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Abstract— Driving in dense traffic with human and au-
tonomous drivers is a challenging task that requires high-level
planning and reasoning. Human drivers can achieve this task
comfortably, and there has been many efforts to model human
driver strategies. These strategies can be used as inspirations for
developing autonomous driving algorithms or to create high-
fidelity simulators. Reinforcement learning is a common tool
to model driver policies, but conventional training of these
models can be computationally expensive and time-consuming.
To address this issue, in this paper, we propose “skill-based”
hierarchical driving strategies, where motion primitives, i.e.
skills, are designed and used as high-level actions. This reduces
the training time for applications that require multiple models
with varying behavior. Simulation results in a merging scenario
demonstrate that the proposed approach yields driver models
that achieve higher performance with less training compared
to baseline reinforcement learning methods.

I. INTRODUCTION

Deep reinforcement learning (RL) has solved many chal-
lenging problems [1], [2] and achieved super-human perfor-
mance in complex tasks that classical algorithms struggle
with [3], [4]. Autonomous driving could be considered such
a problem, and to that extent, there is growing literature
on utilising deep RL in this field [5], [6], [7], [8], [9]. A
comprehensive review of recent developments on this subject
can be found in [10].

In a traffic environment, there are critical events such as
collisions that occur rarely. Although rare, they are valuable
for the learning process, but they lead to environments
with sparse rewards. RL methods are known to suffer from
extensive training times and sub-optimal long-term planning
when dealing with sparse rewards. One way to solve this
problem is incorporating human experts’ domain knowledge
through reward shaping [11], [12]. However, this introduces
human bias to the process and can lead to sub-optimal
performance and unwanted behavior.

Hierarchical RL (HRL) is a branch of RL that can be
helpful in solving the sparse rewards problem, where a set of
policies are employed as actions of a high-level agent [13],
[14], [15], [16], [17], [18], [19], [20]. This can be useful
in overcoming the difficulties posed by sparse rewards in
traffic, since low-level policies can be trained using intrinsic
dense rewards that are not dependent on the high-level goals.
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Another point to consider is how the structure of HRL is
more similar to human decision making compared to baseline
RL. When driving, humans consciously plan their trajectories
(similar to high-level agent) and the execution is done by
subconscious motor skills (similar to low-level policies) like
turning the wheel or hitting the brakes. For this reason, HRL
could have the potential to model or interact with humans
more successfully than its counterparts.

Low-level policies used in HRL can be obtained using
several methods including unsupervised exploration [21],
[22], [23], [24]. In this paper, we propose designing motion
primitives as “driving skills” and using them as low-level
policies In HRL, in a data-based highway merging scenario.
These primitives can be defined as action sequences that form
meaningful behaviors, such as “merging and then accelerat-
ing”, or “overtaking on the left”. We design these skills using
unsupervised skill discovery (USD) [25], [26], which makes
them reusable in RL tasks with different reward functions.
This provides a scalable approach for obtaining multiple
models. We also propose a controlled randomization-based
method together with observation binning to obtain diverse
and high quality driving skills.

To summarize, the main contributions of this study are the
following.

1) Creating driving skills in a highway merging environ-
ment, where the environment is constructed using real
traffic data.

2) Introducing a novel method to improve skill diversity
and quality.

3) Developing driving policies using HRL and driving
skills, resulting in significantly enhanced convergence
rates and superior performance compared to driving
policies obtained using traditional RL methods.

II. METHOD

In this section, skill-based hierarchical reinforcement
learning is explained, starting from the basic building blocks.

A. Markov Decision Process

A Markov Decision Process (MDP) is a tuple (S,A, P, r),
where, S and A are the sets of states and actions, respec-
tively. P : S × A × S → [0, 1] is the function, where
P (s, a, s′) represents the transition probability from state s
to s′ if action a is taken. r : S × A → R is the function
where r(s, a) is the reward for taking action a in state s.
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B. Reinforcement Learning

In RL, an agent’s behavior is represented in a policy
function π : S × A → [0, 1] where π(s, a) represents the
probability of the agent taking action a in state s. In an
MDP, a tuple (st, at, rt, st+1) is defined as an experience
sample and a sequence of experience samples is defined as
a trajectory. Given a state-action pair (st, at), the expected
cumulative reward over all possible trajectories following
(st, at) is calculated as

Qπ(st, at) = r(st, at)+Ea∼π(s)

[ ∞∑
i=1

γir(st+i, at+i)|st, at

]
,

(1)
where γ ∈ [0, 1) is the discount factor. The goal of re-
inforcement learning is to find an optimal policy π∗ such
that π∗ = argmaxπ Q

π(s, a),∀s ∈ S,∀a ∈ A. π∗ can
be estimated using methods like Q-learning and deep Q-
networks (DQN) [27].

C. Motion primitives (skills)

Below, we provide a basic introduction to the skills
concept. Further details can be found in [26].

Mutual Information (I): measures the average quantity of
information gained about one variable by sampling the other
variable. Given two random variables X and Y, their marginal
distributions p(X) and p(Y), and joint distribution p(X,Y); the
mutual information of X and Y is expressed as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
. (2)

Entropy (H): Entropy is Quantifies the randomness of a ran-
dom variable. Given a random variable X and its probability
distribution p(X), entropy of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (3)

The goal of is to obtain task agnostic skill policies, each
defining a different skill, that explore different sub-spaces of
a state space. The following goals are prioritized.

• We want skills to be inferable from given states. Max-
imizing the mutual information between skills (Z) and
states (S), i.e. maximizing I(S;Z), achieves this goal.

• We do not want skills to be inferable from actions
since different actions can lead the agent to the same
states. This would be counterproductive for the goal
of exploring the whole state space. Minimizing mutual
information between actions (A) and skills given states,
i.e. minimizing I(A;Z|S), achieves this goal.

• We want each skill to act as randomly as possible and so
explore as large of a state space as possible. Maximizing
the entropy (H) of actions over states, i.e maximizing
H[A|S], achieves this goal.

These goals translate to maximizing the following objec-
tive function,

F(θ) ≜ I(S;Z) +H[A|S]− I(A;Z|S)
= (H[Z]−H[Z;S]) +H[A|S]

− (H[A|S]−H[A|S;Z])

= H[Z]−H[Z;S] +H[A|S;Z],

(4)

where θ represents the parameters of the policy πθ. To
maximize the first term H[Z], the probability distribution
p(Z) is selected as a uniform distribution. p(z) is the
probability of the skill z being sampled at the beginning of an
episode. To maximize the third term, a soft actor critic (SAC)
[28] agent that maximizes the entropy of actions H[A|S;Z],
while simultaneously maximizing the expected reward, is
trained. Training is done with the reward function

rz(s, a) = log qϕ(z|s)− log p(z), (5)

where qϕ(z|s) is the output of a discriminator network that
is trained concurrently with the SAC agent to predict p(z|s).
This reward increases the inferability of skills from states,
and therefore minimizes the second term H[Z;S]. Once the
training is complete, the policy πθ, which gives a probability
distribution of actions given a state and skill, is obtained. The
probability of the agent selecting the action a given a state-
skill pair (s, z) is calculated as IP(A = a) = πθ(s, a|z). By
selecting a constant skill z, we can define a policy πz such
that ∀z ∈ Z;∀s ∈ S;∀a ∈ A;πz(s, a) = πθ(s, a|z). In other
words, πz is the policy of skill z induced from πθ.

D. Skill-Based Hierarchical Learning

In hierarchial reinforcement learning (HRL), the highest
level task and a given subset are represented by Γ and ω,
respectively. πΓ is defined as the policy that maps the state
space to subtasks, and πω as the policy that maps the state
space to low level actions.

In this study, we define Γ as the task of reaching the end
of the highway region without any collisions while staying
as close as possible to the desired velocity and headway
distances. Each skill, represented by z, is considered as a
subtask of Γ with the corresponding policy πz , as explained
in the previous section.

III. TRAFFIC SCENARIO

We are interested in a merging scenario in a highway en-
vironment. To build a high-fidelity simulation environment,
we use real traffic-data that is available online. The details
are explained in the following subsections.

A. Obtaining Environment Parameters From Real-Life Data

NGSIM I-80 is a data-set consisting of vehicle trajectories
collected on Eastbound I-80 in San Francisco Bay Area at
Emeryville, CA, on April 13, 2005 [29]. The data is collected
from a section of the road that is approximately 500 meters,
includes six freeway lanes and an on-ramp lane that merges
into the freeway (See Fig. 1).

We use a reconstructed version of NGSIM I-80 [30]
where the lateral vehicle coordinates are represented as



Fig. 1: NGSIM I-80 Study Area, Area of Interest Enclosed
in Red Lines

discrete lane-numbers, instead of real valued y-coordinates.
We process the data collected on the rightmost lane and the
ramp to obtain certain statistics to be used in generating the
scenario: The mean headway distance and velocity on the
road lane is calculated as 23.28m and 9.01m/s, respectively.
The dimensions of the road section where the data is col-
lected are used to define the dimensions of the road in the
simulated environment.

B. Environment Construction

The environment consists of a highway lane and an on-
ramp lane merging into the highway (see Fig. 2). The total
length of the road is 263m. The on-ramp ends at 213m,
and the legal merging zone starts at 65m, before which the
vehicles are not allowed to merge. This results in a 148m-
long legal merging zone. All vehicles are assumed to have a
length of 5m. At the start of a training episode,

• the ego vehicle starts at the on-ramp at 0 meters with
a velocity sampled from a normal distribution with 1
standard deviation and 9.01 mean, and

• the highway lane is populated with n cars where each
car has a starting velocity sampled from a normal
distribution with 1 standard deviation and 9.01 mean.
For i ∈ {1, 2, ..., n}, ith car starts at the coordinate
xi = 50m(i−1)+xrand

i where xrand
i is sampled from a

normal distribution with 1 standard deviation and 23.28
mean.

65m 148m 50m

45m

Fig. 2: Highway Merging Environment

C. State Transition Model

At any time frame t, there exists multiple environment
vehicles and 1 ego vehicle. Each vehicle has a binary variable
l(t) representing their current lanes. l(t) = 0 implies the
vehicle is on the highway lane, and l(t) = 1 implies the
vehicle is on the on-ramp merging lane. Two continuous
variables x(t) and v(t) represent x-coordinates and veloc-
ities, respectively. At each time frame, vehicles choose an
acceleration a(t), and a probability of lane change lp(t).

The evolution of longitudinal vehicle states is computed
as

x(t+∆t) = x(t) + v(t)∆t+ 1/2a(t)∆t2, (6)

v(t+∆t) = v(t) + a(t)∆t. (7)

For lane change, lane change probability lp(t) is accepted in
the range [−0.1, 1.1] and the new lane is calculated as

l(t+∆t) =



0 l(t) = 0

0 l(t) = 1 & lp(t) ≥ 1

0 l(t) = 1 & p < lp(t) & lp(t) > 0

1 l(t) = 1 & p ≥ lp(t) & lp(t) > 0

1 l(t) = 1 & lp(t) ≤ 0

(8)

This transition algorithm does not allow vehicles on the high-
way to change lanes and makes the on-ramp vehicles’ lane
change probabilistic, instead of deterministic. This allows
emerging skills to explore larger state spaces.

D. Observation Space

The ego vehicle can observe its own velocity vagent,
its own lane in one hot representation, a binary variable
representing if merging is legal or not, as well as the rel-
ative velocities, vrel, and distances, drel, of the surrounding
vehicles that are in the front, rear, front-left and rear-left. If
there is no vehicle to be observed in a possible location, vrel
is set to vagent, and drel is set to dmax.

These observations are normalized in the range [0, 1] as

vnormagent = (vagent − vmin)/(vmax − vmin) (9)

vnormrel = (vrel)/(vmax − vmin) (10)

dnormrel =

{
drel/dmax drel < dmax

1 drel ≥ dmax,
(11)

where vmax is the maximum allowed speed, which is set
to 29.16m/s, and dmax is the maximum observable distance,
which is set to 30m. The end of the merging region is treated
as a vehicle with zero velocity.

A real valued state space makes it hard to obtain distinct
skills due to the infinitely large space size. To solve this issue
and obtain skills as diverse as possible, we quantized each
real-valued state into 10 bins.



E. Action Space

There are 3 different action spaces for three different
agents. These agents are called the skills agent, the agent
that learns skill policies, low-level Deep Q-Network (DQN)
agent, which is used for comparison purposes, and finally
the proposed high-level DQN agent, which is trained with
hierarchical reinforcement learning and uses skill policies as
low-level policies (see Section II-D). We explain the training
of these agents in detail in the following sections. In this
section, we provide the action spaces they use.

• Skills Agent: Skills agent has two action selections.
The first is a, the acceleration, which is a real number
in the range [−amax, amax], where amax = 4.5m/s2.
The second is lp, the lane change probability, that takes
values in the range [−0.1, 1.1].

• Low-Level DQN Agent: This agent selects one of
the following actions, where Exp[λ] is defined as the
exponential distribution with rate parameter λ = 0.75.

– Maintain: Acceleration a is sampled from a
Laplace distribution with µ = 0, and b = 0.1, in
the interval [-0.25m/s2, 0.25m/s2]. Lane change
probability lp is set to 0.

– Accelerate: Parameter aact is sampled from
Exp[λ], and then used to set a to min{0.25 +
aact, 2}m/s2. lp is set to 0.

– Decelerate: aact is sampled from Exp[λ], and a is
set to max{−0.25− aact,−2}m/s2. lp is set to 0.

– Hard-Accelerate: aact is sampled from Exp[λ],
and a is set to min{2+aact, 3}m/s2. lp is set to 0.

– Hard-Decelerate: aact is sampled from Exp[λ],
and a is set to max{−2 − aact,−4.5}m/s2. lp is
set to 0.

– Merge: a is set to 0, and lp is set to 1.
• High-Level DQN Agent: This agent chooses a skill in-

dex i ∈ {1, 2, ..., nskills} as an action, and i is translated
in the skill zi. Then, the agent reduces to a skills agent
(see the first bullet point) and the acceleration a and
lane change probability lp actions are sampled from the
corresponding skill policy πzi(s).

F. Environment Vehicles

The vehicles in the environment have the same observation
space with the ego agent but they select actions using Algo-
rithm 1. In this algorithm, action definitions are the same as
the ones given in Section III-E. TTC is the time to collision,
calculated as drel/vrel, which are defined in Section III-D,
if vrel < 0, and is set to TTCd+1, otherwise. TTCd=5s
and TTChd=3s are the time limits for using the actions
Decelerate and Hard-Decelerate, respectively. All relative
values mentioned here and in Algorithm 1 are referring to
the vehicle in front.

G. Reward Function

Reward function r is the representation of a driver’s
preferences. In this study, it is defined as

r = c · wc + h · wh +m · wm + n · wnm, (12)

where w terms are the corresponding weights of each feature.
Features are defined below.

• c: Collision parameter. Takes the value −1 if the ego
vehicle collides with another vehicle or if it reaches
the end of the merging region without merging. The
parameter gets the value 0, otherwise.

• h: Headway parameter. Calculated as

h =


−1 dfront < dclose
dfront−dnom

dnom−dclose
dclose ≤ dfront < dnom

0 dnom ≤ dfront,

(13)

where dnom = 23.3m is the mean headway distance
in the dataset. dclose = 3.9m and dfar = 29.34m
are defined using the mean of bottom 10%, and top
10% subsets of vehicles. Finally, dfront is the relative
distance of the vehicle in front of the ego agent.

• m: Velocity parameter. Calculated as

m =

{
vagent−vnom

vnom
vagent ≤ vnom

vnom−vagent

vmax−vnom
vagent > vnom,

(14)

where vnom is the nominal velocity for the agent which
is set to 9.01m/s, the mean velocity observed in the
dataset (see Section III-A).

• nm: “Not Merging” parameter. Equals to -1 when the
agent is on the ramp, 0 otherwise. This parameter
discourages the ego agent to keep driving on the ramp
without merging.

IV. TRAINING AND SIMULATION RESULTS

A. Model Initialization

All network weights are initialized with Xavier normal
initialization [31] with a scaling of 1.

1) Skills Agent: Skills agent consists of a policy network,
value network, discriminator network and two Q-value net-
works. Each network has,

• two fully connected hidden layers with 64 neurons and
leaky-ReLU activation function with a slope of 1/100.

• a fully connected output layer.

An empty replay buffer Mskill with size nbuffer := 10000
is initialized. Number of skills, nskills, is set to 10.

Algorithm 1 Environment Vehicle Algorithm

1: action := Maintain
2: if TTC ≤ TTChd or drel ≤ dclose then
3: action := Hard-Decelerate
4: else if TTC ≤ TTCd then
5: action := Decelerate
6: else if vagent ≤ vnom then
7: action := Accelerate
8: end if



Fig. 3: Example skill 1.

2) DQN Agents: Both the low-level and high-level DQN
networks are implementations of DQN [27]. Q-value net-
works for both agents have

• three fully connected hidden layers with 64 neurons and
leaky-ReLU activation function with a slope of 1/100.

• a fully connected output layer.
Empty replay buffers Mlow and Mhigh with size 106 are

initialized for the low-level and high-level agents respec-
tively. The exploration rates, denoted as εlow and εhigh,
begin at 1 and linearly decrease until they reach 0.05. This
reduction takes place over 35% of the total training time,
equivalent to 70 seconds in a 200-second training session.
The model undergoes updates in the form of 8 gradient steps
at every 16 training steps, adhering to a learning rate of
0.9× 10−3 and employing a batch size of 512.

B. Training Skill Policies with Controlled Randomization

After the initialization of the networks, the skill policies
are trained for 10000 episodes, following the algorithm in
[26]. To enhance the efficacy of the training method, we
introduce controlled randomness: After a skill policy selects
the actions, the ego vehicle is updated with the replacement
actions atrain = a + arand and ltrainp = lp + lrandp ,
where arand is sampled from normal distribution with mean
0 and standard deviation 1, and lrandp is sampled from
uniform distribution in the range [-0.1,0.1]. The controlled
randomness elevates the quality and diversity of the acquired
skills, which increases their utility as low-level policies.

The skill policies obtained at the end of this process vary in
complexity. Some policies make the vehicle go to a specific
coordinate and come to a stop, while another one makes it
keep speeding up until a collision with another vehicle. It is
noted that a skill that permits a collision can be useful if the
high-level agent learns to pair this skill with another one,
where the combined skill-set provides a desired trajectory
without collision.

Two examples of the skill policies are given in figures 3
and 4. In these figures, the red vehicle is the ego vehicle, and
blue vehicles constitute the environment. The red vertical line
in figure 3 is the coordinate where the ego vehicle makes a
lane change. The top frame is the starting frame and each
following row represents the progression of the scenario,
from top to bottom.

In figure 3, the ego vehicle merges in between two vehicles
and stays in the middle of them until the end of the road.

Fig. 4: Example skill 2.

Fig. 5: HRL and Baseline Model’s Reward and Finish Rates
vs. Training Time

Such a skill can be utilized by the higher level agent for
merging, assuming that the relative velocity and distance
values are appropriate. In figure 4, the ego vehicle keeps
accelerating until it crashes into the end of the merging
region. Even though this might look like a counterproductive
strategy, it could be useful when paired with other skills. For
example, it could be used to quickly pass by a vehicle on its
left, which would then be followed by a merging skill.

C. Training Low and High-Level DQN Policies

Networks, exploration rates and memory buffers for DQN
agents are initialized as explained in Section IV-A. Both the
low-level and high-level DQN agents are trained for 200
seconds. The algorithm used to train the proposed high-level
DQN agent is similar to the low-level one [27] except for
some key differences: The high-level agent selects one skill
for every nstep = 16 steps and that skill is applied throughout
this duration. The selected skill z, the initial state s, the state
after nstep steps, s′fin, and the cumulative reward observed
during nstep steps, rcm constitute one experience sample for
the buffer. If the episode terminates before nstep steps are
completed, s′fin and rcm are calculated using the final state
before termination and the total reward observed so far.

In figure 5, the average rewards and finish rates of baseline
(Low-level DQN) and the proposed HRL (High-level DQN
using skills) models are displayed. Here, “finish rate” refers
to the percentage of episodes the ego agent reaches the end
of the road without any collisions. It is noted that the HRL
model selects one skill in every 16 steps to be applied for
that duration. This interval is necessary to take advantage
of skills, as skills represent trajectories that lead to a state
subset, and choosing a skill at each step would be redundant
and computationally inefficient.

To obtain the graphs in figure 5, 10 test episodes with
exploration rate set to zero is run every 0.2 seconds and the



averages of the episodic rewards and finish rates are stored.
Then, the running average of the last 15 seconds at each
point is calculated. To account for the randomness of the
initial model weights and of the environment, this process
was repeated 10 times. Figure 5 shows the mean of these
10 runs together with the accompanying error in the mean
bands.

It is observed that the skill-based model achieves higher
average rewards and finish rates, while also converging with
less training time than the baseline model. This is expected
since skill-based RL needs to learn only how to use the skills,
while baseline RL must learn to navigate the whole state
space. Furthermore, the training process of the skill-based
model appears to be more stable, as denoted by the smaller
error bands. It is noted that since the proposed HRL selects
new skills at every 16 steps, an exploratory move during
training lasts 16 steps, which negatively affects the rewards.
That is why although a non-zero exploration rate is used
during training, the rewards are calculated using tests with
zero exploration rate in figure 5.

V. CONCLUSIONS

In this study, a hierarchical learning model that uses
skills as actions is proposed for obtaining driving strategies.
These skills can be obtained without a predefined reward
function. This allows the skills to be reused in scenarios
with differing reward functions to generate driving strategies
with divergent behavior. Our simulation results show that,
skill-based policies provide higher performance, and they
can be obtained with less training compared to baseline
reinforcement learning methods.

It can be argued that selecting skills as actions to be
applied for a set amount of time instead of selecting primitive
actions at each time step aligns more closely with human
behavior. Humans have a delayed reaction time and take time
to analyze the environment before deciding what to do next,
which corresponds to the time the hierarchical model waits
between each skill selection. Furthermore, humans generally
do not consciously deliberate about specific motor skills,
such as turning the wheel, and instead make high-level plans
and execute the low-level actions automatically. These pro-
vide enough motivation to consider the proposed hierarchical
driving model with skills as a promising direction for human
behavior modeling in future transportation studies.
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