
MR.CAP: Multi-robot Joint Control and Planning
for Object Transport

Hussein Ali Jaafar, Cheng-Hao Kao, and Sajad Saeedi

Abstract—With the recent influx in demand for multi-robot
systems throughout industry and academia, there is an increasing
need for faster, robust, and generalizable path planning algo-
rithms. Similarly, given the inherent connection between control
algorithms and multi-robot path planners, there is in turn an
increased demand for fast, efficient, and robust controllers. We
propose a scalable joint path planning and control algorithm
for multi-robot systems with constrained behaviours based on
factor graph optimization. We demonstrate our algorithm on a
series of hardware and simulated experiments. Our algorithm is
consistently able to recover from disturbances and avoid obstacles
while outperforming state-of-the-art methods in optimization
time, path deviation, and inter-robot errors. See the code and
supplementary video for experiments1.

Index Terms—robotics, optimization, cooperative control

I. INTRODUCTION

IN recent years, there has been a growing demand for co-
hesive real-time multi-robot systems across various indus-

tries, including agriculture, warehousing, and hospitality [1].
These industries have increasingly relied on robotic systems to
enhance workflow efficiency and cost-effectiveness. Key chal-
lenges in these multi-robot systems revolve around problems
such as path planning, control, and estimation. Both planning
and control are inherently forward-looking tasks, making use
of the current state to predict information on future states. This
similarity drives an attempt to integrate these two into one,
which leads to reduced inter-module communication, resulting
in faster response times and holistically optimal results [2].

In multi-robot systems, the integration of path planning and
control into a cohesive real-time framework presents signifi-
cant challenges. These difficulties manifest as communication
overheads, computational inefficiencies, and scalability limits
with respect to the number of obstacles and robots. Problem
formulation and optimization is the key factor distinguishing
the existing solutions [3]. These solutions vary depending on
the problem specifics and the required quality. For collabora-
tive object transport [4], hierarchical quadratic programming
(HQP) [5] performs partial joint planning and control, where
the planning is based only on the current view of the sensor,
unlike our work, which takes into account the full map of
the environment. Further, scalability and handling uncertainties
remain open problems.

To address these challenges, this paper introduces an innova-
tive scalable end-to-end joint planning and control framework.
Our approach seamlessly integrates planning and control into
a unified optimization framework, harnessing the versatility

Toronto Metropolitan University, husseinali.jaafar@torontomu.ca
1https://h2jaafar.github.io/projects/mrcap/

− 2 0 2 4 6
X [m]

− 3

− 2

− 1

0

1

2

3

Y [m]

− 2 0 2 4 6
X [m]

− 3

− 2

− 1

0

1

2

3

Y [m]

MPCProposed Method

Deviation: 9.02 m
Time: 19.4 ms Time: 35.0 ms

Deviation: 9.04 m

Obstacle Obstacle

Fig. 1: Four robots moving a
payload in a complex environ-
ment. Our method outperforms
model predictive control, MPC
(constraint-based) in time and
path length.

of factor graphs [6]. The utilization of factor graphs, with its
probabilistic structure, equips our system to handle a wide
spectrum of scenarios. Notably, our approach prioritizes scal-
ability, making it easy to accommodate larger robot teams and
complex environments without introducing substantial com-
putational complexity. We rigorously evaluate our algorithm
against current state-of-the-art approaches, including model
predictive control (MPC) [7], [8] and HQP [5], with simulated
and hardware-based experiments. The formulation and experi-
ments are designed for collaborative object transport; however,
it is flexibly extendable to a wide range of problems. See the
project page for demos, a 3D example, and the code.

We focus on joint control and planning for collaborative
object transport. The initial formation is assumed to be known.
Fig. 1 shows a demo where four robots transport an object
while avoiding obstacles. Our method is faster than the MPC-
based methods [7] and generates a shorter path. We present
the literature review in Sec. II. Sec. III presents our method,
followed by experiments in Sec. IV, and conclusions in Sec. V.

II. LITERATURE REVIEW

Motion planning is a cornerstone of robotic systems. Plan-
ners can be categorized into several types: graph-based, e.g.
A* [9] and Dijkstra [10]; sampling-based, e.g. RRTs [11] and
PRM [12]; and trajectory optimizers, e.g. covariant Hamil-
tonian optimization for motion planning (CHOMP) [13], T-
CHOMP [14], Multigrid CHOMP [15], STOMP [16]. Opti-
mizers are typically probabilistic and use maximum likelihood,
as in [17], or maximum a posteriori (MAP), as in simultaneous
trajectory estimation and planning (STEAP) [2]. Some of

ar
X

iv
:2

40
1.

11
63

4v
1

 [
cs

.R
O

]
 2

2
Ja

n
20

24

https://h2jaafar.github.io/projects/mrcap/

these methods have high discretization costs, which can be
overcome by methods in [18], [19]. Additionally, to reduce
the complexity of the methods, and present trajectories with
fewer states, Gaussian process motion planning (GPMP) [20]
represents the continuous-time trajectory as a sample from a
Gaussian process. In many recent planning algorithms, factor
graphs play a key role, e.g. [21] and [22]. Planning in dynamic
settings (see ITOMP [23]) and lack of guarantee for optimality
and feasibility of paths remain an active research field.

In real-world applications, the collaboration of multiple
robots is inevitable. There are several research frontiers in
such systems, including cooperative exploration [24], local-
ization [25], [26], formation [27], planning [28]–[30], and
control [31]. A widely used controller is model predictive
control (MPC) [32]. An active research area in these frontiers
is to solve the problems in a distributed/decentralized manner,
as done in [33] for control, or in [34] for manipulation.

An extension to the multi-robot control and planning prob-
lem is object transport/pushing/manipulation [35], using mul-
tiple robots to transport an object such that it undergoes a de-
sired motion or tracks a desired path [36]. Various approaches
are used for cooperative object transport. Examples include
furniture moving algorithm [37], using virtual structures [38],
combining primitive controllers [4], hybrid controller with a
receding horizon planner [39], constrained optimization [5],
and various other interesting centralized and decentralized
algorithms [40], [41], [42], [43]. Data-driven models making
use of behavioral systems theory have also been proposed
for multi-robot quadrupedal locomotion [44], [45]. Distributed
scalable manipulation and planning inspired by separable
optimization variable ADMM (SOVA) methods have been
investigated in [46], [47]. An open problem is the capacity to
handle uncertainties, essential for real-world applications.

III. PROPOSED METHOD

We tackle a joint planning and control problem of a multi-
robot for object transport (see Fig. 2). The robots collab-
oratively manipulate the object centroid to keep it along a
planned path and avoid obstacles in an online fashion. For
obstacle avoidance, we require that the entire payload avoid the
obstacles along with the robots. The formation of the robots
is assumed to be known and remains fixed.

A. Motion Model

The task of joint planning and control is discretized into
N steps, i.e. waypoints. There are a total of J obstacles to
be avoided. There are two types of variables: the states x =
x0:N, xn = {xn, yn, θn}, n = 1...N (see Fig. 2) and controls
u = u0:N−1, un = {vn, ωn}. Control efforts and velocities in
the global frame v = v0:N−1, vn = {ẋn, ẏn, θ̇n} can easily
be related by using kinematic Jacobians.

We use a number of I differential drive robots, which can
be arranged in an arbitrary pattern underneath the payload.
Let the superscripts c and ri represent the centroid and the i-
th robot in the formation respectively, we have centroid poses
xc, centroid controls uc, robot poses xri , and robot controls
uri . Assuming small integration intervals and constant velocity

Fig. 2: Example of four robots
arranged to move the payload
placed at an arbitrary location
on the platform. The system is
capable of operating with more
robots, for heavy payloads. The
robots can have any starting
orientation when connected, as
the optimizer accounts for any
needed adjustments.

within each step, the motion model of a robot is obtained by
integration via the Runge-Kutta method [21]

xri
n+1 = xri

n + Ts

cos(θrin + ω
ri
n

2) 0

sin(θrin + ω
ri
n

2) 0
0 1

uri
n , (1)

∀i = 1, 2, . . . , I and ∀n = 1, 2, . . . , N .

Ts is the processing time step. The motion model of the
centroid takes the same form as Eq. (1). However, due to
the nonholonomic constraints imposed by the differential drive
robots used and the geometric constraints embedded in the
system design, we split the motion of the centroid into two
stages; translation and rotation. This eliminates the need for
Runge-Kutta approximations and improves the path shape of
the system. As such, the motion model of the centroid is:

xc
n+1 = xc

n + Ts

cos(θcn) 0
sin(θcn) 0

0 1

uc
n . (2)

Since there are no actuators on the payload, one could also
optimize for the centroid velocity vc

n in the world frame to
further simplify the problem. This means:

xc
n+1 = xc

n + Tsv
c
n . (3)

Once the control of the centroid is optimized, the robots
pivot until they reach their required orientations θrin and then
apply the controls uri

n :

θrin =

{
θcn, if centroid translates
θcn + ψi ± π/2, if centroid rotates

, (4)

uri
n =

[
1 li
0 1

]
uc
n . (5)

As discussed, the motion of the system is split into pure
rotation and pure translation. The required orientations of the
robots θrin and robot controls uri

n change depending on the
centroid’s motion. The sign in Eq. (4) depends on the direction
of the centroid’s rotation. The first and second columns of the
matrix in Eq. (5) correspond to the centroid’s translation and
rotation, respectively. Depending on the specific formation and
system dynamics of a system, Eq. (5) can be modified and
extended. The conversion between the centroid velocity vc

n

and centroid control uc
n is trivial and omitted for concise-

ness. These reductions allow for efficient optimization while
improving scalability dramatically. It also reduces the inter-
robot communication while still able to achieve impressive
performance, as shown in experiments.

B. Factor Graphs

We use factor graphs to perform efficient and unified
optimization of the joint control and planning problem. Fac-
tor graphs are a bipartite graphical structure that represents
a factorized function, such that variable relationships are
encapsulated by edges and factors. We represent our path
optimization problem as a MAP inference problem, and use
GTSAM [48], to perform inference over the factor graph.

We can represent the centroid poses, xc, and the cen-
troid velocity uc as variables in the factor graph. We de-
velop relationships between these variables and use sparse
optimizers to solve for our control efforts. We found that
Levenberg–Marquardt (LM) is a solver well-suited for most
of our use cases, as it provides optimization results of decent
accuracy and great robustness. LM solver provides fast and
local convergence guarantees [49], which are important to real-
time systems. As shown in Fig. 3, factors used are: fxn unary
pose factor, penalizes the system for deviating away from
the provided initial path; fun unary speed factor, constrains
the speed at which the system moves along the planned path
to the motor speed limit; fmn ternary motion factor, forces
the algorithm to adhere to the established motion model; and
f
obsj
n obstacle avoidance factor, penalizes the system for a path

nearing obstacles. The overall cost function is

J(x,u) =

N∑
n=k

exn +

N−1∑
n=k

(eun + emn) +

J∑
j=1

N∑
n=k+1

eobsjn , (6)

exn(x
c
n) = ||xc

n − xc,ref
n ||2Ωx

n
, (7)

eun(u
c
n) = ||uc

n − uc,ref
n ||2Ωu

n
, (8)

emn (xc
n,u

c
n,x

c
n+1) = ||xc

n+1(x
c
n,u

c
n)

∗ − xc
n+1||

2

Ωm
n
, (9)

eobsjn (xc
n) =

{
||1− dj

R ||
2

Ωobs
n
, dj < R

0, dj ≥ R
. (10)

||.|| is the Mahalanobis distance, with Ω terms representing
the information matrices of the variables. exn and eun are the
costs corresponding to factors fxn and fun , respectively. emn is
the cost corresponding to factors fmn , where xc

n+1(x
c
n,u

c
n)

∗

represents the estimated pose xc
n+1

∗ to which the centroid
moves over the next time step provided the optimized pose
xc
n and control uc

n. eobsn is the defined cost corresponding to
factors fobsn , where dj represents the centroid’s distance from
obstacle j and R represents the radius of a predefined safety
bubble that encapsulates the entire multi-robot system [30].
Factors can be added, removed, or modified depending on the
task requirements. Subtractions are overloaded by appropriate
manifold operations handled in GTSAM.

With proper selection of the covariances, the equivalent
effects of regulation matrix adjustments can be achieved and
terms that are commonly considered constraints (motion model
and obstacle) can be well approximated with soft constraints
as have been shown in similar factor graph implementations
in [30] and [21]. It was also proven in [50] that covariances
of 0 yield deterministic solutions that satisfy the boundaries
confined by the constraints. There are other alternatives uti-
lizing barrier functions [51], Lagrange multipliers, and dual

xc
0

fm0

xc
1

fm1

xc
2

fm2

xc
3

uc
0 uc

1 uc
2

fu0 fu1 fu2

fx0 fx1 fx2 fx3

fobs11 fobs12 fobs13

Fig. 3: Multi-robot control and planning factor graph with cen-
troid pose variables and centroid control variables. Factors and
their associated costs are defined in the text. Since estimation is
not the emphasis of this work, only the variables at the current
state and future states are used in the optimization problem for
each iteration. A finite horizon is used in our case, extending
to the terminal state to ensure long-term stability.

graph optimization [52], but we find the formulation presented
above sufficient for our application.

To analyze the complexity, we perform a worst-case com-
plexity analysis on our approach and MPC. For our approach,
we create a factor graph with O(2n + 4n) complexity, 2
variables, and 4 factors are added at each step, n. The LM
solver with multifrontal QR decomposition can be approx-
imated Õ(ϵ−2) [53] where Õ(.) indicates the presence of
logarithmic factors in ϵ. Post-optimization extractions take
O(I), as such, Õ(nϵ−2(n2 + m) + nI) where m are solver
parameters. We can develop the MPC formulation in a similar
manner, with the complexity of Augmented Lagrangian solver
taken as O(|log(ϵ)|2 ϵ−2) [54], the complexity becomes
O(nh(| log(ϵ) |2ϵ−2)+nI), where h are the horizon steps. Both
methods demonstrate polynomial scaling with the number of
steps and an inverse-square relationship with error tolerance.
However, our emphasis on scalability concerns the number
of robots and environmental complexity rather than just task
steps, N. In these aspects, our approach exhibits a linear
behavior, and yields shorter optimization times compared to
MPC, effectively enhancing performance for larger numbers
of robots and more complex environments.

IV. EXPERIMENTS

Experiments are performed in three environments: i) a pure-
simulated environment, ii) a physics-based Gazebo simula-
tion [55], and iii) real-world hardware. The performances are
evaluated by five metrics: 1) average deviation, 2) inter-robot
errors, 3) optimization time, 4) path length, and 5) distance
to goal. The average deviation indicates the average distance
between each state and its corresponding state on the initial
path estimate. The initial path is a straight-line path from the
start to the goal point. It will be optimized eventually. We
assume that initial robot formation is performed beforehand,
and as such, the inter-robot error describes the amount by
which distances between robots change when no payloads are
present. This measures the impact of Eq. (5) on the system.
The optimization time measures the time taken to optimize
the paths and obtain individual robot control efforts. All

TABLE I: Table outlining the benefits of using penalty (MPC-
P) vs equalities (MPC-C) for the MPC approach. We selected
the option that provided the best advantage to MPC. We also
compare gradient (G) to gradient-free approaches (GF).

MPC-C MPC-P
G GF G GF

Time (ms) 34.93 89.28 23.95 55.584
Deviation (m) 0.02 0.02 0.08 0.10

Distance to Goal (m) 0.003 0.028 0.006 0.062
Path Length (m) 9.04 8.99 9.37 9.15

Obstacle Free ✓ ✗ ✓ ✗

experiments were run on an Intel i7-10700 at 4.8 GHz, with 16
GB DDR4 memory. The path length is a metric for assessing
the system’s ability to reach the end state following the shortest
path, even when perturbed or blocked by an obstacle. The
distance to goal metric evaluates the system’s ability to reach
the goal and ensures short paths do not get over-prioritized.

A. Experiment 1: Simulation

Simulations in Experiment 1 are designed to test the scal-
ability by increasing the number of robots, from 4 to 128,
and the complexity of the environment by introducing more
obstacles. It is implemented in C++, with metrics including
optimization time, path deviation, and path length.

Here the baseline is model predictive control (MPC), based
on NLopt [56]. We implement two MPC algorithms; gra-
dient and gradient-free approaches: augmented Lagrangian
AUGLAG [7] and constrained optimization by linear approx-
imation COBYLA [8]. The MPC was designed to handle
system requirements as either constraints or penalties (penal-
ties are implemented similarly to our approach), where the
former provides more accurate results and the latter optimizes
faster. We define these as MPC-C and MPC-P, respectively. As
shown in Table I, both approaches are used in our comparative
analysis. The best parameters for all algorithms were chosen
by performing an exhaustive search over all the parameters
within 2000 iterations (see supplementary), such that the
distance to the goal is below 0.06m and the optimization time
does not exceed 80ms. In total, 20580 parameter sets were
examined. See Table II for the best parameters.

Robots traversed from (-2, 0) to (7, 0) with obstacles at
(1, 0.4), (2, -0.4), (3, -0.6), (4, 0.7) (5, 0.4), all in meters.
We measured optimization time, average deviation from the
initial path, and the path length. Results are plotted in Fig. 4.

4 8 16 32 64 128
Number of robots

0

10

20

30

40

50

60

70

80

ti
m

e
 [

m
s]

MR.CAP

MPC-C

MPC-P

1 2 5 7
Number of obstacles

0

10

20

30

40

50

60

70

80

ti
m

e
 [

m
s]

MR.CAP

MPC-C

MPC-P

Fig. 4: Results of Experiment 1 showing the scalability with
respect to the number of (left) robots, and (right) obstacles.

The MPC results in the figure are obtained from MPC-C and
MPC-P with gradient-based solvers, as they have been proven
to be faster and more reliable (see Table I).

As shown in Fig. 4, under the reduced formulation of the
problem, the factor graph representation consistently outper-
forms MPC-C and MPC-P in all experiments. The optimiza-
tion time of the three algorithms all scaled linearly in the
robot scalability experiment, Fig. 4-(left). Such increases in
times are associated with some overhead computing individual
robot controls that increase with the number of robots which
are minimal and can be further optimized.

It can also be seen from Fig. 4-(right) that the factor graph
representation has allowed the optimization to scale better
as more obstacles are added to the environment. We notice
the optimization time being 38.4%, 37.9%, 52.1% and 76.1%
shorter than those of MPC-C, and 17.1%, 12.2%, 23.7% and
56.1% shorter than those of MPC-P in this obstacle scalability
experiment. Our approach consistently reaches the goal, while
MPC-C’s distances to the goal are 0.003m, 0.001m, 0.002m,
and 0.002m, and MPC-P’s 0.002m, 0.006m, 0.006m, and
0.01m. One downside to our approach is that it yields path
lengths longer than MPC-C’s by 2.99%, 3.72%, and 7.16%,
and 6.56% and MPC-P’s by 1.73%, 0.81%, 3.38%, and 3.06%.
Increasing obstacles from 1 to 2, the optimization times for
our approach, MPC-C, and MPC-P increased by 10.1%, 9.2%,
and 3.95%. Increasing from 2 to 7, the optimization times
increased by another 5.84%, 174.4%, and 111.5%

B. Experiment 2: Gazebo Simulation

In addition to MPC, we compare with another baseline, hier-
archical quadratic programming (HQP) [5]. Since the code for
HPQ is not open-source, we used the same Gazebo [55] world
with identical start/goal positions and geometric parameters
described in [5] to run our algorithm. We compare inter-robot
errors, as deviation and temporal results were not provided
in [5]. As shown in Table III, our approach outperforms

TABLE II: The best parameters for the algorithms by exhaus-
tive search. The parameters serve as weights/covariances onto
the associated errors in the cost function.

Parameters Ours (Covariance) MPC-C (Weight) MPC-P (Weight)

State (1m2, 1m2, 0.2rad2)×10−1 1m−2 1m−2

Terminal (1m2, 1m2, 0.2rad2)×10−1 1×103m−2 1m−2

Control (1m2s−2, 1m2s−2)×10−1 1×10−3m−2s2 1m−2s2

Motion Model (1m2, 1m2, 0.2rad2)×10−4 – 1×10−1m−2

Obstacle 0.01 – 1
Horizon – 2 steps 2 steps

Relative Tolerance 1×10−2 1×10−4 1×10−2

Absolute Tolerance 1×10−2 1×10−4 1×10−2

Error Tolerance 1×10−2 1×10−4 1×10−2

TABLE III: Simulation Results: Payload navigating from (0,0)
to (5,3) in Gazebo environment. The length of the initial path
estimate is 5.831m. MPC-C (constraint), MPC-P (penalty), and
hierarchal quadratic programming HQP [5] are shown.

Ours MPC-C MPC-P HQP [5]

Avg. Deviation (m) 0.015 0.017 0.019 -
Max Inter-Robot Error (m) 0.016 0.05 0.05 0.017
Path Length (m) 5.824 5.825 5.825 -
Dist. to Goal (m) 0.017 0.026 0.023 -

−2 −1 0 1 2 3
X [m]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y
 [

m
]

Robot Trajectories

BC

B04

B01

B02

B03

0 50 100 150 200 250 300 350
Time [s]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

D
e
v
ia

ti
o
n
 [

m
]

Inter-robot Errors

e41

e42

e43

e12

e13

e23

−2 −1 0 1 2 3
X [m]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Y
 [

m
]

Robot Trajectories

BC

B04

B01

B02

B03

Obstacles

0 50 100 150 200 250 300 350 400
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
e
v
ia

ti
o
n
 [

m
]

Inter-robot Errors

e41

e42

e43

e12

e13

e23

−2 −1 0 1 2 3
X [m]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Y
 [

m
]

Robot Trajectories

BC

B04

B01

B02

B03

Failure

Obstacles

0 50 100 150 200 250 300 350 400
Time [s]

0.000

0.001

0.002

0.003

0.004

D
e
v
ia

ti
o
n
 [

m
]

Inter-robot Errors

e41

e42

e12

Fig. 5: Hardware trial results. A payload was pushed by four Turtlebot3 Waffle Pi robots from random start points near the
origin (0, 0) to the same goal (3, 0). The three columns correspond to the three types of tasks: (left column) reaching the goal
while undergoing large disturbances, (middle column) obstacle avoidance, and (right column) robot failure during obstacle
avoidance. The system is consistently able to recover and reach the goal within 1cm accuracy.

HQP in terms of inter-robot errors, and MPC in average path
deviation, inter-robot error, and distance to goal.

C. Experiment 3: Real-world Robots

As shown in Fig. 1, four TurtleBot3 Waffle Pi robots are
deployed with an object lifted on top of them. These robots
are connected through revolute joints to the object, as they
allow for fixed geometry of the system while also maintaining
the system’s ability to fully rotate. ROS2 is used as the
communication middleware. We obtain robot poses from a
Vicon motion capture system with 1mm accuracy. We present
three scenarios to evaluate the performance and demonstrate
the robustness of the framework: i) disturbances, ii) obstacle
avoidance, and iii) robot failure. The results are presented in
Fig. 5. The rows show robot paths and the inter-robot errors.
Fig. 5-(left column) shows the case where the system was
disturbed by 40cm, at time 30 sec, while executing a path and
was able to recover from the disturbance within a few steps to
reach the goal with sub-1 cm accuracy. Fig. 5-(middle column)
shows the system tasked with obstacle avoidance while on a
mission, and successfully avoided the obstacles reaching the
goal point within 1cm accuracy. Fig. 5-(right column) shows
a robot failure. One robot was disabled and removed from the
trial. The system was able to compensate and reach the goal
within 1cm accuracy.

V. CONCLUSIONS

In this paper, we proposed a novel technique for multi-
robot joint planning and control, leveraging the scalability
and robustness of factor graphs and the inherent forward-
looking nature of the planning and control problems. We
make use of a single optimization to reduce optimization
times, which is further aided by reducing the dimensionality

to yield a highly scalable approach. We compare our approach
against state-of-the-art and consistently outperformed previous
approaches. Furthermore, our approach is highly extensible.
Adding new constraints on the system is a matter of simply
adding factors to the graph, and dynamics can be modified
through simple modification of the motion model while the
optimization remains the same. Comparative results show an
improvement in optimization time, observing a reduction of
50.1% in scalability experiments. Our algorithm consistently
reduced the average path deviation and optimization time
and produced a shorter distance to the goal. Similarly, our
hardware experiments showed the robustness of our approach,
with demonstrations of disturbances, obstacle avoidance, and
robot failures. Scalability experiments showed that the com-
putation time does not significantly increase with increased
environment complexity. This is due to both the formulation
and the use of factor graphs; as MPC approaches made use
of similar formulation and observed similar scaling, while the
factor graph allowed us to outperform MPC.

In future works, we will integrate Gaussian processes
into the control problem to allow for smoother paths and a
continuous-time representation. Another direction is extending
the work to motions with higher degrees of freedom.

REFERENCES

[1] L. E. Parker, Multiple Mobile Robot Teams, Path Planning and Motion
Coordination, pp. 5783–5800. Springer, 2009.

[2] M. Mukadam, J. Dong, F. Dellaert, and B. Boots, “Steap: simultaneous
trajectory estimation and planning,” Autonomous Robots, vol. 43, no. 2,
pp. 415–434, 2018.

[3] T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of
distributed optimization methods for multi-robot systems,” ArXiv,
vol. abs/2103.12840, 2021.

[4] G. Habibi, Z. Kingston, W. Xie, M. Jellins, and J. McLurkin, “Dis-
tributed centroid estimation and motion controllers for collective trans-
port by multi-robot systems,” in ICRA, pp. 1282–1288, 2015.

[5] D. Koung, O. Kermorgant, I. Fantoni, and L. Belouaer, “Cooperative
multi-robot object transportation system based on hierarchical quadratic
programming,” IEEE RA-L, vol. 6, no. 4, pp. 6466–6472, 2021.

[6] F. Dellaert and M. Kaess, Factor Graphs for Robot Perception. Foun-
dations and Trends in Robotics Series, Now Publishers, 2017.

[7] A. R. Conn, N. I. M. Gould, and P. Toint, “A globally convergent aug-
mented Lagrangian algorithm for optimization with general constraints
and simple bounds,” SIAM Journal on Numerical Analysis, vol. 28,
pp. 545–572, 1991.

[8] M. J. D. Powell, A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation, pp. 51–67.
Dordrecht: Springer Netherlands, 1994.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE SMC, vol. 4,
no. 2, pp. 100–107, 1968.

[10] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: theory, algorithms,
and implementation. MIT press, 2005.

[11] S. Lavalle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” Algorithmic and Computational Robotics, 2000.

[12] L. E. Kavralu, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE T-RO, 1996.

[13] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” IJRR, vol. 32, no. 9-10,
pp. 1164–1193, 2013.

[14] A. Byravan, B. Boots, S. Srinivasa, and D. Fox, “Space-time functional
gradient optimization for motion planning,” in ICRA, pp. 6499 – 6506,
05 2014.

[15] K. He, E. Martin, and M. Zucker, “Multigrid chomp with local smooth-
ing,” in 2013 13th IEEE-RAS (Humanoids), pp. 315–322, 2013.

[16] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in 2011
IEEE ICRA, pp. 4569–4574, 2011.

[17] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in ICML, p. 1049–1056, 2009.

[18] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning as
probabilistic inference using gaussian processes and factor graphs.,” in
RSS, vol. 12, 2016.

[19] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” IJRR, vol. 33, no. 9,
pp. 1251–1270, 2014.

[20] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion plan-
ning,” in 2016 IEEE (ICRA), pp. 9–15, 2016.

[21] B. Bazzana, T. Guadagnino, and G. Grisetti, “Handling Constrained
Optimization in Factor Graphs for Autonomous Navigation,” 2022.

[22] M. Xie, A. Escontrela, and F. Dellaert, “A factor-graph approach
for optimization problems with dynamics constraints,” arXiv preprint
arXiv:2011.06194, 2020.

[23] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory
optimization for real-time replanning,” in ICAPS, 2012.

[24] A. Patwardhan and A. J. Davison, “A distributed multi-robot framework
for exploration, information acquisition and consensus,” arXiv preprint
arXiv:2310.01930, 2023.

[25] R. Murai, J. Ortiz, S. Saeedi, P. H. J. Kelly, and A. J. Davison, “A Robot
Web for Distributed Many-Device Localisation,” IEEE T-RO, vol. 40,
pp. 121–138, 2024.

[26] I. Spasojevic, X. Liu, A. Ribeiro, G. J. Pappas, and V. Kumar, “Ac-
tive Collaborative Localization in Heterogeneous Robot Teams,” arXiv
preprint arXiv:2305.18193, 2023.

[27] L. Guerrero-Bonilla, A. Prorok, and V. Kumar, “Formations for Resilient
Robot Teams,” IEEE RA-L, vol. 2, no. 2, pp. 841–848, 2017.

[28] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in IROS, pp. 11785–11792,
2020.

[29] M. Cao, K. Cao, S. Yuan, K. Liu, Y. L. Wong, and L. Xie, “Path Planning
for Multiple Tethered Robots Using Topological Braids,” RSS, 2023.

[30] A. Patwardhan, R. Murai, and A. J. Davison, “Distributing collaborative
multi-robot planning with gaussian belief propagation,” IEEE Robotics
and Automation Letters, vol. 8, no. 2, pp. 552–559, 2023.

[31] A. Pierson, A. Ataei, I. C. Paschalidis, and M. Schwager, “Cooperative
multi-quadrotor pursuit of an evader in an environment with no-fly
zones,” in ICRA, pp. 320–326, May 2016.

[32] D.-N. Ta, M. Kobilarov, and F. Dellaert, “A factor graph approach to
estimation and model predictive control on unmanned aerial vehicles,”
in 2014 ICUAS, pp. 181–188, 2014.

[33] A. D. Saravanos, Y. Li, and E. A. Theodorou, “Distributed Hierarchical
Distribution Control for Very-Large-Scale Clustered Multi-Agent Sys-
tems,” RSS, 2023.

[34] L. Yan, T. Stouraitis, and S. Vijayakumar, “Decentralized Ability-Aware
Adaptive Control for Multi-Robot Collaborative Manipulation,” IEEE
RAL, vol. 6, no. 2, pp. 2311–2318, 2021.

[35] Y. He, M. Wu, and S. Liu, “An optimisation-based distributed coop-
erative control for multi-robot manipulation with obstacle avoidance,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 9859–9864, 2020.

[36] Y.-H. Liu, S. Arimoto, and T. Ogasawara, “Decentralized coopera-
tion control: Non-communication object handling,” in ICRA, vol. 3,
pp. 2414–2419 vol.3, 1996.

[37] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in IROS, vol. 1, pp. 235–242 vol.1, 1995.

[38] M. Lujak, “A Distributed Coordination Model for Multi-Robot Box
Pushing,” IFAC Proceedings Volumes, vol. 43, no. 4, pp. 120–125, 2010.

[39] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus, “Local motion
planning for collaborative multi-robot manipulation of deformable ob-
jects,” in ICRA, pp. 5495–5502, 2015.

[40] Z. Wang and M. Schwager, “Multi-robot manipulation with no commu-
nication using only local measurements,” in CDC, pp. 380–385, 2015.

[41] Z. Wang and M. Schwager, “Kinematic multi-robot manipulation with
no communication using force feedback,” in ICRA, pp. 427–432, 2016.

[42] Z. Wang and M. Schwager, “Force-amplifying n-robot transport system
(force-ants) for cooperative planar manipulation without communica-
tion,” IJRR, vol. 35, no. 13, pp. 1564–1586, 2016.

[43] P. Culbertson and M. Schwager, “Decentralized Adaptive Control for
Collaborative Manipulation,” in ICRA, pp. 278–285, 2018.

[44] R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames, and K. A. Hamed,
“Distributed data-driven predictive control for multi-agent collaborative
legged locomotion,” in ICRA, pp. 9924–9930, 2023.

[45] R. T. Fawcett, K. Afsari, A. D. Ames, and K. A. Hamed, “Toward a
data-driven template model for quadrupedal locomotion,” IEEE RA-L,
vol. 7, no. 3, pp. 7636–7643, 2022.

[46] O. Shorinwa and M. Schwager, “Scalable collaborative manipulation
with distributed trajectory planning,” in IROS, pp. 9108–9115, 2020.

[47] O. Shorinwa and M. Schwager, “Distributed contact-implicit trajectory
optimization for collaborative manipulation,” in MRS, pp. 56–65, 2021.

[48] Frank Dellaert and GTSAM Contributors, “GTSAM.” https://github.
com/borglab/gtsam, May 2022.

[49] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM, vol. 11, no. 2, pp. 431–441, 1963.

[50] S. Yang, G. Chen, Y. Zhang, H. Choset, and F. Dellaert, “Equality
constrained linear optimal control with factor graphs,” in ICRA, IEEE,
May 2021.

[51] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback MPC
for torque-controlled legged robots,” in IROS, pp. 4730–4737, 2019.

[52] M. Xie, A. Escontrela, and F. Dellaert, “A factor-graph ap-
proach for optimization problems with dynamics constraints,” ArXiv,
vol. abs/2011.06194, 2020.

[53] E. H. Bergou, Y. Diouane, and V. Kungurtsev, “Convergence and
Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse
Problems,” Journal of Optimization Theory and Applications, vol. 185,
pp. 927–944, June 2020.

[54] G. N. Grapiglia and Y.-x. Yuan, “On the complexity of an augmented
Lagrangian method for nonconvex optimization,” IMA Journal of Nu-
merical Analysis, vol. 41, pp. 1546–1568, 07 2020.

[55] Open Robotics, “Gazebo: Simulate before you build.” https://gazebosim.
org/home, 2023.

[56] S. G. Johnson, “The NLopt nonlinear-optimization package.” http://
github.com/stevengj/nlopt, 2007.

https://github.com/borglab/gtsam
https://github.com/borglab/gtsam
https://gazebosim.org/home
https://gazebosim.org/home
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt

	Introduction
	Literature Review
	Proposed Method
	Motion Model
	Factor Graphs

	Experiments
	Experiment 1: Simulation
	Experiment 2: Gazebo Simulation
	Experiment 3: Real-world Robots

	Conclusions
	References

