
Spectral Koopman Method for Identifying Stability Boundary

Bhagyashree Umathe, and Umesh Vaidya

Abstract— The paper is about characterizing the stability
boundary of an autonomous dynamical system using the Koop-
man spectrum. For a dynamical system with an asymptotically
stable equilibrium point, the domain of attraction constitutes
a region consisting of all initial conditions attracted to the
equilibrium point. The stability boundary is a separatrix region
that separates the domain of attraction from the rest of the state
space. For a large class of dynamical systems, this stability
boundary consists of the union of stable manifolds of all
the unstable equilibrium points on the stability boundary.
We characterize the stable manifold in terms of the zero-
level curve of the Koopman eigenfunction. A path-integral
formula is proposed to compute the Koopman eigenfunction
for a saddle-type equilibrium point on the stability boundary.
The algorithm for identifying stability boundary based on the
Koopman eigenfunction is attractive as it does not involve
explicit knowledge of system dynamics. We present simulation
results to verify the main results of the paper.

I. INTRODUCTION

Characterizing stability and identifying stability boundary
of nonlinear dynamical systems is of interest to various
problems in engineering and science. Examples include
biological systems, biomedicine, robotics, power systems,
power electronics, and economics. Given the significance of
the problem, there is a long history and a considerable body
of literature on the stability theory of systems. Methods for
characterizing stability and stability boundary of equilibrium
dynamics can be broadly classified into two different classes:
Lyapunov and non-Lyapunov-based methods [1].

The Lyapunov-based methods rely on constructing the
Lyapunov or energy function for stability verification and
providing an estimate for the stability boundary in the form
of a domain of attraction. Roughly speaking, the domain
of attraction is a set of all initial conditions attracted to
equilibrium dynamics asymptotically [2]. One of the main
challenges with the Lyapunov-based methods is that there are
no systematic methods to construct these functions, and the
stability boundary estimates provided are often conservative.
More recent work along these lines includes the develop-
ment of the maximal Lyapunov function, optimal estimation
of stability region based on a given Lyapunov function,
Linear Matrix Inequality, and Sum of Squares-based opti-
mization methods for constructing Lyapunov functions [3].
These optimization-based methods suffer from the curse of
dimensionality and entail high computational efforts with
the increase in the dimension of the state space. With the
recent advances in computing and neural networks, there are
also efforts to provide approaches based on Deep Neural
Networks for constructing Lyapunov function [4].

The non-Lyapunov-based approach for stability charac-
terization relies on exploiting the geometrical structure in

the form of stable and unstable manifolds of the dynamical
system for identifying stability boundary. In particular, for a
large class of dynamical systems, the stability boundary can
be characterized using the stable manifold of an unstable
equilibrium point on the stability boundary [5].

More recently, linear operator theoretic methods involv-
ing Perron-Frobenius and Koopman operators have become
popular for analyzing and synthesizing nonlinear dynamical
systems [6]–[10]. In [11], authors have proposed uncertainty
propagation using Koopman spectrum-based reachability
analysis. These operators’ linearity and spectral properties
are used to construct stability certificates in the form of
Lyapunov functions and Lyapunov measures. Data-driven
approaches are proposed for constructing the Lyapunov
function using the Koopman operator. In this paper, we
exploit the spectral properties of the Koopman operator to
discover a non-Lyapunov-based approach for characterizing
the stability boundary. This is made possible by using the
fact that the spectral properties of the Koopman operator
have an intimate connection with the state space geometry
of the dynamical systems. In particular, a dynamical system’s
stable and unstable manifolds can be obtained as a zero-level
curve of the eigenfunctions of the Koopman operator. We
exploit this insight towards the development of systematic
methods for the identification of stability boundary. There
are some distinct advantages of using the Koopman spectrum
to develop a non-Lyapunov approach for identifying stability
boundary. We will highlight these advantages as part of the
main contributions of this paper.

The main contributions of this paper are as follows. We
characterize the stability boundary in terms of the principal
eigenfunction of the Koopman operator. In particular, the
stability boundary is characterized by the zero-level curve of
the eigenfunction corresponding to a positive eigenvalue. A
path-integral formula is provided to compute the Koopman
principal eigenfunction corresponding to the positive eigen-
value associated with a saddle-type unstable equilibrium
point on the stability boundary. The path-integral formula
is used to compute the value of eigenfunction at a few
sample data points in the state space. We present conver-
gence analysis results for the approximation of the Koopman
eigenfunction based on the value of the eigenfunction at
a few sample data points. One of the main advantages of
the proposed Koopman-based approach for characterizing
stability boundary compared to using the Koopman operator
for the computation of the Lyapunov function for stability
assessment is that we are only required to compute one
eigenfunction. This contrasts the computation of all the
dominant eigenfunctions used to construct the Lyapunov
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function. This is because the stability boundary forms a
manifold of co-dimension one, characterized as a zero-level
curve of one eigenfunction. Another advantage unique to our
proposed computational approach is that we can compute
the Koopman eigenfunction directly from the data instead
of obtaining it from the approximation of the Koopman
operator. This is a tremendous computational advantage for
systems with large dimension.

II. PRELIMINARIES AND NOTATIONS

Notations: Rn denotes the n dimensional Euclidean space.
We denote L∞(X), C1(X) as the space of all essentially
bounded real-valued functions and continuously differen-
tiable functions on X ⊆ Rn respectively. Here, st(x) is the
flow of ẋ = f(x), at time t with initial condition x.

In this paper, we are interested in characterizing the
stability boundary using the Koopman eigenfunctions for an
autonomous dynamical system of the form.

ẋ = f(x), x ∈ X ⊆ Rn (1)

where, X is assumed to a smooth manifold without boundary
or an open subset of Rn. It is assumed that the vector field is
smooth enough to ensure the existence and uniqueness of the
solution of the differential equation. We say an equilibrium
point x⋆ is hyperbolic if, A := ∂f

∂x (x
⋆) has no eigenvalues

on the jω axis. The following assumption is made on the
vector field (1) in the rest of the paper.

Assumption 1: We assume that in system (1), f(x) is
atleast C1 function of x with an asymptotically stable equi-
librium point at xs, and all the other equilibrium points
hyperbolic.

A. Characterization of the Stability Boundary
We start with definitions related to the stability analysis.
Definition 1 (Stability Region and Boundary): For the

system (1), with the flow st(x), let xs be an asymptotically
stable equilibrium point. We define the region A(xs) as
the stability region or the region of attraction of the stable
equilibrium point xs as

A(xs) :=
{
x ∈ Rn : lim

t→∞
st(x) = xs

}
. (2)

The boundary of A(xs) is called the stability boundary
∂A(xs), which is a separatrix of xs.

Definition 2: [Local Stable and Local Unstable Manifold]
We consider x⋆ as a hyperbolic equilibrium point, and D ⊂
Rn is a neighborhood of x⋆. If the flow of (1) is st(x) then
the local stable manifold of x⋆ is given by:

W s
l (x

⋆) := {x ∈ D : st(x) → x⋆ as t→ ∞} (3)

Similarly, the local unstable manifold is given by:

Wu
l (x

⋆) := {x ∈ D : st(x) → x⋆ as t→ −∞} (4)
Definition 3: [Stable and Unstable Manifold] The stable

manifold W s(x⋆) and Unstable manifold Wu(x⋆) are de-
rived by the local manifolds with the flow st(x) in backward
and forward in time respectively, as:

W s(x⋆) :=
⋃
t≤0

st (W
s
l (x

⋆)) , Wu(x⋆) :=
⋃
t≥0

st (W
u
l (x

⋆)) .

For the characterization of the stability boundary, the
following assumptions are made on the vector field (1).

Assumption 2: A1. All the equilibrium points on the
stability boundary are hyperbolic.

A2. The stable and unstable manifolds of the equilibrium
points on the stability boundary satisfy the transversal-
ity assumption (The intersection of two manifolds at
point x is said to be transversal if the tangent space of
the two manifolds at point x span the entire space).

A3. Every trajectory on the stability boundary approaches
one of the equilibrium points at t→ ∞.

The following theorem from [1, Theorem 4.8] characterizes
the stability boundary under the above assumption.

Theorem 1: For the nonlinear dynamical system (1), sat-
isfying Assumptions 1 and 2, let xi, i = 1, . . . N be the
equilibrium points on the stability boundary ∂A(xs) of the
stable equilibrium point xs. Then

a) xi ∈ ∂A(xs) if and only if Wu(xi) ∩ ∂A(xs) ̸= ∅.
b) ∂A(xs) = ∪iW

s(xi).
Assumptions A1 and A2 are generic. Roughly speaking, we
say a property is generic for a class of systems if that prop-
erty is true for almost all systems in the class. Assumption
A3 is not a generic property; thus, it needs to be verified.
The existence of the Lyapunov function provides a sufficient
condition for the Assumption A3 to hold. In this paper, we
pursue a more direct approach for computing the stability
boundary for the class of system satisfying Assumption 2.
The proposed approach relies on directly computing the
stability boundary based on constructing stable manifolds of
the equilibrium points on the stability boundary. So, we study
the class of system for which the Lyapunov-based approach
is used to determine the domain of attraction as the existence
of the Lyapunov function is sufficient for the Assumption 2
to be satisfied.

Definition 4: An equilibrium is said to be type-one if
exactly one eigenvalue of the linearization of the system at
that equilibrium point has positive real part and called source
if all the eigenvalues have positive real part.
The following theorem from [1, Theorem 4.10] characterizes
the structure of the equilibrium on the stability boundary.

Theorem 2: For the nonlinear dynamical system (1) con-
taining two or more stable equilibrium points, if the system
satisfies Assumption 2, then the stability boundary ∂A(xs) of
the stable equilibrium point xs must contain at least one type-
one equilibrium point. If, furthermore, the stability region
A(xs) is bounded, then ∂A(xs) must contain at least one
type-one equilibrium point and one source.

B. Koopman Operator and its Spectrum

In this section, we provide a brief overview of existing
results on the spectral theory of the Koopman operator. For
more details on this topic, refer to [12, Chapter 7].

Definition 5 (Koopman Operator): Ut : L∞(X) →
L∞(X) for dynamical system (1) is defined as

[Utψ](x) = ψ(st(x)), ψ(x) ∈ L∞(X). (5)



The infinitesimal generator for the Koopman operator is

lim
t→0

(Ut − I)ψ

t
=
∂ψ

∂x
f(x) =: Kfψ, t ≥ 0. (6)

Definition 6: [Eigenvalues and Eigenfunctions of Koop-
man] A function ϕλ(x) ∈ C1(X) is said to be eigenfunction
of the Koopman operator associated with eigenvalue λ if

[Utϕλ](x) = eλtϕλ(x). (7)

Using the Koopman generator, (7) can be written as

∂ϕλ
∂x

f(x) = λϕλ(x). (8)

where ∂ϕλ

∂x = (∂ϕλ

∂x1
, . . . , ∂ϕλ

∂xn
) is a row vector. The spec-

trum of the Koopman operator, in general, is very complex
and could consist of discrete and continuous parts. In this
paper, we are interested in approximating the eigenfunctions
of the Koopman operator with associated eigenvalues, same
as that of the linearization of the nonlinear system at the
equilibrium point. With the hyperbolicity assumption on the
equilibrium point of (1), this part of the spectrum of interest
is known to be discrete and well-defined.

In the following, we briefly summarize the results from
[13]. Equations (7) and (8) provide a general definition of the
Koopman spectrum. However, the spectrum can be defined
over finite time or a subset of the state space.

Definition 7 (Open Eigenfunction [13]): Let ϕλ : C →
C, where C ⊂ X is not an invariant set. Let x ∈ C, and
τ ∈ (τ−(x), τ+(x)) = Ix, a connected open interval such
that τ(x) ∈ C for all τ ∈ Ix. If

[Uτϕλ](x) = ϕλ(sτ (x)) = eλτϕλ(x), ∀τ ∈ Ix,

then ϕλ(x) is called the open eigenfunction of the Koopman
operator family Ut, for t ∈ R with eigenvalue λ.
Based on the above definition, next, we define the concepts
of subdomain eigenfunction, principal eigenfunctions, and
Koopman spectrum. If C is a proper invariant subset of X,
in which case Ix = R for every x ∈ C, then ϕλ is called
the subdomain eigenfunction. If C = X then ϕλ will be the
ordinary eigenfunction associated with eigenvalue λ as de-
fined in (7). The open eigenfunctions, as defined above, can
be extended from C to a larger reachable set when C is open
based on the construction procedure outlined in [Definition
5.2, Lemma 5.1 [13]]. Let P be that domain. The eigenvalues
of the linearization of the system dynamics at the origin,
i.e., A, will form the eigenvalues of the Koopman operator
[13, Proposition 5.8]. Our interest will be in constructing
the corresponding eigenfunctions defined over the domain P .
We will call these as principal eigenfunctions. The principal
eigenfunctions will be defined over a proper subset P of the
state space X (called subdomain eigenfunctions) or over the
entire X [13, Lemma 5.1, Corollary 5.1, 5.2, and 5.8].

The spectrum of the Koopman operator reveals important
information about the state space geometry of the dynamical
system [13], [14]. In particular, we have the following results.

Corollary 1: [13, Corollary 5.10] Let x⋆ be the hyper-
bolic equilibrium point of the system (1) with λ1, . . . , λp
the eigenvalues of the linearization of system (1) at x⋆. Let

λ1, . . . , λu be eigenvalues with positive real part with asso-
ciated open eigenfunctions ϕλ1 , . . . , ϕλu and λu+1, . . . , λp
be eigenvalues with negative real part with associated open
eigenfunctions ϕλu+1

, . . . , ϕλp
defined over the set P . Then,

the joint level set of the eigenfunctions

W s
P = {x ∈ X : ϕλ1

(x) = . . . = ϕλu
(x) = 0}, (9)

forms the stable manifold on P and the joint level set of the
eigenfunctions

Wu
P = {x ∈ X : ϕλu+1

(x) = . . . = ϕλp
(x) = 0}, (10)

is the unstable manifold on P of origin equilibrium point.
The following remark on the eigenfunctions of the Koop-

man operator and stable, unstable subspaces corresponding
to a linear system is easy to prove.

Remark 1: The Koopman eigenfunctions corresponding to
the eigenvalue λj of the linear dynamics, ẋ = Ax, are given
by ϕλj (x) = v⊤

j x, where v⊤
j is left eigenvector of A with

eigenvalue λj i.e., v⊤
j A = λjv

⊤
j .

III. STABILITY BOUNDARY COMPUTATION USING
KOOPMAN SPECTRUM

This section presents the main results on the computation
of stability boundary using the Koopman spectrum.

Theorem 3: Consider the dynamical system (1) satisfying
Assumption 2. Let xi for i = 1, . . . , N be the type-one
equilibrium point on the stability boundary of the stable equi-
librium point xs. Let ϕiu(x) be the principal eigenfunctions
corresponding to the positive eigenvalues of the linearization
Ai := ∂f

∂x (xi) with positive real part and defined in the
domain P . Then, the stability boundary can be characterized
in P using the Koopman eigenfunction as the joint zero-level
set as follows

Sb :=

N⋃
i=1

{x : ϕiu(x) = 0} (11)

Proof: The proof follows by applying results of Theo-
rem 1, where it is shown that the stability boundary is formed
as the union of stable manifold of unstable equilibrium points
on the boundary i.e., ∂A(xs) = ∪N

i=1W
s(xi). From results

of Corollary 1, we know that stable manifold restricted to P
is given by W s

P(xi) = {x : ϕiu(x) = 0}. The desired result
is then followed by combining these two results.
The above theorem provides the characterization of stability
boundary in terms of Koopman eigenfunction. However,
computing the Koopman eigenfunction is a challenge. We
now present our main results for the computation of the
Koopman eigenfunction corresponding to the eigenvalue with
a positive real part. With no loss of generality, we will
assume that the unstable equilibrium point on the stability
boundary is at the origin. Since the equilibrium point is
hyperbolic (Assumption 1 and 2), the system (1) admits the
following decomposition into linear and nonlinear parts.

ẋ = f(x) = Ax+ Fn(x) (12)

where A := ∂f
∂x (0) and Fn(x) := f(x) − Ax. Our goal is

approximate the eigenfunction corresponding to eigenvalue



λ of A with Re(λ) > 0. Similar to the decomposition of the
system dynamics, the principal eigenfunction also admits a
decomposition into linear and nonlinear parts. Let ϕλ(x) be
the principal eigenfunction for eigenvalue λ, we have

ϕλ(x) = w⊤
λ x+ hλ(x). (13)

where w⊤
λ x is the linear part and hλ(x) is the nonlinear

part. Substituting the above expression of eigenfunction in
(8) and using (12), we obtain w⊤

λ A = λw⊤
λ i.e., w is the

left eigenvector of A with eigenvalue λ. We also obtain the
linear partial differential equation to be satisfied by h(x) as,

∂hλ
∂x

f(x)− λhλ(x) +w⊤Fn(x) = 0 (14)

In [15], we provided a path-integral formula for the compu-
tation of hλ(x) and hence the Koopman eigenfunction. The
results in [15] were developed to approximate eigenfunction,
assuming the system has a stable equilibrium point. The
results from [15] do not apply to our case, as we are dealing
with the unstable or saddle-type equilibrium point on the
stability boundary. We start with the following results on the
general solution formula for the linear PDE (14).

Theorem 4: The solution formula for the first order linear
PDE (14) can be written as

hλ(x) = e−λthλ(st(x)) +

∫ t

0

e−λtw⊤
λ Fn(sτ (x))dτ (15)

Proof: The PDE (14) can be written as

dhλ(st(x))

dt
− λhλ(st(x)) +w⊤

λ Fn(st(x)) = 0. (16)

Multiplying throughout by e−λt, we obtain d(e−λthλ(st(x)))
dt +

e−λtw⊤
λ fn(st(x)) = 0. Next, by integrating the above from

0 to t, we obtain the desired result.

Before proving the main results we have following remark.
Remark 2: We are not interested in computing the eigen-

function per se but the zero-level curve of the eigenfunction
characterizing the stability boundary. Hence, our interest
will be in approximating the Koopman eigenfunction in
the region containing the stable manifold. Following the
Definitions 2 and 3 of local and global stable manifolds,
we notice that the region containing the stable manifold can
be obtained by backward propagating a small set around the
origin containing the local stable manifold. This observation
is crucial to approximate eigenfunction, as the following
theorem proves.

Theorem 5: Let hλ(x) be continuous function of x and U
be the set such that for any point x ∈ U there exists a time
t(x) for which st(x) ∈ Uϵ, the ϵ neighborhood of the origin
equilibrium point. Let hλ(x) be the value of eigenfunction
at point x ∈ U , then∣∣∣∣∣hλ(x)−

∫ t(x)

0

e−λτw⊤
λ Fn(st(x))dτ

∣∣∣∣∣ ≤ δ(ϵ) (17)

for some δ(ϵ) > 0 and all x ∈ U .

Proof: Using result of Theorem 4, we know hλ(x)
satisfies (15). Consider any point x ∈ U , and let y =
st(x)(x) ∈ Uϵ. Subsuiting y = st(x)(x) in (15), we obtain

hλ(x)−
∫ t(x)

0

e−λτw⊤
λ Fn(sτ (x))dτ = e−λt(x)hλ(y)

Since λ > 0, we have∣∣∣∣∣hλ(x)−
∫ t(x)

0

e−λτw⊤
λ Fn(sτ (x))dτ

∣∣∣∣∣ ≤ |hλ(y)|

The proof then follows by using the contuinity property of
hλ(x) as ∥y∥ ≤ ϵ.
Using the results of the above theorem, we can approximate
the eigenfunction for any point x ∈ U containing the stable
manifold as

ϕ̂λ(x) = w⊤
λ x+

∫ t(x)

0

e−λτw⊤
λ Fn(sτ (x))dτ. (18)

A. Computational Framework for Stable Manifold

We first outline the algorithm to compute a stable
manifold of the unstable equilibrium point and then use
these steps to obtain the simulation results.

Algorithm to determine stability boundary
1) Find all the equilibrium points and determine the equilib-
rium points, x⋆

i , that are unstable on the stability boundary.
2) Let Ai =

∂f
∂x (x

⋆
i ) and wλ be the left eigenvector corre-

sponding to the eigenvalue λ with Re(λ) > 0. Construct,

U0 = {x ∈ X : x⊤Px ≤ ϵ1}

for some positive matrix P whose n−1 eigenvectors span the
subspace {x : w⊤

λ x = 0}. We will comment on the choice
of ϵ1 and other parameters used in the algorithm later.
3) Propagate the set U0 backward in time under the flow
s−t(x) over time interval [0, T ] i.e.,

U =

T⋃
t=0

s−t(U0)

4) Let {xk}Lk=1 be the sample data points uniformly
distributed in the set U . Use the path integral formula (18)
to compute the value of the eigenfunction corresponding to
λ at these points.
5) Let Ψ(x) = (ψ1(x), . . . , ψN (x))⊤ be the finite choice of
basis functions used for the approximation of eigenfunction
in the domain U . Formulate the following least square
optimization problem to determine the approximation of the
eigenfunction in domain U .

min
u∈RN

∥Gu− c∥ (19)

c = (ϕ̂λ(x1), . . . , ϕ̂λ(xL))
⊤, G = (Ψ(x1), . . . ,Ψ(xL))

⊤.

The finite-dimensional approximation of the eigenfunction in
the domain U is given by

ϕ̃λ(x) = Ψ(x)⊤u⋆, u⋆ = G†c (20)



6) The approximation of the stability boundary can then be
identified as the zero-level curve of ϕ̂λ(x). In particular, we
can determine the approximate stability boundary as Ŝb =
{x : |ϕ̃λ(x)| ≤ γ} for some small γ > 0.

Remark 3: The choice of ϵ1 will depend upon the total
time used for simulation in backward time and the stable
eigenvalue with the smallest real part, λ̄. The ϵ1 neigh-
borhood around the unstable equilibrium point will roughly
grow in size as e−λ̄T ϵ1. The choice of ϵ1 and T are connected
to cover the stable manifold. The choice of γ depends on how
coarsely we can resolve zero. With the value of eigenfunction
computed at different points in the state space, the γ will
be determined based on the smallest positive and largest
negative value of the eigenfunctions at the sampled data.

We provide results on the convergence analysis for the
finite-dimensional approximation of the stable manifold. We
start with the following assumption on the basis functions.

Assumption 3: We assume that the basis function, Ψ(x) =
(ψ1(x), . . . , ψN (x))⊤, satisfies µ independence property,

µ{x ∈ Rn : c⊤Ψ(x) = 0} = 0, (21)

for all non-zero c ∈ RN . The measure µ is assumed to be
equivalent to Lebesgue measure, m, on X i.e., µ(A) = 0 if
and only if m(A) = 0 for any measurable set A ⊂ X. The
initial conditions {xℓ}Lℓ=1 are assumed to be independent
identically distributed (i.i.d) sampled from µ.
Under Assumption 3, it can be shown that the ma-
trix G in Eq. (19) is invertible. However, due to space
constraints we have to omit the proof. Let FN ⊂
L2(X, µ) a finite-dimensional subspace spanned by Ψ(x) =
[ψ1(x), . . . , ψN (x)]⊤. For ϕ ∈ L2(X, µ), we can define the
projection of ϕ on the closed subspace FN ⊂ L2(X, µ) as

Pµ
Nϕ = arg min

f∈FN

∥f − ϕ∥L2(X,µ)

= Ψ⊤(x) arg min
c∈Rn

∫
X

|c⊤Ψ(x)− ϕ(x)|2dµ(x).

Let µ̂L be the empirical measure i.e., µ̂L = 1
L

∑L
k δzk

, with
δzk

the Dirac-delta measure. We then have

P µ̂L

N ϕ = arg min
f∈FN

∥f − ϕ∥L2(X,µ̂L)

= Ψ⊤(x) arg min
c∈RN

1

L

M∑
i=1

(
c⊤Ψ(xi)− ϕ(xi)

)2
.

Lemma 1: We have

ϕ̃λ(x) → Pµ
N ϕ̂λ(x) as L→ ∞ (22)

Proof: From (19), (20), and (22), it follows that ϕ̃λ =
P µ̂L

N ϕ̂λ. Since the sample {xk} are assumed to be drawn i.i.d.
it follows from law or large numbers that P µ̂L

N ϕ̂λ → Pµ
N ϕ̂λ

as L→ ∞.

IV. SIMULATION RESULTS

A. Bistable Toggle Switch
In the first example, we consider the dynamics of a genetic

toggle switch. The basic dynamics comprise two biological

states, representing proteins repressing each other to apply
mutual negative feedback [16].

ẋ1 =
α1

1 + xβ1
2

− η1x1, ẋ2 =
α2

1 + xβ2
1

− η2x2. (23)

Here, for the device parameters α1, α2 = 1, β1 = 3.55, β2 =
3.53, and η1, η2 = 0.5, (23) have two stable equilibrium
points and one saddle point equilibrium at (1, 1).

Fig. 1: Stability boundary obtained from phase portrait (blue)
and estimated stable manifold of unstable equilibrium point
(red).

The linearization of the system at the origin has
eigenvalues (0.3850,−1.3850). The left eigenvector corre-
sponding to the unstable eigenvalue is given by wλ =
(0.7061,−0.7081)⊤. It is clear from the phase portrait, Fig.
1 (blue curve), that the stability boundary is almost linear for
this example. Therefore, we approximate the eigenfunction
with linear only terms, i.e., w⊤

λ x. The corresponding zero-
level curve of linear only eigenfunction is shown in Fig.
1 (red curve). From the figure, it is evident that the zero-
level curve of eigenfunction matches well with the stability
boundary.

B. 2-D Speed Control System
We consider a nonlinear speed control system as follows,

ẋ1 = x2, ẋ2 = −Kdx2 − x1 − gx2
1

(
x2

Kd
+ x1 + 1

)
(24)

Here, Kd = 1 and g = 6, the system has three equilibrium
points, (−0.7886, 0) and (0, 0) are stable equilibrium and
(−0.21135, 0) is saddle (type-1) equilibrium point. In this
example, we are interested in finding the stability boundary
of (0, 0). The stable manifold of (−0.21135, 0), character-
ized by a zero level set of the unstable eigenfunction of
(24), provides the stability boundary for (0, 0). The lineariza-
tion of the system around (−0.21135, 0) gives eigenvalues
(0.4309,−1.6990). The eigenfunction corresponding to un-
stable eigenvalue 0.4309 is the eigenfunction of interest. We
consider a small region around (−0.21135, 0) representing
U0 with 500 points with ϵ1 = 0.2 as shown in Fig. 2(a)
(blue) and obtain the set U by backward propagation of
(24) over time [0, 10] as illustrated in Fig. 2(a) (green). We
restrict the data points in U in domain [−1, 1]2 to compute



Fig. 2: Speed control nonlinear system (a) Set U0 (blue)
and, set U obtained by backward reachable set (green) (b)
Estimated stable manifold (stability boundary) (red).

the eigenfunction values using (18) for 15850 data points. In
Fig. 2(b), we show the estimated stability boundary on top
of the phase portrait. The parameter γ = 5e−5. Clearly, the
stability boundary follows the phase portrait representing the
efficacy of the proposed approach.

C. Two Generator Infinite Bus Power System
The power system is a classic example of interest to

engineering, where determining stability boundary is crucial.
For the power system operator, it is of interest to know
the critical clearing time (CCT), which is defined as the
maximum allowable time to clear the fault without causing
instability. The CCT is the time taken by the trajectory
of the on-fault unstable power system dynamics to cross
the stability boundary of the post-fault stable power sys-
tem dynamics. The transient stability analysis of the power
system to determine the CCT is then effectively reduced
to computing the stability boundary of the post-fault stable
power system dynamics. For this example, we consider a
three-generator system [17], with generator three as the
reference bus as follows.

δ̇1 = ω1, ω̇1 = −α1 sin δ1 − β1 sin(δ1 − δ2)−D1ω1 (25)

δ̇2 = ω2, ω̇2 = −α2 sin δ2 − β2 sin(δ2 − δ1)−D2ω1 + Pm.

Here, δi and ωi are the generator rotor angle and angular
velocity, respectively, for ith generator, αi, βi are the ratio of
generator internal voltage and line impedance with α1 = 1,
α2, β1, β2 = 0.5, D1 = 0.4, and D2 = 0.5. The system has 6
type-1 equilibrium points with (δ1, δ2) values as (3.24, 0.31),
(3.04, 3.24), (0.03, 3.10), (−3.03, 0.31), (−3.24,−3.03),
(0.03,−3.17), and the post-fault stable equilibrium point is
(0.02, 0.06) with ω1, ω2 = 0. We consider U0 with 500 data
points and ϵ1 = 0.1 and propagate this backward in time
for 5 sec. to contain U . We compute the stable manifold
corresponding to each unstable equilibrium point (UEP) as a
zero-level set of the unstable eigenfunction as shown in Fig. 3
(green) with a combination of linear and trigonometric basis.
The parameter γ = 1e−3. The joint level set of all the stable
manifolds represents the stability boundary shown in Fig.
3 (dotted red). We consider an on-fault case by changing
the parameters in (25) as α1, α2 = 0.01, β1 = 0.05, and
β2 = 0.001 shown in Fig. 3 (black). The CCT for this
case using time domain simulation is 43.8sec, and the CCT

Fig. 3: Estimated stability boundary projected on δ1, δ2 plane.

obtained from our approach, i.e., the time at which on-
fault trajectory first crosses the stable manifold, is 43.7sec.
Therefore, this example shows the efficacy of our approach
for practical applications of transient stability analysis in
power systems.

V. CONCLUSIONS AND DISCUSSION

We have proposed a direct approach for the stability
analysis of a dynamical system using the Koopman spectrum.
Compared to the existing approach based on the Lyapunov
function, our proposed approach is more direct as it relies
on the explicit computation of stability boundary using the
zero-level curve of Koopman eigenfunction. We also provide
a path-integral formula for the calculation of Koopman eigen-
function. One of the challenges with the proposed approach
is that it requires the knowledge of unstable equilibrium
points on the stability boundary.
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