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ABSTRACT

Point set visualization is required in lots of visualization techniques.
Scatter plots as well as geographic heat-maps are straightforward
examples. Data analysts are now well trained to use such visualiza-
tion techniques. The availability of larger and larger datasets raises
the need to make these techniques scale as fast as the data grows.
The Big Data Infrastructure offers the possibility to scale horizon-
tally. Designing point set visualization methods that fit into that
new paradigm is thus a crucial challenge. In this paper, we present
a complete architecture which fully fits into the Big Data paradigm
and so enables interactive visualization of heatmaps at ultra-scale.
A new distributed algorithm for multi-scale aggregation of point set
is given and an adaptive GPU based method for kernel density es-
timation is proposed. A complete prototype working with Hadoop,
HBase, Spark and WebGL has been implemented. We give a bench-
mark of our solution on a dataset having more than 2 billion points.

Index Terms:
Human-centered computing-Heat maps;
computing-Information visualization

Human-centered

1 INTRODUCTION

Point set visualization is without any doubt a key weapon in the
arsenal of a data visualizer. The John Snow Map of deaths due to
the 1854 London cholera epidemic is typically used to demonstrate
the efficiency of point set visualization. By visually detecting a
higher density of points (i.e., concentration of death) near a pump
in the Soho district, John Snow was able to find that the source of
the epidemic was infected water from that pump. The Figure 1.a
shows a point set visualization of the John Snow dataset. If we
zoom out the Figure 1.a (Fig. 1.c), one can see that due to point
occlusion, it becomes harder to detect regions with high density of
points. In [16], Kindlman et al. have proposed a method to evaluate
the efficiency of a visualization technique. They formalize the fact
that a change in the visualization must be proportional to a change
in the data. According to the measures they introduce, standard
point set visualization technique is not efficient. Indeed, even if
the data does not change between Figure 1.a and Figure 1.c, the
visualization varies significantly.

To solve this occlusion problem, many techniques have been set
up. The core idea of all of them is first to count the number of points
¢;,j that are drawn at the same location i, j on the screen. Then one
point p; ; is rendered for each unique location i, j and ¢; ; is used
to determine the color of p; j. In the literature, the term heatmap
is often used to describe that technique. More elaborate heatmap
visualizations construct a continuous function by applying a convo-
lution on ¢; ;. This continuous function is called a density function.
In the Figure 1.c, one can see that density function eases identifica-
tion of dense regions on the map, even when there is plenty of point

*emails: {aperrot,bourqui,hanusse,flalanne,auber} @labri.fr

() (d

Figure 1: Point set visualization of the 1854 London cholera epi-
demic. (a) 512x512 plots of the original point set, (b) 512x512
visualization using a density function, (c) 256x256 rendering, due
to occlusion it is difficult to detect dense regions, (d) 256x256
heatmap, even at low resolution, dense regions are easy to detect.

occlusion (Fig. 1.d). Thus, as discussed in [16], density function
visualization helps to solve the data change vs visualization change
problem illustrated by Figure 1.

Density functions have been used in a large number of applica-
tions. For instance, in [31, 6], it enables the analysis of eye-tracking
data. Analysis of geolocalised data is also often done with density
function visualization [14, 11, 19]. In this case, the heatmaps are
displayed on top of a geographical map.

The main motivation of our research was to provide a fully
working solution for standard Big Data Infrastructure (BDI). The
Big Data ecosystem enables to process big datasets, but introduces
some constraints. From an algorithmic perspective, it is preferable
to scan the data a constant number of times. Moreover, the data



has to be stored in a distributed way. In order to bound latency,
the entire dataset must not be transferred to the location where the
visual analysis is done. A pre-computation can be done in order to
allow aggregate or part of the dataset to be transferred on the user’s
computer. For all these reasons, visualization of Big Data is best
done in a web browser. This enables visualizations to be stored on
a server and sent on demand.

The contribution of this article is a complete fully usable archi-
tecture for heatmap visualization at large scale. All the constraints
mentioned above have been taken into account to allow its direct
integration into modern Big Data Infrastructure. To sum up, for a
point set of size n stored within a distributed system of k nodes,
there is a preprocessing in time 0(%&’(") x i) when the points are
uniformly spread on the plane, where i is the number of levels of
detail desired. It enables to guarantee the approximation of the den-
sity function and the quality of visualization. Such a preprocessing
step guarantees a constant size message transfer for any interaction
event (zoom in/out or pan). Then, the client computes the visual-
ization in O(p) time, with p the number of pixels on the screen. In
a theoretical model of computation, the interaction with our system
is in constant time. In practice, our experiments show the relevance
of our proposition.

The paper is organized as follows. First, we give an overview
of the most related work. Second, we present an overview of the
architecture we have set up. We then provide the algorithm details.
We conclude by a discussion supported by the benchmark we have
done with datasets having more than a billion points.

2 PREvViOus WORK
2.1 Classical density visualization

The main technique used in the literature to compute the den-
sity function of a point set is called Kernel Density Estimation
(KDE) [28]. Introduced independently by Rosenblatt [27] and
Parzen [26], KDE was first used to estimate the density function
of a random variable. Using a kernel function, one can generate
a continuous function from a discrete point set. Follow the equa-
tion of the KDE and the equation of the Gaussian kernel, the most
commonly used kernel:

KDE(x) = ! i wifs(dist(x,x;))  fo(x) = 1 _ 2
i3

oV2an

Unformally, a point of weight w spreads a weight wfs(d) for
any location at distance d. The bigger o is, the further a point will
spread its weight. Visually, this represents the amount of “smooth-
ing” of the density function. In the Figure 2 one can see the density
function computed using the black points as the original point set.
In this Figure, we used a gaussian kernel.

One can find lots of applications of kernel density estimation in
the literature. The graph splatting technique [29] introduced by van
Liere and de Leeuw uses it to visualize node density in a graph.
In that paper, the density function is called a “splat field” and is
computed using the OpenGL texture rendering engine and the ac-
cumulation buffer. In [17], Lampe and Hauser have proposed an-
other way to compute Kernel Density Estimations with OpenGL,
using shaders instead of textures. In both of these works, the den-
sity function is only an estimation obtained by limiting the distance
at which a point contributes to the density function.

Based on those works, Zinsmaier and Brandes proposed a level-
of-detail visualization for large graphs [36]. In that work, the KDE
technique is used to show nodes density. The sources and targets
of edges are then moved to the nearest local maximum of the node
density function using a hill-climbing algorithm. A similar idea
has been used for edge bundling with Kernel Density Estimation by
Hurter et al. [15].

When using KDE to visualize density function, one needs to
compute the density value for every pixel of the visualization. The

complexity of this operation is O(n * p), with n being the number
of points in the dataset and p the number of pixels in the visualiza-
tion. For instance, computing the exact density function of 1 mil-
lion points on a 2 mega pixels screen (1920x1080) requires 2 tril-
lion operations. This complexity issue makes KDE a candidate for
parallel computing. In addition to the GPU techniques and approx-
imation method cited earlier, Michailidis and Margaritis [25, 24]
compared KDE implementations with different parallel computing
frameworks and Lukasik [20] compared parallel implementations
with MPI. Such methods are essential to enabling interactive visu-
alization on large point sets.

2.2 Enabling density visualization for big datasets

In the following we present methods that enable to reduce the size
of the original point set before starting the evaluation of the den-
sity. These techniques can be used as a pre process of techniques
presented above.

Sampling: Sampling is a technique that removes data points
from the dataset in order to reduce its size. It is successfully used
to reduce overplot in scatterplots. Mayorga and Gleicher [21] used
it in conjunction with KDE to help visualize density in cluttered
scatterplots. Chen et al. [4] also used an adaptive hierarchical re-
sampling scheme to abstract multi-class scatterplots.

Clustering: Contrary to sampling, clustering merges points, in-
stead of removing them, and represents the merged data by a new
point. Clustering is often repeated to produce a hierarchical rep-
resentation of the data called a cluster tree [1, 2, 8, 10]. One can
select an antichain on this tree to serve as dataset abstraction. The
selection can depend on view parameters such as zoom and posi-
tion, enabling interactive visualization.

Binned Aggregation : In ImMens [19], Liu et al. avoid the cost
of the KDE computation by using binned aggregation. This pro-
cess groups data points into predefined “bins” by partitioning the
data space. The bin in which a data point is grouped does not de-
pend on other points. It can thus be computed in constant time. This
technique has the advantage to be fast to compute and can easily be
computed in parallel, since the binning process is independent for
each point. This technique can be considered as a case of geomet-
rical clustering. The disadvantage of this technique is that it creates
edge effects at the border of the bins. Li et al. [18] applied KDE to
binned points to produce a multilevel heatmap visualization.

Out of core visualization: In order to scale up to bigger
datasets, it is essential to use out of core architectures. This kind of
architecture is useful for multilevel visualization, as demonstrated
by Hadwiger et al. [13]. Moreover, the Map-reduce framework is
useful for distributing existing algorithms [30]. Using a specialized
system, it enables to process spatial datasets and render images of
heatmaps [9]. Similarly, Meier et al. [23] have designed an appli-
cation where the data is stored on a server and delivered on the
fly. There are no pre-rendered images and point density function
are computed on the client side. Every datapoint is stored with a
tile-based index for every zoom-level, enabling fast retrieval of a
portion of the map. However, as the authors themselves emphasize,
their method is not efficient for large datasets.

None of these methods provide guarantees both toward big data
constraints and quality of visualization for large datasets. In the
following we propose a technique that shares similar ideas and that
enables to scale to datasets with billions of elements, while con-
serving guarantees toward the quality of the visualization.

3 PROCESS OVERVIEW

The interactive visual exploration of density functions at large scale
requires using distributed storage and distributed computation as
well as GPU intensive computation. In this section we present an
overview of our technique (see Figure 3). The technical details for
each step are given in the following sections.
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Figure 2: On image (a), the density function visualization of the original point set. The black dots represent the data points. The density has
been computed using Kernel Density Estimation with a Gaussian kernel. On image (b), the density function visualization of the corresponding
point set for Approximate Kernel Density Estimation. The closest points have been merged into a single point whose weight is the sum of
the weights of the merged points. For instance, points A, B and C have been merged into A’. The weight of A’ is the sum of the weights of
A, B and C, which is 3. The differences between the two generated pictures are almost invisible to the naked eye. Using the SSIM image
comparison algorithm [32], we obtain a similarity score of 0.959, which corresponds to a “good” rating, according to Zinner et al. [35]. Image
(c) shows the result of another merging pass. Points B’ through F’ have been merged into A”, whose weight is now 10. Differences in the
density visualization become visible because the grouping distance is high in respect to the screen space and to the ¢ used for the KDE.
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Figure 3: Overview of the system’s different steps. Each step is pre-
sented with its role and the technology we used. The data stream is
first stored in a distributed file system before aggregation. The ag-
gregation is realized on a distributed computing cluster. The result
of the aggregation step is stored in a distributed NoSQL database.
A front server provides access to the stored aggregation via a REST
interface. The client web application requests tiles from the server
and render them using an adaptive rendering algorithm. Thanks to
the aggregation step, the amount of data transferred is bounded.

Our solution is based on the use of a multi-scale approximation
of density functions. For that purpose, we compute several lev-
els. The level,,, is the entire point set and level;_; is obtained by
merging points of level;. Thus, the more aggregation steps we do,
the lowest the number of points in the final level, levely. This multi-
scale approach enables us to guarantee the quality and processing
time of our approximate density function visualization.

To work at large scale all the data is stored into a distributed
file system and we designed a distributed algorithm to automati-
cally generate aggregated levels. Combining data distribution and
distributed computing enables to run computations directly on the
computers containing the data. Even if they are aggregated, the gen-
erated levels can be very large, thus we also store them into a dis-
tributed filesystem through a NoSQL database. Distributed storage
as well as distributed computation are the key features that enable
our solution to scale to large datasets.

Once the levels have been computed, the next step is to compute
and display the approximate density function on the screen. In our
solution that stage is achieved on the client side. That operation
requires computation of the density functions for each pixel on the

screen and mapping that density function to a color scheme. It ne-
cessitates to transfer data from the distributed storage to the client
side. To prevent the transfer of an entire level to the client, every
level is split into tiles, which are then stored into a highly acces-
sible distributed database. Only requested tiles are transferred to
the client. To get a similar data size per tile the size of tiles are
adapted according to the level of aggregation (i.e. the more abstract
a level is, the fewer tiles it has). That property guarantees the size
of packets transferred on the network and thus smooth interaction
according to network bandwidth.

On the client side, we use a Least Recently Used cache system
to store tiles of point set transferred during the exploration. For
the computation of the density function and the color mapping, we
designed a multiscale approximation algorithm that can be fully
implemented on the GPU. One of our requirements was to have
a lightweight client interface. Therefore, all the design choices for
our algorithm have been made to ensure the possibility to imple-
ment it on standard recent web browsers.

4 GENERATION OF LEVELS OF AGGREGATION

Starting from the original dataset, we compute several abstractions
of the dataset using the Approximate Kernel Density Estimation
introduced by Zheng et al. [34].

Let D be a square subspace of RZ. Given the kernel f and P
the original point set, an Approximate Kernel Density Estimation
(AKDE) Q is a weighted point set, such that the KDE on Q approx-
imates the KDE on P. The distance between P and Q is defined as
follows :

HKDEP - KDEQ” = maxxeD\KDEp(x) - KDEQ(X)|

Q is said to be an €-approximation of P if the distance between P
and Q is less than €. We also want |Q| to be smaller than |P|, so that
computing the density function on Q is less time consuming than
on P.

This technique enables to reduce the number of points for a level
of detail, while generating an almost identical density function. Fig-
ure 2 shows density function visualization for a point set and two
approximations. We use the Grouping Selection (GS) technique,
presented by Zheng et al. in [34] to generate our AKDE. The GS
technique groups points closer than a threshold distance d and gen-
erates a set of weighted points. According to the authors, the error
using this technique is bounded by d/o, with d the grouping dis-
tance and o the bandwidth (representing the standard deviation) of




the kernel used for KDE. Therefore, we can guarantee and control
how our visualization approximates the original point set.

Finding points on a surface distant of at least d is related to the
circle packing problem [12]. Given d and a finite square of area S,
the number of circles with diameter d that can fit inside this square
without intersections is bounded, naively by d—Sz This is the same as
determining points distant of at least d. Therefore, the number of
points generated by the GS technique is bounded, independently of
the size of the starting point set. Using results on the circle packing
problem, it is possible to determine a grouping distance that ensures
a specific upper bound on the size of the point set generated by GS.

We implement the GS technique by using the canopy clustering
algorithm [22]. This algorithm groups points that are at distance
at most d from each other. The resulting group is called a canopy.
Every canopy has a center point. A point can start a new canopy
if it is further apart from the other centers than d. If a point is
closer than d from a center, then it is in its canopy. Each canopy
can be represented by its center with a weight equal to the sum of
weights of points in the canopy. While the original algorithm uses
two different distances, we use a simplified version where those
distances are equal. This version of the algorithm is presented in
algorithm 1.

Data: A set of points, a threshold distance d
Result: The set of canopies
canopies = empty set;
for every point p in the set do

for every canopy c in canopies do

if distance(p,c) ; d then
| go to next point;

add p to canopies;

return canopies

Algorithm 1: The canopy clustering algorithm. The distance
to the current point is checked for every canopy. This result
in a complexity of O(nz) for the pseudo code presented here.
A better complexity can be achieved using a spatial index data
structure, such as a Quad Tree or a KDTree. With those data
structures, the complexity is O(n x log(|canopies|)).

4.1 Canopies of level ; and the threshold distance d;

In the following, we build a hierarchical set of canopy centers such
that levely D level; ... D level;. dy is the threshold distance of level
defined so that ng = |levelp| is the maximal number of points (and
message size) to transmit to the lightweight client. Depending on
the context, we aim at upper bounding rg by a small constant (from
100 to 1000). To provide this guarantee, it is easy to show that

taking any dy > , /-24- is enough assuming that A corresponds to

ﬂo\/§
the number of pixels of the screen.

The levels of detail of the heatmap correspond to zoom levels
in the visualization. Each zoom level corresponds to a 2! zoom
factor, that is the distance between pixels for the same pair of points
seen on the screen is doubled each time we zoom in. The surface
of a zoom level on screen is therefore A; = Ag/4’. Thus, taking
d; = d;_1/2 guarantees to have at most ngp visible points among
n; < min (n,4'ny).

In order to get an efficient and quick computation, we start by
computing level;, the initial threshold d; can be chosen arbitrarily
depending on the maximal precision we want. The set of canopy
centers of /evel; will then be used as the entry of the computation
of level;_ taking d;_| = 2d;.

Reduce

QuadTree

W e
e

strip 1,

strip 2

strip 4.

Figure 4: Process of the first Map Reduce job. The map phase as-
signs a strip to each point, and the reduce phase executes the canopy
clustering locally.
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4.2 Distributing the algorithm

Introduced in 2004 by Dean et al. [7], MapReduce is now the de
facto standard framework for distributing Big Data computations.
It draws from the functional programming concepts of map and re-
duce to provide an easy way to distribute computations on a plat-
form of k nodes. The framework takes care of the synchronization
and network aspects and leaves the actual algorithm development
to the user. Unformally, massive data of size n is stored in parts
of size O(n/k) on k nodes. The map function applies in parallel in
time O(n/k), scanning the data and computing intermediate results.
These results are sent to nodes, called reducers, in charge of com-
bining the intermediate results to get the global result. The usage
of MapReduce is based on units of work called jobs. A job is a suc-
cession of a Map and a Reduce. Note that the same node can play
both mapper and reducer roles.

The smaller the input of the reducers, the quicker the global com-
putation. Ideally, we aim at getting a theoretical time complexity of
O(n/k) but this turns out to be difficult whenever a well-known al-
gorithm is adapted into a MapReduce implementation.

The Mahout big data algorithm library' provides a MapReduce
implementation for the canopy clustering. In this implementation,
the dataset is randomly partitioned between the mappers. Each
mapper runs a local canopy clustering on its subset of the data. The
resulting canopies are then transferred to a single reducer. This re-
ducer applies another local canopy clustering. This implementation
is well suited in cases where the set of canopies resulting from the
mappers is small enough to fit on a single machine. However, due
to the necessity to generate very abstract levels as well as detailed
ones, our system must be able to cope with a very large (although
bounded) number of canopies. Therefore, we could not use the Ma-
hout implementation of the canopy clustering for our system. We
thus designed a new implementation. Our implementation of the
canopy clustering no longer uses a single reducer and thus, our ap-
proach can scale horizontally.

The random partitioning used in Mahout can lead to calculate
the distance between points that are very far apart. We propose to
use a more specialized data partition guaranteeing that the n; points
are scanned at most twice. We start from a partition of data into
strips that cuts the dataset along one of the dimensions. Let & = 4d
be the height of a strip, if two points are in the same strip, their
distance along one of the dimensions is at most /. This reduces the
distance calculations to a more useful subset. In both of our jobs,
the mappers will be responsible for the data partitioning and the
reducers will execute the effective clustering process. One trick is
that a reducer is in charge of a random set of strips. Even if some
strips contain much less than n; /A points, the reducer will receive at

Uhttp://mahout.apache.org
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Figure 5: An example of the data partition in the second job, focusing on the border of two strips. Image (a) shows the result of the first job.
When the strips are merged, as shown on image (b), it creates a zone called “conflict zone”, whose height is 2d. This zone is colored in grey.
In this zone, two points coming from the two strips can be closer than d. Image (c) shows the partitioning used in the second job. In order to
be able to process the entirety of the conflict zone in a single strip, the strip limit is shifted downwards by d. As illustrated on image (d), the
conflict zone is then totally contained in the upper strip. The conflict can be detected and solved. One of the points will be removed from the

canopy set during the second job.

most O(n;/k) whenever the data distribution is close to be uniform.

First job: In the first job, the mappers receive points from the
dataset. For each point, the index of the strip containing it is com-
puted. Then the mapper emits a key value pair for each point, where
the key is the strip index and the value is the point itself. Every
record with the same key is then transmitted to the same reducer.
Each reducer thus has every point inside a given strip. The canopy
clustering is then executed inside each strip. We use a QuadTree
to reduce the complexity, as suggested in algorithm 1. The pseudo
code for the Map and Reduce phases of the job can be seen in al-
gorithm 2. The Figure 4 shows how data is partitioned, transferred
and assigned to reducers. After this process, the points are marked
according to the result of the clustering.

Map point:
| emit (strip(point), point);

Reduce (strip, points):

canopies = new QuadTree;

for every point p in points do
s = elements in canopies with dist(p) less than d;
if s is empty then

| add p to canopies;
for c in canopies do
| emitc;

Algorithm 2: First job pseudo code for the Map and Reduce
functions. The Map computes the strip for each point. The
Reduce executes the canopy clustering on each strip.

Second job: Once the first job is completed, the canopy clus-
tering has been executed inside of each strip. However, as shown
on Figure 5, when the strips are put back together, a point A close
to the border of its strip can be closer than d from a point B in the
neighbouring strip. In this case, both A and B are closer than d from
the limit of the strips. We can define the zone which contains every
such point. This zone is located at the border of adjacent strips and
extends to a distance d from either side of the border. We call this
zone “conflict zone”.

The second Map Reduce job of our implementation aims at exe-
cuting the canopy clustering on the conflict zone. We retain the idea
of strips for data partitioning. However, the strip limit is shifted
downwards by d, as shown on Figure 5. This way, the conflict zone
is now contained in a single strip. This will enable to execute the
canopy clustering on this area inside of each reducer.

This time, it is not necessary to execute a full canopy clustering

number

of points N 2N 3N 4N

Figure 6: As the data grows, the resolution of the KDE diminishes
to keep a constant rendering time.

on the strip. Canopies outside the conflict zone are already valid.
Only canopies inside the conflict zone need to be treated. Using the
QuadTree, we check if a canopy is already closer than d. If not, we
add this canopy to the QuadTree.

The data partition technique used in this implementation can in-
duce load-balancing issues if the data points distribution is not uni-
form enough. It is then possible for a single strip to contain many
more points than the others. However, when applying this algorithm
recursively to generate the levels, only the first one can suffer from
this issue. Once the algorithm has been executed a first time, the
point set has a bounded size. This property is conserved when di-
viding it into strips, thus guaranteeing a maximum number of points
per strip.

5 KDE RENDERING

The final step of our system is the rendering of the density function.
This part happens on the client side after the transfer of the visible
tiles. Due to the complexity of KDE calculation, approximations
of the computation by limiting the kernel size have been developed
in previous works [17, 36]. Here, we compute an exact KDE to be
able to interactively change the kernel’s size and type.

We use a simple technique that enables us to guarantee a constant
rendering time on a given client at the expanse of KDE precision.
The main idea of our technique is to adapt the rendering resolu-
tion according to the power of the GPU. The KDE is rendered on a
smaller resolution when there are too many points, ensuring that the
total number of operations needed is constant. The resulting smaller
resolution KDE is then stretched to the original screen’s resolution.

We introduce a threshold N of points that can be rendered at the
original screen resolution in a small enough time to maintain satis-
factory framerate. When we need to render more points than N, we
will render the KDE on a smaller resolution.We define m = [ 1,
with n the number of points to render. Instinctively, m measures
the difference of magnitude between the data to render and the ac-



ceptable amount. We want to render a smaller KDE on p’ = fnl
pixels. In order to keep the screen’s aspect ratio, we take w' = ﬁ
and i/ = ﬁ, with w and & respectively the width and height of the
screen. We thus have p’ = w’ x'. This interrelation is illustrated in
Figure 6.
Rendering the 7 points costs p’ xn = % Using the properties
N

of the ceiling function, it is easy to show that ﬁ'ﬁ < p*N, so the
N

complexity of the smaller KDE rendering is O(p * N). This only
depends on the display resolution and the threshold constant. Con-
sidering that these values only depend on the client computer, one
can consider that, for a given computer, our rendering algorithm
runs in O(1).

6 IMPLEMENTATION DETAILS

The techniques and algorithms we describe here could be imple-
mented using several technologies. We provide here an exhaustive
list of the technologies we used. This constitutes a working set for
a proof of concept. Figure 3 shows the complete system.

In the domain of Big Data, Hadoop is a well established stan-
dard and covers the majority of our needs. We use the Hadoop
Distributed File System (HDFS) as raw data repository before pro-
cessing. There are several implementations of the Map Reduce
paradigm on top of Hadoop, via its resource manager YARN (Yet
Another Resource Negotiator). The main one is Hadoop MapRe-
duce2 (HMR2), which mainly uses disk based I/O between the
computations. We used another Map Reduce implementation called
Spark, which is also built on top of YARN and HDFS. Spark fa-
vors in-memory computation instead of the disk-based I/O used by
HMR?2. Spark is based on the principle of Resilient Distributed
Datasets (RDDs) [33] to distribute computations closest to the data.
In addition to the Map and Reduce operations, Spark provides sev-
eral other operations optimized for distributed computing. This
flexibility allows Spark to be easier to use than HMR2. In prac-
tice, we noted speed gains of order 100 from using Spark instead of
HMR2.

The size of the data generated by our clustering algorithm de-
mands a NoSQL distributed database. We chose to use the Hadoop
database, HBase, which is an open source implementation of
Google’s BigTable [3] database system.

The link to the client application is made using a front server im-
plemented using a JavaEE servlet. The task of this front server is
to request data from HBase, and transform it into a format under-
standable by the client. This way, the client application only needs
to know the front server location and does not directly contact the
big data cluster.

We implemented the client application to run on mod-
ern browsers using HTMLS and WebGL for rendering. As
a threshold for the KDE rendering, we use the variable
MAX _FRAGMENT _UNIF ORM _VECTORS, which is the maxi-
mum number of variables that can be sent to the fragment shader.

7 BENCHMARKS

The visualization of density functions on top of geographical maps
(Geographical heatmaps) is frequently done by datavisualizers. To
run this benchmark, a complete prototype for that specific applica-
tion has been implemented. It uses the technologies presented in
the section 6, as well as Google Maps.

To enable the use of our system on low bandwidth network, the
number of points per tile ngy (cf. sec 4.1) has been set to 1000. This
parameter enables to transfer only a few kilobytes (maximum 15KB
in all our tests) on the network during interactions.

Infrastructure: The clustering benchmark has been run on our
lab infrastructure composed of 16 computers (non virtualized).
Each computer has 64GB of RAM, 2x6 hyperthreaded cores at
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Figure 7: (a): Benchmark for the brightkite and gowalla datasets.
Each executor has 4 cores. The optimal number of executors is at-
tained around 10 because of the small size of those datasets. (b):
Benchmark for the OSM and GPS datasets. Each executor has 2
cores. The benchmark for the OSM dataset was stopped at 30 ex-
ecutors due to memory constraints. This benchmark shows the scal-
ability of our clustering algorithm.

2.1GHz and 2 hard drives of 1 TB each. The computers are linked
by a 1Gb/sec network infrastructure. During program execution,
one computer serves as the master node and 15 as slave computing
nodes. The rendering benchmark was conducted with an NVIDIA
970M graphics card for the GPU rendering and a Core i7-4710HQ
for the CPU rendering.

Datasets: We used four free datasets with sizes of different
orders of magnitude, two small and two large. We give the
datasets size in terms of records and in terms of unique posi-
tions, since the computational complexity of a density function
depends on the number of different positions. The smallest one
is the Brightkite dataset (4.7M records and 693K different posi-
tions). This dataset [5] has been built by recording the positions
of each Brightkite user between April 2008 and October 2010.
Heatmaps of this dataset have been made by Liu et al. [19] and
Li et al. [18]. A view of this dataset in our application can be
seen on Figure 8. The Gowalla dataset [5] (6.4M records and
1.2M different positions) is similar to the Brightkite dataset but
for Gowalla’s users between february 2009 and october 2010. The
OpenStreetMap (OSM) dataset? (2.2B records and 1.7B different
positions), this one represents every point of interest registered in
the OpenStreetMap database. On Figure 8, one can grasp the scale
of this dataset. Finally, the biggest dataset we used is a collection of
GPS traces registered in the OpenStreetMap database (2.7B records
and 2.2B different positions). The OSM and GPS datasets have very
different point distributions, with OSM being more evenly spread
than GPS. This made the OSM dataset more demanding in terms of
memory needed for the clustering process, despite its lower number
of unique positions.

Clustering benchmark: For each dataset, 21 levels of detail
were generated. In HBase, the storage of these 21 levels neces-
sitates 381MB for the brightkite dataset, 668MB for the gowalla
dataset, 609GB for the OpenStreetMap dataset and 321GB for the
GPS dataset. Unsurprisingly, there is an additional cost due to the
storage of the entire level hierarchy. The difference in storage size
between OSM and GPS is due to their different point distribution,
leading to quicker aggregation. The figure 7 presents the results
obtained on our lab infrastructure. We measured the scalability
of our implementation using Spark executors. In Spark, executors
are computation workers, enabling a finer granularity than com-
puters. This enables to test finely the behaviour of the program

Zhttp://spatialhadoop.cs.umn.edu/index.html



Figure 8: Views of the four datasets, and the number of points displayed. Top row, from left to right: brightkite (1671), gowalla (1334),
and OSM (2873). Bottom row: GPS dataset, global view (3185), Europe view (3218) and Chicago view (1468). On the GPS view, the high
density in Europe is clearly highlighted. From all those view, it is clear that the density function is accurately represented using much fewer
points. Furthermore, independently of the zoom level, the number of points displayed has the same magnitude.
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Figure 9: GPU rendering time on an NVIDIA 970M, up to 32000
points. In this case, N = 512. The sudden drops correspond to
the changes of KDE resolution. One can see that the rendering is
bounded by a constant. In practice, with ny = 1000, there is no
more than 16000 points in a 1000*1000 visualization.

when the resources grow. Our benchmark demonstrates clearly that
our approach is able to scale horizontally when treating really large
datasets. For example, generating the levels for the GPS dataset
took less than 45 minutes with 64 executors having 2 cores each.
Rendering benchmark: We now demonstrate that our tech-
nique is able to render KDEs with a large number of points in
bounded time. Figure 9 shows the results of a benchmark with
up to 32000 random points. The rendering time always stays be-
low 11ms, which corresponds to more than 90fps. As expected,
this technique maintains an acceptable rendering time by diminish-
ing the KDE resolution when the number of points grow, as high-
lighted by the drops in Figure 9. Between the resolution changes,
the rendering time scales linearly with the number of points.
Image Quality benchmark: To show the relevance and effi-
ciency of the pipeline proposed here, we compare its results with
a complete rendering of the entirety of the data. For this experi-
ment, we chose the brightkite dataset because its small size enables
local computations. We use a CPU rendering of this dataset as the

ground truth and compare it to the levels of abstraction produced by
our pipeline, rendered both on CPU and GPU. For this comparison,
we use the SSIM image metric [32], which gives a score of sim-
ilarity between two images. This metric is known to be closer to
human perception than per-pixel error metrics. Figure 10 shows the
resulting similarity scores. The quality is first limited by the clus-
tering algorithm and then by the rendering algorithm. This creates a
“bell” shape of optimal settings. From the angle of image quality, it
is thus equivalent to render with more points on a smaller resolution
or at full resolution with fewer points. This property demonstrates
the validity of our approach, and opens the perspective to adapt the
abstraction level to the device used.

8 CONCLUSION & FUTURE WORK

We presented a technique that enables interactive exploration of
point sets at really large scale. We introduced a new distributed
algorithm to compute a canopy clustering as well as a GPU based
method to render density functions in constant time, supported by a
theoretical justification. To validate our assumptions, a full imple-
mentation of the technique was made and a complete benchmark
on large datasets has been run. All our results prove the efficiency
of our approach in term of both horizontal scalability and quality of
the produced visualization. Our technique is thus able to interac-
tively explore sets of points of any size, the only limiting factor is
the size of the Big Data Infrastructure.

In its current implementation, this system is not able to support
incremental updates, however, the clustering algorithm used is fully
suited for the task. Future works will be to extend that method for
the visualization of dynamic set of points. New Big Data technolo-
gies, like Storm, must be investigated to produce efficient solutions.
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