMI (3). After some bookkeep-
ing, we compute Q = −S⊤P − PS − 2cP , and using the
fact that ΠAA = A,

Q =[
Q+Q⊤ − 2τ−1αA⊤A− 2cIn αQ⊤A⊤ − 2cαA⊤

αAQ− 2cαA 2αAA⊤ − 2cτΠA

]
.

The (2,2) block satisfies the lower bound

2αAA⊤ − 2cτΠA = 2
(
1
2αAA⊤ − cτΠA

)
+ αAA⊤

⪰ 2
(
1
2αamin − cτ

)
ΠA + αAA⊤

= αAA⊤ ≻ 0.

Given this lower bound, we can factorize the resulting matrix

as follows, setting A =

[
In 0
0 A

]
,

Q ⪰

A
[
Q+Q⊤ − 2(τ−1αA⊤A+ cIn) αQ⊤ − 2cαIn

αQ− 2cαIn αIn

]
A⊤.

Since αIn ≻ 0, it now suffices to show that the Schur
complement of the (2,2) block of n × n matrix is positive
semidefinite. A sufficient condition for the positive semidef-
initeness of the Schur complement of the (2, 2) block is,

Q+Q⊤ − αQ⊤Q ⪰ 2(τ−1αA⊤A+ cIn) (12)

and 2αc(Q+Q⊤) ⪰ 4αc2In. (13)

To prove (12), we upper bound the right-hand side as follows:

2(τ−1αA⊤A+ cIn) ⪯ 2(τ−1αamax + c)In

= τ−1α(2amax + amin)In

⪯ 1

2

qmin

amax
(2amax + amin)In ⪯ 3

2
qminIn.



where the second equality follows from the definition of c
and the last inequality follows as α ≤ 1

2τqmin/amax. Next,
since α ≤ 1

2qmax
, we know −αqmax ≥ − 1

2 . We then lower
bound the left hand side of (12) as follows:

Q+Q⊤ − αQ⊤Q ⪰ Q+Q⊤ − αqmax(Q+Q⊤)/2

⪰ (2− 1

2
)
1

2
(Q+Q⊤) ⪰ 3

2
qminIn.

Finally, it remains to prove (13) that is,
2αc(Q+Q⊤) ⪰ 4αc2In. This inequality is equivalent
to Q + Q⊤ ⪰ 2cIn and follows from noting
c ≤ 1

2
amin
amax

qmin < qmin.

B. Proof of Theorem 9

The proof is similar to the previous Theorem 8, with one
key difference. The proof that α2 < τ/amax is modified as
follows,

α2 ≤

min
{ ϵ

qmax
, τ

(2− ϵ)qmin

3amax

}
·max

{ ϵ

qmax
, τ

(2− ϵ)qmin

3amax

}
=

qmin

qmax
· τ

amax
· ϵ(2− ϵ)

3
≤ τ

3amax
,

which is true since ϵ(2 − ϵ) ≤ 1 for ϵ ∈ (0, 2). The rest
of the proof follows similar to the original proof with some
algebraic differences.

C. Proof of Theorem 11

The proof is very similar to the proof of Theorem 8
with the following differences. First, we identify a tighter
sufficient condition than the one presented in (12) and (13).

(1 + αc)(Q+Q⊤)− αQ⊤Q ⪰ 2(τ−1αA⊤A+ cIn)
(14)

and αc(Q+Q⊤) ⪰ 4αc2In. (15)

The inequality (15), αc(Q+Q⊤) ⪰ 4αc2In is equivalent to
Q + Q⊤ ⪰ 2cIn and follows from noting that c ≤ 1

2qmin,
since we assume α ≤ τqmin/amin. On simplifying (14)
using similar arguments to the previous proof, we obtain the
following condition on α,

(2− αqmax + τ−1α2amin)qmin ≥ 3τ−1αamax. (16)

Next, we note that

2− α(qmax + 3τ−1 amax

qmin
) + τ−1α2amin < 0

for α =
√

τ
amax

. This is because the inequality simplifies to

qmax

√
τ

amax
+

√
amax

τ

3

qmin
> 2 +

amin

amax

Now, through an AM-GM inequality, the LHS is lower
bounded by 2

√
3 qmax
qmin

≥ 2
√
3, and the RHS is upper bounded

by 3. Since 2
√
3 > 3, the quadratic equation is guaranteed to

have a root. Since α ≤ β1 <
√

τ
amax

, the quadratic constraint
is guaranteed to hold, along with a guarantee of the positive
definiteness of P .
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