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Abstract

The representation of a nonlinear dynamical system as infinite-dimensional linear operator over

a Hilbert space of functions enables the study of the nonlinear system via pseudo-spectral analysis

of the corresponding operator. In this paper, we develop a novel operator representation of discrete-

time, control-affine nonlinear dynamical systems. We also demonstrate that this representation can

be used to predict the behavior of the closed-loop system in response to a given feedback law. The

representation is learned using recorded snapshots of the system state resulting from arbitrary, potentially

open-loop control inputs. We thereby extend the predictive capabilities of dynamic mode decomposition

to discrete-time nonlinear systems that are affine in control. We validate the method using two numerical

experiments by predicting the response of a controlled Duffing oscillator to a known feedback law. The

advantages of the developed method relative to existing techniques in the literature are also demonstrated.
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I. INTRODUCTION

In this paper, a novel representation of discrete-time control-affine nonlinear systems as

infinite-dimensional linear operators over reproducing kernel Hilbert spaces (RKHSs) is intro-

duced. This effort is inspired by the method first developed in [1], which introduced similar

operator representations for continuous-time dynamical systems. The idea of representing a

nonlinear system as an infinite-dimensional linear operator in Hilbert space was first put forth

by B.O. Koopman in [2] and the resulting composition operator is aptly known as the Koopman

operator. This higher-dimensional space is typically referred to as the feature space or lifted space

and the Koopman operator acts as a composition operator on the lifted space. In recent years,

dynamic mode decomposition (DMD) and other data-driven methods have seen a resurgence

due to the abundance of data and increased the availability of computational power [3]. An

example of the application of DMD can be seen in the fluid mechanics community, where

modal decomposition of fluid flows is accomplished [4], [5]. In a more general sense, DMD is

intimately connected to the Koopman operator as DMD is one method used to approximate the

Koopman operator associated with the dynamical system [5], [6].

The Koopman approach is amenable to spectral methods in linear operator theory in certain

cases, e.g. see [7], but spectral convergence cannot be guaranteed in general; therefore, Koopman

DMD methods are pseudo-spectral numerical methods. Despite this theoretical limitation, Koop-

man DMD and Liouville DMD methods in both continuous and discrete time have been shown

to exhibit remarkable predictive accuracy over finite-time horizons [3]. Moreover, Koopman

DMD allows one to study dynamical systems without direct knowledge of the dynamics, as

Koopman DMD is strictly data driven and requires no knowledge of the dynamical system [3].

For measurements corrupted by noise or in the case of stochastic systems, robust approximations

of the Koopman operator can be formulated [8]. The ultimate goal of DMD is to develop a data-

driven model via an eigendecomposition of the Koopman operator, under the assumption that the

full-state observable (the identity function) is in the span of the eigenfunctions [7]. The addition

of control adds greater difficulty to data-driven methods like DMD, as the Koopman operator

associated with the dynamical system depends upon the control input. Furthermore, in discrete

time, the Koopman operator is generally not linear in its symbol, which makes separating the

influence of the controller from the drift dynamics challenging. Despite the difficulty, there have

been several successful methods for generalizing Koopman DMD for dynamical systems with



control in results such as [9], [10]–[14].

The method presented in [11] yields a DMD routine to represent a general nonlinear system

with control as a control-affine linear system. This idea is generalized in [10] with extended DMD

(eDMD), providing greater predictive power. Furthermore, for a general discrete-time, nonlinear

dynamical system with control, the authors in [10] utilize the shift operator to describe the

time evolution of the control signal. Also, in discrete-time, separation of the control input from

the state can be achieved via first order approximations [15]. For continuous-time dynamical

systems, the Koopman canonical transform (see [16]) is used in [9] to leverage a formulation of

the dynamical system in the lifted space as a control-affine, bilinear system, called the Koopman

bilinear form (KBF). The KBF is then amenable to the design of feedback laws using techniques

from optimal control.

The aforementioned methods demonstrate the ability to predict the response of both discrete-

time [10] and continuous-time [9] dynamical systems to open-loop inputs. The algorithm de-

veloped in this paper offers an advantage over the methods from [9]–[15], since in addition

to a predictive model, it also estimates eigenfunctions, and consequently, a Koopman invariant

subspace of the closed-loop system. A key contribution here is the extension of the method

presented in [1] to the discrete-time case. The operator representation presented in [1] relies on

linearity of differential and multiplication operators to separate the influence of the controlled

and the uncontrolled part of the system dynamics. In discrete time, the differential operators

need to be replaced by composition operators, and composition operators are typically not linear

in their symbol. Herein lies the difficulty of extending continuous-time DMD results to discrete-

time DMD results, as separation of the effect of the control input from the effect of the drift

dynamics is nontrivial.

In this paper, we take an operator-theoretic approach to DMD with a novel operator definition

that accounts for the effect of control and the discrete-time nature of the problem. The algorithm

is referred to as discrete control Liouville DMD or DCLDMD for brevity. To accomplish

DCLDMD, the discrete, nonlinear dynamical system is represented as a composition of two

operators acting on a Hilbert space of functions. The first operator mimics the effects of a

composition operator, which maps from a reproducing kernel Hilbert space (RKHS) to a vector-

valued RKHS (vvRKHS). In order to account for the effect of control, we make use of a

multiplication operator which maps functions in the vvRKHS back into the RKHS. In doing

so, we obtain an approximate representation of the dynamical system as a composition of the



aforementioned operators.

The paper is organized into the following sections. Section II establishes the mathematical

background for dynamic mode decomposition with discrete control Liouville operators. Section

III contains the problem description. Section IV provides the derivation for discrete control

Liouville dynamic mode decomposition, as well as outlining the DCLDMD algorithm. Section

VII contains the numerical experiments involving the Duffing oscillator. Lastly, section VIII

concludes the paper.

II. BACKGROUND

In this section, we provide a brief overview of RKHSs and vvRKHSs and their role in

DCLDMD.

Definition 1. An RKHS H̃ over a set X ⊂ R
n is a Hilbert space of functions f : X → R such

that for all x ∈ X the evaluation functional Exf := f(x) is bounded. By the Riesz representation

theorem, there exists a function K̃x ∈ H̃ such that f(x) = 〈f, K̃x〉H̃ for all f ∈ H̃ .

The snapshots of a dynamical system are embedded into an RKHS via a kernel map x 7→

K̃(·, x) := K̃x. Moreover, the span of the set {K̃x : x ∈ X} is dense in H̃ .

Proposition 1. If A := {K̃x : x ∈ X}, then span A = H̃.

Proof. To show that the span of the set {K̃x : x ∈ X} is dense in H̃ amounts to showing that

(A⊥)⊥ = H̃ . Let h ∈ A⊥, then 〈h, K̃x〉 = h(x) = 0. Hence h ≡ 0 on X . Thus A⊥ = {0}.

In order to account for the effect of control, we make use of a vvRKHS.

Definition 2. Let Y be a Hilbert space, and let H be a Hilbert space of functions from a set

X to Y . The Hilbert space H is a vvRKHS if for every ū ∈ Y and x ∈ X , the functional

f 7→ 〈f(x), ū〉Y is bounded.

To each x ∈ X and ū ∈ Y , we can associate a linear operator over a vvRKHS given by

(x, ū) 7→ Kx,ū, following [1]. The function Kx,ū is known as the kernel operator and the span

of these functions constitutes a dense set in the respective vvRKHS [1, Proposition 1]. Given a

function f ∈ H , the reproducing property of Kx,ū implies 〈f,Kx,ū〉H = 〈f(x), ū〉
Y

. For more

discussion on vvRKHSs see [17].



III. PROBLEM STATEMENT

Consider a control-affine, discrete-time dynamical system of the form

xk+1 = F (xk) +G(xk)uk, (1)

where x ∈ R
n is the state, u ∈ R

m is the control input, F : Rn → R
n and G : Rn → R

n×m

are functions corresponding to the drift dynamics and the control effectiveness, respectively.

We refer to the individual functions which comprise the columns of G by Gj : R
n → R

n, for

1 ≤ j ≤ m. Given a feedback law µ : Rn → R
m and a set of data points {(xk, xk+1, uk)}

n
k=1,

where uk are arbitrary (potentially open-loop) control inputs, the goal is to predict the response

of the system in (1) to the feedback law µ.

In this paper, the set X is selected to be a compact subset of Rn, the set Y is selected to be

R
1×(m+1), H̃ denotes an RKHS of continuous functions from X to R, and H denotes a vvRKHS

of continuous functions from X to R
1×(m+1).

IV. OPERATOR REPRESENTATION OF CONTROLLED DISCRETE-TIME SYSTEMS

A linear operator can be associated with the dynamical system in (1), as a composition of

two operators: a composition-like discrete Liouville operator and a multiplication operator. This

operator representation is derived in this section.

A. A Composition-like Kernel Propagation Operator

The technical lemma below and the proposition that follows are needed for the kernel prop-

agation operator to be well-defined.

Lemma 1. The set Ω ⊂ H , defined as Ω := {Kx,ū : x ∈ X, u ∈ R
m, and ū :=

(

1 u⊤

)

∈ Y},

satisfies Ω⊥ = {0}.

Proof. Let h ∈ Ω⊥. The reproducing property of Kx,ū implies that for all u ∈ R
m and x ∈ X ,

〈

h(x),
(

1 u⊤

)〉

Y
= 〈h,Kx,ū〉H . Since h ∈ Ω⊥ and Kx,ū ∈ Ω, we conclude that 〈h,Kx,ū〉H = 0.

As a result, for each fixed x ∈ X and for all u ∈ R
m, we have

〈

h(x),
(

1 u⊤

)〉

Y
= 0. Since

the only such h(x) ∈ Y is the zero vector, we conclude that h = 0.

Proposition 2. Let Lz ∈ H be a function such that for all tuples (x, u, y) satisfying y =

F (x) +G(x)u, we have
〈

[Lz ](x),
(

1 u⊤

)〉

Y
= K̃z(y). (2)



For all z ∈ X , the map K̃z 7→ Lz is a well-defined operator.

Proof. For a given z ∈ X , suppose there are two functions, L1
z and L2

z, each of which satisfy

(2) given above. Then, for any tuple (x, y, u) which satisfies y = F (x) +G(x)u,
〈

[L1
z](x),

(

1 u⊤

)〉

Y
=

〈

[L2
z](x),

(

1 u⊤

)〉

Y
,

and therefore,
〈

[L1
z](x)− [L2

z ](x),
(

1 u⊤

)〉

Y
= 0.

Using the reproducing property,
〈

[L1
z]− [L2

z], Kx,ū

〉

H
= 0 (3)

for all vectors in the set Ω := {Kx,ū : x ∈ X and ū ∈ Y | ū =
(

1 u⊤

)

, u ∈ R
m}.

As a result, [L1
z ]− [L2

z] ∈ Ω⊥, where ⊥ denotes the orthogonal complement of Ω ⊂ Y .

Since Ω⊥ = {0} according to lemma 1, we conclude that for all z ∈ X , [L1
z ] = [L2

z]. That

is, the operator K̃z 7→ Lz is well defined on the set {K̃z}z∈X . Linearity of the operator then

implies that it is also well-defined on span{K̃z}z∈X .

Definition 3. Let AF,G : D (AF,G)→ H be the operator with domain D (AF,G) := span{K̃z}z∈X

that maps, for each z ∈ X , the function K̃z to a function [AF,GK̃z] ∈ H such that for all tuples

(x, u, y) satisfying y = F (x) +G(x)u, we have
〈[

AF,GK̃z

]

(x),
(

1 u⊤

)〉

Y
= K̃z(y). (4)

A few remarks regarding definition 3 are in order. The kernel propagation operator AF,G is

composition-like in the sense that if a linear kernel K̃z(x) = z⊤x is used, one could define AF,G

explicitly as AF,GK̃z = [K̃z(F (·)), K̃z(G1(·)), · · · , K̃z(Gm(·))]. In that case, due to linearity of

the kernel,
〈[

AF,GK̃z

]

(x),
(

1 u⊤

)〉

Y
= K̃z(F (x)) +

∑m

j=1 K̃z(Gj(x))uj = K̃z(y). That is,

similar to the Koopman operator for autonomous systems, the operator AF,G, when composed

with the inner product operation in a RKHS with a linear kernel, propagates the observable K̃z

one step forward in time.

In the case of nonlinear kernels, an explicit expression for the operator AF,G cannot be derived.

However, the implicit definition above, which achieves one-step propagation of the kernels by

definition, is still useful for DMD.

Since span{K̃x}x∈X is dense in H , the kernel propagation operator AF,G is densely defined.

As such, the adjoint A∗
F,G exists and can be defined through its domain.

Definition 4. The domain of the adjoint A∗
F,G of AF,G is defined as D(A∗

F,G) := {f ∈ H : h 7→



〈AF,Gh, f〉H is bounded on D(AF,G)}.

Note that for all x ∈ X and ū ∈ Y , the kernel functions Kx,ū of H are in the domain of

the adjoint A∗
F,G. Indeed, if AF,Gh ∈ H , 〈AF,Gh,Kx,ū〉 is bounded by definition 2 and hence

Kx,ū ∈ D(A
∗
F,G).

B. Multiplication Operators

Let ν : X → Y be a continuous function. The multiplication operator with symbol ν is denoted

as Mν : D(Mν) → H̃ . For a function h ∈ D(Mν), we define the action of the multiplication

operator on h as

[Mνh](·) = 〈h(·), ν(·)〉Y ,

where the domain of the multiplication operator is given as

D(Mν) := {h ∈ H | x 7→ 〈h(x), ν(x)〉
Y
∈ H̃}.

For completeness, we recall the interaction between multiplication operators and kernel opera-

tors from [1]. The interaction is used to calculate the finite-rank representation of the composition

of the multiplication operator with the kernel propagation operator from Definition 3.

Proposition 3. Suppose that ν : X → Y corresponds to a densely defined multiplication operator

Mν : D(Mν) → H̃ and K̃ : X × X → R is the kernel function of the RKHS H̃ . Then, for all

x ∈ X , K̃x ∈ D(M
∗
ν ), where M∗

ν is the adjoint of Mν , and M∗
ν K̃x = Kx,ν(x).

The composition of the kernel propagation operator from Definition 3 and the multiplication

operator can be used to define the discrete control Liouville operator.

C. The Discrete Control Liouville Operator

Taking the composition of AF,G and Mν , for a known feedback law µ : R
n → R

m, the

evolution of an observable along trajectories of the dynamical system can be described in terms

of an infinite-dimensional linear operator.

Definition 5. Let ν :=
(

1 µ⊤

)

∈ H . The discrete control Liouville operator corresponding to

the closed-loop system

xk+1 = F (xk) +G(xk)µ(xk)

is defined as the composition MνAF,G : D(MνAF,G)→ H̃, where D(MνAF,G) = D(AF,G).



The discrete control Liouville operator governs the flow of observables in D(MνAF,G) ⊆ H̃

along trajectories of the discrete-time dynamical system as [MνAF,Gh](xk) =
〈

[AF,Gh](xk),
(

1 µ(xk)
⊤

)〉

Y
=

h(xk+1). Furthermore, the composition MνAF,G is a linear operator by linearity of the inner

product and by definition 3.

V. DISCRETE-TIME CONTROL LIOUVILLE DMD

In order to represent the infinite-dimensional discrete control Liouville operator as a finite-

dimensional operator, we select bases α =
{

K̃xi

}n

i=1
⊂ H̃ and β = {Kxi,ūi

}n
i=1 ⊂ H , where

ūi :=
(

1 u⊤
i

)

∈ Y . DMD is then performed via an eigendecomposition of the finite-dimensional

representation.

Given an observable h ∈ H̃ , let h̃ := Pαh =
∑n

i=1 ãiK̃xi
be the projection of h onto spanα.

One can recover a finite rank proxy of the discrete control Liovuille operator by observing

its action restricted to spanα ⊂ H̃ and projecting the output MνAF,Gh̃ back onto spanα.

That is, recovering the finite-rank proxy amounts to writing PαMνAF,Gh̃ as
∑n

i=1 b̃iK̃xi
and

finding a matrix that relates the coefficients {ãi}
n
i=1 and {b̃i}

n
i=1. For brevity of notation, let

ã :=
(

ã1 . . . ãn

)⊤

and b̃ :=
(

b̃1 . . . b̃n

)⊤

. The coefficients can be computed by solving the

linear system of equations (see [1] and [7])

G̃











b̃1
...

b̃n











=











〈MνPβAF,Gh̃, K̃x1
〉H̃

...

〈MνPβAF,Gh̃, K̃xn
〉H̃











, (5)

where G̃ = {K̃(xi, xj)}
n
i,j=1 is the kernel gram matrix for α. Since the kernel functions in

α ⊂ H̃ are in the domain of the adjoint of the multiplication operator (see proposition 3), for

all j, 〈MνPβAF,Gh̃, K̃xj
〉H̃ = 〈AF,Gh̃, PβM

∗
ν K̃xj

〉H . Furthermore, by linearity of AF,G,

〈AF,Gh̃, PβM
∗
ν K̃xj

〉H =

n
∑

i=1

ãi〈AF,GK̃xi
, PβM

∗
ν K̃xj

〉H

=
n

∑

i=1

ãi〈AF,GK̃xi
,

n
∑

k=1

wk,jKxk,ūk
〉H ,

where {wk,j}
n
k=1 are weights in the projection of M∗

ν K̃xj
onto span β and wj :=

(

w1,j . . . wn,j

)⊤

.

Thus,

〈AF,Gh̃, PβM
∗
ν K̃xj

〉H =

n
∑

i,k=1

ãiwk,j〈AF,GK̃xi
, Kxk,ūk

〉H

=

n
∑

i=1

n
∑

k=1

ãiwk,j〈[AF,GK̃xi
](xk),

(

1 uk
⊤

)

〉Y = ã⊤Ĩwj,



where Ĩ =

(

〈

[AF,GK̃xi
](xk),

(

1 uk
⊤

)〉

Y

)n

i,k=1

is computed using the fact that
〈

[AF,GK̃xi
](xk),

(

1 uk
⊤

)〉

Y
=

K̃xi
(xk+1).

Since M∗
ν maps K̃xj

to Kxj ,ν(xj), the coefficients wj in the projection of Kxj ,ν(xj) onto

span β ⊂ H are solutions of

G











w1,j

...

wn,j











=











〈Kxj ,ν(xj), Kx1,ū1
〉H

...

〈Kxj ,ν(xj), Kxn,ūn
〉H











, (6)

where G =
(〈

Kxi,ūi
, Kxj ,ūj

〉

H

)n

i,j=1
and ν(xj) =

(

1 µ(xj)
⊤

)

. If a diagonal kernel operator

Kxi
:= diag

(

K̃x1
. . . K̃xm+1

)

is used, with K̃xj
= K̃xi

for 1 ≤ j ≤ m + 1, then the inner

products in G can be computed as

〈Kxi,ūi
, Kxj ,ūj

〉H = 〈Kxi,ūi
(xj),

(

1 u⊤
j

)

〉Y =

(

1 u⊤
i

)

K̃(xj , xi)
(

1 u⊤
j

)⊤

. (7)

Letting I⊤j denote the column vector on the right-hand side of (6), he jth row of I is given by

Ij =
(

〈Kxj ,ν(xj), Kx1,ū1
〉
H
, . . . , 〈Kxj ,ν(xj), Kxn,ūn

〉
H

)

.

The complete finite-rank representation of the DCLDMD operator is then recovered as [MνPβAF,G]
α
α =

G̃−1IG−1Ĩ⊤, where the subscript α denotes the restriction of the operator to the spanα, and the

superscript α denotes projection of the output onto spanα.

A. Discrete Control Liouville Dynamic Mode Decomposition

DMD can be accomplished via an eigendecomposition of the finite-rank proxy of discrete

control Liovuille operator. Let {vi, λi}
n
i=1 be the eigenvalue-eigenvector pairs of the matrix

[MνPβAF,G]
α
α. Following [7], if vj is an eigenvector of the matrix [MνPβAF,G]

α
α, then the function

ϕj =
∑n

i=1(vj)iK̃xi
is an eigenfunction of the operator PαMνPβAF,G|α.

If ϕj is an eigenfunction of PαMνPβAF,G|α with eigenvalue λj , then

ϕj(xk+1) = MνAF,Gϕj(xk) = λjϕj(xk).

Hence, the eigenfunctions evolve linearly along the flow. The normalized eigenfunctions are

defined as ϕ̂j :=
1

√

v⊤
j
G̃vj

∑n

i=1(vj)iK̃xi
.

Assuming the the j-th component identity function, gid, defined as gid,j(x) := xj is in

D(MνAF,G) ⊂ H̃, for each j = 1, 2, . . . , n, we can describe the evolution of the full-state

observable gid(x) = x as a linear combination of eigenfunctions of MνAF,G. This approach



yields a data-driven model of the closed-loop dynamical system as a linear combination of

eigenfunctions of the operator PαMνPβAF,G|α. That is, for a given x0 ∈ X we have a pointwise

approximation of the flow of the closed-loop system

xk+1 = F (xk) +G(xk)µ(xk) ≈

n
∑

i=1

λk
i ξiϕ̂i(x0). (8)

We refer to the vectors ξi as the Liouville Modes, these are the coefficients required to represent

the full-state observable as a linear combination of the eigenfunctions. We can calculate the modes

by solving gid(x) = x =
∑n

i=1 ξiϕi for ξi, which yields ξ :=
(

ξ1 · · · ξn

)

= X(V ⊤G̃)−1, where

V is the matrix of normalized eigenvectors of the finite-rank representation [MνPβAF,G]
α
α and

X :=
(

x1 . . . xn

)

is the data matrix. We refer to this method as the direct reconstruction of

the flow.

We can also formulate an indirect reconstruction of the flow by considering the function

Fµ := x 7→
∑n

i=1 λiξiϕ̂i(x) that approximates the closed loop dynamics under the feedback

law µ as xk+1 ≈ Fµ(xk). The indirect method generally performs better for approximating

the nonlinear dynamics; we hypothesize that the better performance is due to the fact we are

estimating nonlinear dynamics using nonlinear functions, as the indirect reconstruction yields a

nonlinear model of the flow, as opposed to the direct reconstruction which is linear. Due to its

superior performance, we will use the indirect reconstruction in the numerical experiments in

section VII. The DCLDMD algorithm is summarized in Algorithm 1.

VI. CONVERGENCE PROPERTIES OF DCLDMD

Discrete control Liouville DMD enjoys convergence guarantees on par with current state-of-

the-art Koopman methods. That is, the sequence of finite-rank operators P n
αMνP

n
βAF,GP

n
α , where

P n denotes the projection onto the n-dimensional span of α and β, respectively, converges to the

operator MνAF,G in the strong operator topology (SOT). Underlying this fact is the assumption

that as n→∞, the Gram matrices G̃ and G do not become rank deficient.

Theorem 1. If AF,G : H̃ → H and Mν : D(Mν) → H̃ are bounded, and α := {K̃xn
}∞n=1 ⊂ H̃

and β := {Kxn,ūn
}∞n=1 ⊂ H are two orthonormal sequences in H̃ and H , respectively, then for

all f ∈ H̃, limn→∞

∥

∥P n
αMνP

n
β AF,GP

n
α f −MνAF,Gf

∥

∥

H̃
= 0.

Proof. Suppose f ∈ H̃ , then

∥

∥P n
αMνP

n
βAF,GP

n
α f −MνAF,Gf

∥

∥

H̃
=



∥

∥(P n
α − I)MνP

n
β AF,GP

n
α f +Mν(P

n
βAF,GP

nf − AF,Gf)
∥

∥

H̃

≤
∥

∥(P n
α − I)(MνP

n
βAF,GP

n
α f −MνAF,Gf)

∥

∥

H̃
+

‖(P n
α − I)MνAF,Gf‖H̃ +

∥

∥Mν(P
n
βAF,GP

n
α f − AF,Gf)

∥

∥

H̃

≤ ‖(P n
α − I)‖op

∥

∥(MνP
n
βAF,GP

n
α f −MνAF,Gf)

∥

∥

H̃
+

‖(P n
α − I)MνAF,Gf‖H̃ +

∥

∥Mν(P
n
βAF,GP

n
α f − AF,Gf)

∥

∥

H̃
,

where ‖·‖op denotes the operator norm. Since Mν is continuous and ‖(P n
α − I)‖op is bounded

(by Parseval’s identity, see [18, Section 3.1.11]), and since P n
βAF,GP

n
α converges to AF,G in

the SOT [18, Page 172]), the first and the third terms in the inequality above converge to 0 as

n → ∞. The fact that P n
α converges to I in the SOT implies the convergence of the second

term to zero. Therefore, the sequence of operators P n
αMνP

n
β AF,GP

n
α converges to MνAF,G in

the SOT.

Convergence in the SOT does not guarantee convergence of the spectrum, but by theorem

4 in [19], it does guarantee that there is a subsequence of eigenvalue-eigenfunction pairs of

the finite-rank representation which converges to an eigenvalue-eigenfunction pair of the true

discrete control Liouville operator.

VII. NUMERICAL EXPERIMENTS

As a demonstration of the efficacy of the developed DCLDMD algorithm, we apply the method

to the controlled Duffing oscillator and compare it with the linear predictor developed in [10].

Experiment 1: The controlled Duffing oscillator is a nonlinear dynamical system with state-

space form




ẋ1

ẋ2



 =





x2

−δx2 − βx1 − αx3
1



 +





0

2 + sin(x1)



u (9)

where α, β, δ are coefficients in R, [x1, x2]
⊤ ∈ R

2 is the state, and u ∈ R is the control input.

For the experiments the parameters are selected to be: δ = 0, α = 1, and β = −1.

We descretize (9) using a time step of 0.01 seconds to yield a discrete-time, control-affine

dynamical system of the form xk+1 = F (xk) + G(xk)uk. Using the tuples {(xk, xk+1, uk)}
n
k=1

generated by the dynamical system, we aim to predict the response of the system starting from

the initial condition x0 = [2,−2]⊤ to two different feedback laws, µ(xk) = −2xk,1 − xk,2 and

µ̄(xk) = −2x
3
k,1 − xk,2 for a total of 5 seconds.



Algorithm 1 The DCLDMD algorithm

Input: Data points {(xk, yk, uk)}
n
k=1 that satisfy yk = F (xk) + G(xk)uk, reproducing kernels

K̃xj
and Kxj ,ūj

for H̃ and H , respectively. A feedback law µ, kernel parameter σ, and a

regularization parameter ǫ.

Output: {ϕ̂j, λj, ξj}
n
j=1

1: G̃← {K̃(xi, xj)}
n
i,j=1

2: Ĩ ← {K̃(xk+1, xi)}
n
k,i=1

3: G← {〈Kxi,ūi
, Kxj ,ūj

〉H}
n
i,j=1 (see (7))

4: I ← {〈Kxj ,ν(xj), Kxi,ūi
〉H}

n
i,j=1 (see (7))

5: Compute [MνPβAF,G]
α
α = G̃−1IG−1Ĩ⊤

6: Eigendecomposition: {ϕj, λj}
n
j=1 ← [MνPβAF,G]

α
α

7: Normalize the eigenfunctions: {ϕ̂j}
n
j=1 ← ϕ̂j =

1
√

v⊤j G̃vj

∑n

i=1(vj)iK̃xi

8: Liouville modes: ξ ← X(V ⊤G̃)−1

9: return {ϕ̂j , λj, ξj}
n
j=1

In the implementation of DCLDMD for the linear feedback law, µ, we generate 225 data

points {(xk, xk+1, uk)}
225
k=1 with initial conditions sampled from a 15 × 15 grid within the set

[−3, 3]× [−3, 3] ⊂ R
2. The control inputs are sampled uniformly from the interval [−2, 2] ⊂ R.

For the case of the nonlinear feedback law, µ̄, we generate 1225 data points from initial conditions

sampled from a 35 × 35 grid within the set [−5, 5] × [−5, 5] ⊂ R
2 and the control input are

sampled uniformly from the interval [−8, 8] ⊂ R.

In both implementations of DCLDMD, the Gaussian radial basis function kernel K̃(x, y) =

e
−‖x−y‖2

2
σ is used for calculation of the Gram matrices associated with α ⊂ H̃ . The kernel width

is set to σ = 10 and σ = 20 for the response of the system to µ and µ̄, respectively. For

β ⊂ H , we associate to each pair {(xk, uk)}
n
k=1 a kernel Kxk,ūk

:=
(

1 u⊤
k

)

Kxk
∈ H . Here

we use the kernel operator Kxi
:= diag

(

K̃x1
· · · K̃xm+1

)

where K̃xj
(y) = e

−‖xj−y‖
2

2
σ for

j = 1, . . . , m + 1. Lastly, we select ε = 10−6 for regularization of the Gram matrices in order

to ensure invertibility of both G̃ and G in the finite-rank representation (see Algorithm 1).

A comparison between the true trajectories and the indirectly reconstructed trajectories corre-

sponding to the feedback laws µ and µ̄ can be seen in figures 1 and 2, respectively.

Experiment 2: In this experiment, we compare the predictive capabilities of the indirect

reconstruction via DCLDMD with the linear predictor derived in [10]. The linear predictor
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Fig. 1. A comparison of indirectly reconstructed trajectories x̂1(t) and x̂2(t) with the true trajectories x1(t) and x2(t) of the

Duffing oscillator resulting from the linear feedback law µ in experiment 1.
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Fig. 2. A comparison of indirectly reconstructed trajectories x̂1(t) and x̂2(t) with the true trajectories x1(t) and x2(t) of the

Duffing oscillator resulting from the nonlinear feedback law µ̄ in experiment 1.

in [10] is of the form zk+1 = Azk + Buk with xk = Czk and z being the lifted state (see

[10] for more details). For a given feedback law µ, we can estimate the response of the

Duffing oscillator described by equation (9) to the feedback law µ by using the linear predictor

zk+1 = Azk +Bµ(Czk).

For this experiment, we generate 1000 data points and DCLDMD is implemented using

the same kernels as in experiment 1, except the kernel widths are both set to σ = 100. For

regularization we set ε = 10−6. For the linear predictor, extended DMD (eDMD) is performed

with the Gaussian radial basis functions as in [10]. For the initial condition x0 = [2,−2]⊤ and
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Fig. 3. A comparison between the linear predictor developed in [10] and the indirect reconstruction via DCLDMD in experiment

2. Here, x̂i(t), xp,i(t), and xi(t) represent the indirect reconstruction, the linear predictor, and the actual trajectories, respectively,

where i is a subscript denoting an element of the state.

the feedback law µ(xk) = −2xk,1−2xk,2, we compare the predictions of the indirect DCLDMD

method and the linear predictor with the true trajectories (see figure 3).

A. Discussion

The experiments demonstrate the efficacy of DCLDMD in an academic setting with the Duffing

oscillator. The experiments are done with no prior model knowledge, besides the system being

affine in control. The novelty of the representation can be seen in the separation of the control

input and the state on the operator-theoretic level, while still preserving the nonlinearity of the

dynamical system. This is opposed to the standard approach for discrete-time dynamical systems

where the lifted state zk ∈ R
N can be approximated as zk+1 ≈ Azk +Buk, with A ∈ R

N×N and

B ∈ R
1×N found using extended DMD. Unless the original nonlinear system admits an exact

lifting, which is not generally the case, the trajectories of the linear lifted systems are expected

to diverge from the trajectories of the nonlinear system with increasing prediction horizons.

In experiment 2, specifically, in figure 3, we observe that as expected, the behavior of the

linear predictor from [10] diverges from the behavior of the nonlinear Duffing oscillator under the

given feedback law, while the indirect reconstruction approach developed in this paper accurately

tracks the actual trajectory of the Duffing oscillator. We postulate that the improved predictive

capability can be attributed to the fact that the indirect predictive model is a nonlinear predictor,

as opposed to the model from [10], which is a linear predictor, albeit in a higher dimensional

lifted state space.



In both experiments, indirect reconstruction is used to estimate the flow. The indirect recon-

struction explicitly depends upon the eigenfunctions of PαMνPβAF,G|α. Whether or not we can

always represent the full-state observable (i.e. the flow) in terms of the eigenfunctions is not

entirely clear, but this is a standard assumption in the DMD literature. With this assumption in

mind, DCLDMD is termed a heuristic approach for estimation of the dynamics. Regardless, the

numerical experiments in section VII demonstrate the capability of DCLDMD for prediction of

the response of the control-affine system to given feedback laws.

VIII. CONCLUSION

In this paper, a novel operator representation of a control-affine nonlinear system is developed

as a composition of a multiplication operator and a composition-like kernel propagation operator

over an RKHS. The multiplication operator takes advantage of the affine nature of the system

to capture the effect of control on the system behavior, while the kernel-propagation operator

captures the effect of the system dynamics on the kernels of the underlying RKHS. The resulting

DMD algorithm is entirely data driven and requires no model knowledge besides the dynamical

system being affine in control. Furthermore, the DCLDMD formulation provides a novel way to

separate the state from the control input on the operator-theoretic level. This separation leads to

better prediction capabilities over existing methods, as evidenced by the results of Experiment 2.

Moreover, since DCLDMD can be used to predict closed-loop trajectories of a nonlinear system

under feedback laws, it could potentially be utilized for control synthesis, which is a topic for

future research.
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