N

N

Task-based Augmented Merge Trees with Fibonacci
Heaps

Charles Gueunet, Pierre Fortin, Julien Jomier, Julien Tierny

» To cite this version:

Charles Gueunet, Pierre Fortin, Julien Jomier, Julien Tierny. Task-based Augmented Merge Trees
with Fibonacci Heaps. TEEE Symposium on Large Data Analysis and Visualization 2017, Oct 2017,
Phoenix, United States. 10.1109/LDAV.2017.8231846 . hal-01575019

HAL Id: hal-01575019
https://hal.science/hal-01575019

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01575019
https://hal.archives-ouvertes.fr

Task-based Augmented Merge Trees with Fibonacci Heaps

Pierre Fortin®
Sorbonne Universites,
UPMC Univ Paris 06, CNRS,
LIP6 UMR 7606, France.

Charles Gueunet*
Kitware SAS
Sorbonne Universites,
UPMC Univ Paris 06, CNRS,
LIP6 UMR 7606, France.

ABSTRACT

This paper presents a new algorithm for the fast, shared memory
multi-core computation of augmented merge trees on triangulations.
In contrast to most existing parallel algorithms, our technique com-
putes augmented trees. This augmentation is required to enable the
full extent of merge tree based applications, including data segmen-
tation. Our approach completely revisits the traditional, sequential
merge tree algorithm to re-formulate the computation as a set of
independent local tasks based on Fibonacci heaps. This results in
superior time performance in practice, in sequential as well as in
parallel thanks to the OpenMP task runtime. In the context of aug-
mented contour tree computation, we show that a direct usage of
our merge tree procedure also results in superior time performance
overall, both in sequential and parallel. We report performance
numbers that compare our approach to reference sequential and
multi-threaded implementations for the computation of augmented
merge and contour trees. These experiments demonstrate the run-
time efficiency of our approach as well as its scalability on common
workstations. We demonstrate the utility of our approach in data seg-
mentation applications. We also provide a lightweight VTK-based
C++ implementation of our approach for reproduction purposes.

1 INTRODUCTION

As scientific data sets become more intricate and larger in size,
advanced data analysis algorithms are needed for their efficient visu-
alization and interactive exploration. For scalar field visualization,
topological data analysis techniques [16,27,39] have shown to be
practical solutions in various contexts by enabling the concise and
complete capture of the structure of the input data into high-level
topological abstractions such as merge trees [6, 35, 46], contour
trees [5,7,13,49], Reeb graphs [3,38,40,44,52], or Morse-Smale
complexes [14,24,41,56]. Such topological abstractions are fun-
damental data-structures that enable the development of advanced
data analysis, exploration and visualization techniques, including for
instance: small seed set extraction for fast isosurface traversal [8,53],
feature tracking [47], data-summarization [37,55], transfer function
design for volume rendering [54], similarity estimation [28, 50].
Moreover, their ability to capture the features of interest in scalar
data in a generic, robust and multi-scale manner has contributed to
their popularity in a variety of applications, including turbulent com-
bustion [6,23,31], computational fluid dynamics [19,29], material
sciences [25,26], chemistry [21], or astrophysics [43,45,48], etc.
However, as computational resources and acquisition devices im-
prove, the resolution of the geometrical domains on which scalar
fields are defined also increases. This resolution increase yields
several technical challenges for topological data analysis, including
that of computation time efficiency. In particular, to enable truly

*E-mail: charles.gueunet@kitware.com
TE-mail: pierre.fortin@lip6.fr

*E-mail: julien jomier @kitware.com
SE-mail: julien.tierny @lip6.fr

Julien Tierny?
Sorbonne Universites,
UPMC Univ Paris 06, CNRS,
LIP6 UMR 7606, France.

Julien Jomier*
Kitware SAS, France

interactive exploration sessions, highly efficient algorithms are re-
quired for the computation of topological abstractions. A natural
direction towards the improvement of the time efficiency of topo-
logical data analysis is parallelism, as all commodity hardware now
embeds processors with multiple cores. However, most topological
analysis algorithms are originally intrinsically sequential as they
often require a global view on the data.

Regarding merge trees — a fundamental topology-based data struc-
ture in scalar field visualization — several algorithms have been
proposed for its parallel computation [1,9,32]. However, these al-
gorithms only compute non-augmented merge trees [7], which only
represent the connectivity evolution of the sub-level sets, and not the
corresponding data-segmentation (i.e. the arcs are not augmented
with regular vertices). While such non-augmented trees enable some
of the traditional visualization applications of the merge tree, they
do not enable them all. For instance, they do not readily support
topology based data segmentation. Moreover, fully augmenting in a
post-process non-augmented trees is a non trivial task, for which no
linear-time algorithm has ever been documented to our knowledge.

This paper addresses this problem by presenting a new algorithm
for the efficient computation of augmented merge trees of scalar
data on triangulations. Such a tree augmentation makes our output
data-structures generic application-wise and enables the full extent
of merge tree based applications, including data segmentation. Our
approach completely revisits the traditional, sequential merge tree
algorithm to re-formulate the computation as a set of local tasks
that are as independent as possible and that rely on Fibonacci heaps.
This results in a computation with superior time performance in
practice, in sequential as well as in parallel on multi-core CPUs
with shared memory thanks to the OpenMP task runtime. In the
context of augmented contour tree computation, we show that a
direct usage of our merge tree computation procedure also results in
superior time performance overall, both in sequential and parallel.
Extensive experiments on a variety of real-life data sets demonstrate
the practical superiority of our approach in terms of time perfor-
mance in comparison to sequential [15] and parallel [22] reference
implementations, both for augmented merge and contour tree com-
putations. We illustrate the utility of our approach with specific use
cases for the interactive exploration of hierarchies of topology-based
data segmentations that were enabled by our algorithm. We also
provide a lightweight VTK-based C++ reference implementation of
our approach for reproduction purposes.

1.1 Related work

The merge tree, a tree that contracts connected components of sub-
level sets to points (formally defined in Sect. 2.1), is closely related to
the notion of contour tree [5], which contracts connected components
of level sets to points on simply connected domains. As shown by
Tarasov and Vyali [49] and later generalized by Carr et al. [7] in
arbitrary dimension, the contour tree can be efficiently computed by
combining with a simple linear-time traversal the merge trees of the
input function and of its opposite (called the join and split trees, see
Sect. 2.1). Due to this tight relation, merge and contour trees have
often been investigated jointly in the computer science literature.

A simple sequential algorithm, based on a union-find data-

structure [12], is typically used for merge tree computation [7,49].
It is both simple to implement, relatively efficient in practice and
with optimal time complexity. In particular, this algorithm allows
for the computation of both augmented and non-augmented merge
trees. An open source reference implementation (libtourtre [15]) of
this algorithm is provided by Scott Dillard as a component of his
contour tree implementation. Chiang et al. [10] presented an output-
sensitive approach, based on a new algorithm for the computation of
non-augmented merge trees using monotone paths, where the arcs
of the merge trees were evaluated by considering monotone paths
connecting the critical points of the input scalar field.

Applications of merge trees in data analysis and visualization
include multi-scale data segmentation [8], feature tracking [47],
data-summarization [37, 55], transfer function design for volume
rendering [54], similarity estimation [50]. In particular, the segmen-
tation capabilities of the merge trees, combined with simplification
mechanisms inspired by persistent homology [8, 17], enable to gen-
erate hierarchies of data segmentations for the extraction of features
of interest at multiple scales of importance. These capabilities have
been successfully applied in a variety of applications, including
for instance turbulent combustion [6], computational fluid dynam-
ics [19,29], chemistry [21], or astrophysics [43], etc. Note that
all of the segmentation applications mentioned above require the
augmented merge tree as they rely on the identification of the sets
of regular vertices mapping to each arc of the merge tree to extract
these regions for analysis and visualization purposes.

Among the approaches which addressed the time performance
improvement of contour tree computation through shared-memory
parallelism, only a few of them rely directly on the original merge
tree computation algorithm [7,49]. This algorithm is then used
within partitions of the mesh resulting from a static decomposition
on the CPU cores, by either dividing the geometrical domain [36]
or the range [22]. This leads in both cases to extra work (with
respect to the sequential mono-partition computation) at the partition
boundaries when joining results from different partitions. This can
also lead to load imbalance among the different partitions [22].

In contrast, most approaches addressing shared-memory parallel
contour tree computation actually focused on revisiting the merge
tree sub-procedure, as it constitutes the main computational bottle-
neck overall (see Sect. 6.2). Maadasamy et al. [32] introduced a
multi-threaded variant of the output-sensitive algorithm by Chiang
et al. [10], which results in good scaling performances on tetra-
hedral meshes. However, we note that, in practice, the sequential
version of this algorithm is up to three times slower than the ref-
erence implementation (libtourtre [15], see Tab. 1 in [32]). This
only yields eventually speedups between 1.6 and 2.8 with regard
to libtourtre [15] on a 8-core CPU [32] (20% and 35% parallel effi-
ciency respectively). We suspect that these moderate speedups over
libtourtre are due to the lack of efficiency of the sequential algorithm
based on monotone paths by Chiang et al. [10] in comparison to
that of Carr et al. [7]. Indeed, from our experience, although the
extraction of the critical points of the field is a local operation [2],
we found in practice that its overall computation time is often larger
than that of the merge tree (or even contour tree) itself. Moreover,
this algorithm triggers monotone path computations for each saddle
point [10], even if it does not yield branching in the join or split
trees (which induces unnecessary computations). Finally, since it
connects critical points through monotone paths, this algorithm does
not visit all the vertices of the input mesh. Thus it cannot provide a
merge tree-based data segmentation and does not produce an aug-
mented merge tree. Carr et al. [9] presented a data parallel algorithm
following a similar approach. However, their implementation only
supports non-augmented trees to the best of our knowledge and
experiments have only been documented in 2D. Smirnov et al. [46]
described a new data-structure for computing the same information
as the merge tree. This structure can be computed in parallel by

using an algorithm close to Kruskal’s algorithm. However, docu-
mented experiments report that this algorithm needs a least 4 threads
to be more efficient than its sequential version and has a maximum
parallel efficiency of 18.4% compared to this sequential version.
Acharya and Natarajan [1] specialized and improved monotone-path
based computations for the special case of regular grids. Rosen et al.
also presented a hybrid CPU-GPU approach for regular grids [42].
In this work, we focus on triangulations because of the genericity
of this representation: any mesh can be decomposed into a valid
triangulation and regular grids can be implicitly triangulated with
no memory overhead [51].

Morozov and Weber [34,35] and Landge et al. [30] presented
three approaches for merge and contour tree-based visualization in a
distributed environment, with minimal inter-node communications.
However, these approaches focus more on the reduction of the com-
munication between the processes than on the efficient computation
on a single shared memory node as we do here with the target of an
efficient interactive exploration in mind.

1.2 Contributions
This paper makes the following new contributions:

1. A local algorithm based on Fibonacci heaps: We present
a new algorithm for the computation of augmented merge
trees. In contrast to the traditional global algorithm, it is based
on local sorting traversals, whose results are progressively
merged with the help of a Fibonacci heap. In this context, we
also introduce a new criterion for the detection of the saddles
which generate branching in the output tree, as well as an
efficient procedure to process the output arcs in the vicinity
of the root of the tree. Our algorithm is simple to implement
and it improves practical time performances on average over a
reference implementation [15] of the traditional algorithm [7].

2. Parallel augmented merge trees: We show how to leverage
the task runtime environment of OpenMP to easily implement
a shared-memory parallel version of the above algorithm. In-
stead of introducing extra work with a static decomposition
of the mesh among the threads, the local algorithm based on
Fibonacci heaps naturally distributes the merge tree arc com-
putations via independent tasks on the CPU cores. We hence
avoid any extra work in parallel, while enabling an efficient
dynamic load balancing on the CPU cores thanks to the task
runtime. This results in superior time and scaling performances
compared to previous multi-threaded algorithms for augmented
merge trees [22].

3. Parallel augmented contour trees: We show how to use our
merge tree procedure for the computation of augmented con-
tour trees. This direct usage of our algorithm also results in
superior time and scaling performances compared to previous
multi-threaded algorithms for augmented contour trees [22].

4. Implementation: We provide a lightweight VTK-based C++
implementation of our approach for reproduction purposes.

2 PRELIMINARIES

This section briefly describes our formal setting and presents an
overview of our approach. An introduction to Topological Data
Analysis can be found in [16].

2.1 Background

The input to our algorithm is a piecewise linear (PL) scalar field
[+ # — R defined on a simply-connected PL d-manifold .# . With-
out loss of generality, we will assume that d = 3 (tetrahedral meshes)
in most of our discussion, although our algorithm supports arbitrary
dimensions. Adjacency relations on .# can be described in a di-
mension independent way. The star St(v) of a vertex v is the set of

(2) (b) ©

Figure 1: Topology driven hierarchical data segmentation. (a) Input
scalar field f (color gradient), level-set (light green) and critical points
(blue: minimum, white: saddle, green: maximum). (b) Split tree of
f and its corresponding segmentation (arcs and their pre-images
by ¢ are shown with the same color). (c) Split tree of f and its
corresponding segmentation, simplified according to persistence.

simplices of .# which contain v as a face. The link Lk(v) is the set
of faces of the simplices of S¢(v) which do not intersect v.

The scalar field f is provided on the vertices of .Z and it is
linearly interpolated on the simplices of higher dimension. We will
additionally require that the restriction of f to the vertices of .# is
injective, which can be easily enforced with a mechanism inspired
by simulation of simplicity [18].

The notion of critical point from the smooth setting [33] admits a
direct counterpart for PL scalar fields [2]. Let Lk~ (v) be the lower
link of the vertex v: Lk~ (v) = {0 € Lk(v) |Yu € o : f(u) < f(v)}.
The upper link Lk™ (v) is given by Lkt (v) = {0 € Lk(v) | Vu €
o : f(u) > f(v)}. Then, given a vertex v, if its lower (respectively
upper) link is empty, v is a local minimum (respectively maximum).
If both Lk~ (v) and Lk™ (v) are simply connected, v is a regular point.
Any other configuration is called a saddle (white spheres, Fig. 1(a)).

A level-set is defined as the pre-image of an isovalue i € R onto
A through f: f~'(i) = {p € # | f(p) =i} (Fig. 1(a)). Each
connected component of a level-set is called a contour. In Fig. 1(b),
each contour of the level-set of Fig. 1(a) is shown with a distinct
color. Similarly, the notion of sub-level set, noted f:olo(i), is defined
as the pre-image of the open interval (—eo,i) onto .# through f:

fl@y={pe.#| f(p) <i}. Symmetrically, the sur-level set
fra(i)is defined by f (D) = {p e .4 | f(p) > i}. Let f-L(£(P)),
(respectively f_;lo (S(p))p) be the connected component of sub-level

set (respectively sur-level set) of f(p) which contains the point
p. The split tree 7+(f) is a 1-dimensional simplicial complex
(Fig. 1(b)) defined as the quotient space .7 *(f) = .#/ ~ by the
equivalence relation p; ~ ps:

f(p1) = f(p2)

P € fL}C,(J’(Pl))P1
The join tree, noted .7~ (f), is defined similarly with regard to an
equivalence relation on sub-level set components (instead of sur-
level sets). Irrespective of their orientation, the join and split trees are
usually called merge trees, and noted .7 (f) in the following. The no-
tion of Reeb graph [40], noted Z(f), is also defined similarly, with
regard to an equivalence relation on level set components (instead
of sub-level set components). As discussed by Cole-McLaughlin et
al. [11], the construction of the Reeb graph can lead to the removal
of 1-cycles, but not to the creation of new ones. This means that
the Reeb graphs of PL scalar fields defined on simply-connected do-
mains are loop-free. Such a Reeb graph is called a contour tree and

we will note it €’(f). Contour trees can be computed efficiently by
combining the join and split trees with a linear-time traversal [7,49].
In Fig. 1, since .# is simply connected, the contour tree € (f) is
also the Reeb graph of f. Since f has only one minimum, the split
tree 7 T (f) is equivalent to the contour tree €(f).

Note that f can be decomposed into f = Yo ¢ where ¢ : # —
7 (f) maps each point in . to its equivalence class in .7 (f) and
where ¥ : 7 (f) — R maps each point in .7 (f) to its f value. Since
the number of connected components of f=1 (i), f;i,(z) and £~ (i)
only changes in the vicinity of a critical point [2, 16, 33], the pre-
image by ¢ of any vertex of 7~ (f), 7T (f) or Z(f) is a critical
point of f (blue, white and green spheres in Fig. 1(a)). In par-
ticular, the pre-image of vertices of valence 1 necessarily corre-
spond to extrema of f [40]. The pre-image of vertices of higher
valence correspond to saddle points which join (respectively split)
connected components of sub- (respectively sur-) level sets. Since
F=L(f(M)) = . for the global maximum M of f, ¢(M) is called
the root of 7~ (f) and the image by ¢ of any local minimum m is
called a leaf. Symmetrically, the global minimum of f is the root of
T (f) and local maxima of f are its leaves.

Note that the pre-image by ¢ of 7 (f) induces a complete par-
tition of .#. In particular, the pre-image ¢ ~' (o) of a 1-simplex
o1 € J(f) is guaranteed by construction to be connected. This
latter property is at the basis of the usage of the merge tree in visual-
ization as a data segmentation tool (Fig. 1(b)) for feature extraction.
In practice, ¢! is represented explicitly by maintaining, for each
1-simplex o7 € 7 (f) (i.e. for each arc), the list of regular vertices
of .# that map to o;. Moreover, since the merge tree is a simplicial
complex, persistent homology concepts [17] can be readily applied
to it by considering a filtration based on y. Intuitively, this pro-
gressively simplifies 7 (f), by iteratively removing its shortest arcs
connected to leaves. This yields hierarchies of merge trees that are
accompanied by hierarchies of data segmentations, that the user can
interactively explore in practice (see Fig. 1(c)).

2.2 Overview

An overview of our augmented merge tree computation algorithm
is presented in Fig. 2 in the case of the join tree. The purpose
of our algorithm, in addition to construct .7 (f), is to build the
explicit segmentation map ¢, which maps each vertex v € .# to
J (f). Our algorithm is expressed as a sequence of procedures,
called on each vertex of .Z. First, given a vertex v, the algorithm
checks if v corresponds to a leaf (Fig. 2 left, Sect. 3.1). If this is
the case, the second procedure is triggered. For each leaf vertex,
the augmented arc connected to it is constructed by a local growth,
implemented with a sorted breadth-first search traversal (Fig. 2
middle left, Sect. 3.2). A local growth may continue at a join saddle
s, in a third procedure, only if it is the last growth which visited
the saddle s (Fig. 2 middle right, Sect. 3.4). To initiate the growth
from s efficiently, we rely on the Fibonacci heap data-structure
[12,20] in our breadth-first search traversal, which supports constant-
time merges of sets of visit candidates. Finally, a fourth procedure
is triggered to abbreviate the process if a local growth passing a
saddle s happens to be the last active growth. In such a case, all the
non-visited vertices above s are guaranteed to map through ¢ to a
monotone path from s to the root of the tree (Fig. 2 right, Sect. 3.5).
Overall, the time complexity of our algorithm is identical to that of
the reference algorithm [7]: O(|oy| log(|op|) + |01 |t(|o1])), where
|o;| stands for the number of i-simplices in .# and c() is the inverse
of the Ackermann function (extremely slow-growing function).

3 MERGE TREE COMPUTATION BY LOCAL ARC GROWTH

In this section, we present our algorithm for the computation of
augmented merge trees based on local arc growth. Our algorithm
consists of a sequence of procedures applied to each vertex, de-
scribed in each of the following sub-sections. In the remainder,

Figure 2: Overview of our augmented merge tree algorithm based Fibonacci heaps (2D toy elevation example). First, the local extrema of f
(corresponding to the leaves of .7 (f)) are extracted (left, Sect. 3.1). Second, the arc o,, of each extremum m is grown independently along with
its segmentation (matching colors, center left, Sect. 3.2). These independent growths are achieved by progressively growing the connected
components of level sets created in m, for increasing f values, and by maintaining at each step a priority queue 2,,, implemented with a Fibonacci
heap, which stores vertex candidates for the next iteration (illustrated with colored dots). These growths are stopped at merge saddles (white disks,
center left, Sect. 3.3). Only the last growth reaching a saddle s is kept active and allowed to continue to grow the saddle’s arc o, (matching colors,
center right, Sect. 3.4). The constant time merge operation of the Fibonacci heap (to initialize the growth at s) enables a highly efficient execution
for this step in practice. Last, when only one growth remains active, the tree is completed by simply creating its trunk, a monotone sequence of
arcs to the root of the tree which links the remaining pending saddles (pale blue region, right, Sect. 3.5). The task-based parallel model allows for
a trivial parallelization of this algorithm, where each arc is grown independently, only requiring local synchronizations on merge saddles.

we will illustrate our discussion with the join tree, which tracks
connected components of sub-level sets, initiated in local minima.

3.1 Leaf search

First, given a vertex v € ., its lower link Lk~ (v) is constructed. If
it is non-empty, v is not a local minimum and the procedure stops.
Otherwise, if it is empty, v is a local minimum, a leaf, and the leaf
growth procedure, described in the next sub-section, is called.

3.2 Leaf growth

Given a local minimum m, the arc 6;, of the join tree connected to it
is constructed with a procedure that we call local leaf growth. The
purpose of this procedure is to progressively sweep all contiguous
equivalence classes (Sect. 2.1) from m to the saddle s located at the
extremity of 6,,. We describe precisely how to detect such a saddle
s, and therefore where to stop such a growth, in the next subsection
(Sect. 3.3). In other words, this growth procedure will construct the
connected component of sub-level set initiated in m, and will make
it progressively grow for increasing values of f.

This is achieved by implementing an ordered breadth-first search
traversal of the vertices of ./ initiated in m. At each step, the
neighbors of v which have not already been visited are added to a
priority queue 2, (if not already present in it) and v is added to
Om- The purpose of the addition of v to G, is to augment this arc
with regular vertices, and therefore to store its data segmentation.
Next, the following visited vertex V' is chosen as the minimizer of
fin 2, and the process it iterated until s is reached (Sect. 3.3). At
each step of this local growth, since breadth-first search traversals
grow connected components, we have the guarantee, when visiting a
vertex v, that the set of vertices visited up to this point (added to o)
indeed equals to the set of vertices belonging to the connected com-
ponent of sub-level set of f(v) which contains v, noted £ (f(v)),
in Sect. 2.1. Therefore, our local leaf growth indeed constructs o,
(with its segmentation). Also, note that, at each iteration, the set of
edges linking the vertices already visited and the vertices currently
in the priority queue 2,, are all crossed by the level set f~!(f(v)).

The time complexity of this procedure is O(|ogy| log(|op|) +|o11),
where |o;| stands for the number of i-simplices in .Z .

3.3 Saddle stopping condition
Given a local minimum m, the leaf growth procedure is stopped
when reaching the saddle s corresponding to the other extremity of
0. We describe in this sub-section how to detect s.

In principle, the saddles of f could be extracted by using the
critical point extraction procedure presented in Sect. 2.1, based on
a local classification of the link of each vertex. However, such a

Figure 3: Local merge saddle detection based on arc growth (2D
elevation example from Fig. 2). The local growth of the arc o,, (green)
will visit the vertex v/ at value 3 after visiting the vertex at value 1
(following the priority queue 2,,). At this point, the neighbors of v/
which have not been visited yet by o, and which are not in 2,, yet
(dashed green edges) will be added to 2,,. The minimizer v of 2,,
(vertex 2) has a scalar value lower than v'. Hence V' is a merge saddle.

strategy has two disadvantages. First not all saddles of f necessarily
corresponding to branching in .7~ (f) and/or 7" (f). Thus some
unnecessary computation would need to be carried out. Second, we
found in practice that even optimized implementations of such a
classification [51] tend to be slower than the entire augmented merge
tree computation in sequential. Therefore, another strategy should
be considered for the sake of performance.

The local leaf growth procedure (Sect. 3.2) visits the vertices of
with a breadth-first search traversal initiated in m, for increasing
f values. At each step, the minimizer v of 2, is selected. Assume
that f(v) < f(v') where v was the vertex visited immediately before
v. This implies that v belongs to the lower link of v/, Lk~ (/). Since
v was visited after v/, this means that v does not project to oy,
through ¢. In other words, this implies that v does not belong to the
connected component of sub-level set containing m. Therefore, v/
happens to be the saddle s that correspond to the extremity of ;.
Locally (Fig. 3), the local leaf growth entered the star of v/ through
the connected component of lower link projecting to o;, and jumped
across the saddle v downwards when selecting the vertex v, which
belongs to another connected component of lower link of v/.

Therefore, a sufficient condition to stop a local leaf growth is
when the candidate vertex returned by the priority queue has a lower
f value than the vertex visited last. In such a case, the last visited
vertex is the saddle s which closes the arc ¢, (Fig. 3).

Figure 4: Union of priority queues at a merge saddle (2D elevation
example from Fig. 2). Initially, each arc growth maintains its own
priority queue (illustrated with colored dots, left inset). When reaching
a merge saddle s (second inset), the growths which arrived first in s
are marked terminated. Only the last one (green) will be allowed to re-
sume the growth from s to construct the arc o; (last inset). To continue
the propagation of the sub-level set component which contains s, the
priority queues of all growths arrived at s need to be merged into only
one (third inset) prior to resuming the propagation. If done naively, this
operation could yield a quadratic runtime complexity for our approach
overall. Since Fibonacci heaps support constant time merges, they
guarantee the linearithmic complexity of our overall approach.

3.4 Saddle growth

Up to this point, we described how to construct each arc o, con-
nected to a local minimum m, along with its corresponding data
segmentation. The remaining arcs can be constructed similarly.

Given a local minimum m, its leaf growth is stopped at the saddle
s which corresponds to the extremity of the arc connected to it, G,.
When reaching s, if all vertices of Lk~ (s) have already been visited
by some local leaf growth (initiated in m and other minima), we say
that the current growth, initiated in m, is the last one visiting s.

In such a case, the same breadth-first search traversal can be
applied to grow the arc of .7~ (f) initiated in s, noted oy. However,
in order to represent all the connected components of sub-level set
merging in s, such a traversal needs to be initiated with the union
of the priority queues 2, 2y, , ... 2, of all the arcs merging
in 5. Such a union models the entire set of candidate vertices for
absorption in the sub-level component of s (Fig. 4). Since both the
number of minima of f and the size of each priority queue can be
linear with the number of vertices in .#, if done naively, the union
of all priority queues could require O(|c|?) operations overall.

To address this issue, we model each priority queue with a Fi-
bonacci heap [12,20], which supports the removal of the minimizer
of f from 2,, in log(|oy|) steps, and performs both the insertion of
a new vertex and the merge of two queues in constant time.

Similarly to the traditional merge tree algorithm [7,49], we main-
tain a Union-Find data structure [12] to precisely keep track of the
arcs which need to be merged at a given saddle s. Each local mini-
mum m is associated with a unique Union-Find element, which is
also associated to all regular vertices mapped to o, (Sect. 3.2). Also,
each Union-Find element is associated to the arc it currently grows.
When an arc o reaches a join saddle s last, the find operation of the
Union-Find is called on each vertex of Lk (s) to retrieve the set of
arcs which merge there and the union operation of the Union-Find
is called on each of these to keep track of the merge event.

Therefore, overall, the time complexity of our augmented merge
tree computation is O(|op|log(|op|) + |o1|a(|o1])), where a() is
an extremely slow-growing function (inverse of the Ackermann
function). The |o7|0(|oy|) term yields from the usage of the Union-
Find data structure, while the Fibonacci heap, thanks to its constant
time merge support, enables to grow the arcs of the tree in logarith-
mic time. Thus, the time complexity of our algorithm is exactly
equivalent to the traditional, sequential algorithm [7,49]. However,
comparisons to a reference implementation [15] (Sect. 6) show that
our approach provides superior performances in practice.

3.5 Trunk growth

Time performance can be further improved by abbreviating the
process when only one arc growth is remaining. Initially, if f admits

N local minima, N arcs (and N arc growths) need to be created.
When the growth of an arc ¢ reaches a saddle s, if ¢ is not the last
arc reaching s, the growth of o is switched to the terminated state.
Therefore, the number of remaining arc growths will decrease from
N to 1 along the execution of the algorithm. In particular, the last arc
growth will visit all the remaining, unvisited, vertices of .# upwards
until the global maximum of f is reached, possibly reaching on the
way an arbitrary number of pending join saddles, where other arc
growths have been stopped and marked terminated (white disks in
Fig. 2, third column). Thus, when an arc growth reaches a saddle s,
if it is the last active one, we have the guarantee that it will construct
in the remaining steps of the algorithm a sequence of arcs which
constitutes a monotone path from s up to the root of .7~ (f). We
call this sequence the trunk of 7~ (f) (Fig. 2).

The trunk of the join tree can be computed faster than through
the breadth-first search traversals described in Secs. 3.2 and 3.4. Let
s be the join saddle where the trunk starts. Let S = {s¢,s1,...5,} be
the sorted set of join saddles that are still pending in the computation
(which still have unvisited vertices in their lower link). The trunk
is constructed by simply creating arcs that connect two consecutive
entries in S. Next, these arcs are augmented by simply traversing the
vertices of .# with higher scalar value than f(s) and projecting each
unvisited vertex v to the trunk arc that spans it scalar value f(v).

Thus, our algorithm for the construction of the trunk does not use
any breadth-first search traversal, as it does not depend on any mesh
traversal operation, and it is performed in O(|cy|log(|0p|)) steps (to
maintain regular vertices sorted along the arcs of the trunk). To the
best of our knowledge, this algorithmic step is another important
novelty of our approach.

4 TASK-BASED PARALLEL MERGE TREES

The previous section introduced a new algorithm based on local arc
growths with Fibonacci heaps for the construction of augmented
join trees (split trees being constructed with a symmetric procedure).
Note that this algorithm enables to process the minima of f con-
currently. The same remark goes for the join saddles; however, a
join saddle growth can only be started after all of its lower link ver-
tices have been visited. Such an independence and synchronization
among the numerous arc growths can be straightforwardly paral-
lelized thanks to the task parallel programming paradigm. Also, note
that such a split of the work load does not introduce any supplemen-
tary computation. Task-based runtime environments also naturally
support dynamic load balancing, each available thread picking its
next task among the unprocessed ones. We rely here on OpenMP
tasks [4], but other task runtimes (e.g. Intel Threading Building
Blocks, Intel Cilk Plus, etc.) could be used as well with a few modi-
fications. In practice, users only need to specify a number of threads
among which the tasks will be scheduled. In the remainder, we will
detail our task-based implementation for the arc growth step, and
also present how we have parallelized the other steps.

At a technical level, our implementation starts with a global sort
of all the vertices according to their scalar value in parallel (using
the STL parallel sort). This allows all vertex comparisons to be
done only by comparing two indices, which is faster in practice than
accessing the scalar values, and which does not depend on the scalar
type of the input data set.

4.1 Parallel leaf search

For each vertex v € ., the extraction of its lower link Lk~ (v) is a
local operation. This makes this step embarrassingly parallel and
enables a straightforward parallelization of the corresponding loop
using OpenMP. The size of Lk~ (v) for each vertex is required in
the saddle detection step. For this reason, we have to perform the
complete leaf search first. Once done, we have the list of extrema
from which the leaf growth should be started.

4.2 Leaf growth tasks

Each leaf growth is independent from the others, spreading locally
until it finds a saddle. Each leaf growth is thus simply implemented
as a task, starting at its previously extracted leaf.

4.3 Saddle stopping condition

The saddle stopping condition presented in Sect. 3.3 can be safely
implemented in parallel with tasks. When a vertex v, unvisited
so far by the current arc growth, is visited immediately after a
vertex v with f(v) < f(v'), then V' is a saddle. To decide if v was
indeed not visited by an arc growth associated to the sub-tree of
the current arc growth, we use a Union-Find data structure [12]
(one Union-Find node per leaf). In particular, we store for each
visited vertex the Union-Find representative of its current growth
(which was originally created on a minimum). Our Union-Find
implementation supports concurrent find operations from parallel
arc growths (executed simultaneously by distinct tasks). A find
operation on a Union-Find currently involved in a union operation is
also possible but safely handled in parallel in our implementation.
Since the find and union operations are local to each Union-Find sub-
tree [12], these operations generate only few concurrent accesses.
Moreover, these concurrent accesses are efficiently handled since
only atomic operations are involved.

When a saddle s is detected, we also have to check if the current
growth is the last to reach s as described in Sect. 3.4. In this purpose,
each task detecting a saddle s atomically decrements an integer
counter, initialized at the size of Lk~ (s) during the leaf search step,
by the number of vertices below s coming from the current growth.
The task setting this counter to zero is the last reaching this saddle.

4.4 Saddle growth tasks

Once the lower link of a saddle has been completely visited, the last
task which reached it merges the priority queues (implemented as
Fibonacci heaps), and the corresponding Union-Find data structures,
of all tasks terminated at this saddle. Such an operation is performed
sequentially at each saddle, without any concurrency issue both
for the merge of the Fibonacci heaps and for the union operations
on the Union-Find. The saddle growth starting from this saddle is
performed by this last task, with no new task creation. This continu-
ation of tasks is illustrated with shades of the same color in Fig. 2
(in particular for the green and blue tasks). As the number of tasks
can only decrease, the detection of the trunk start is straightforward.
Each time a task terminates at a saddle, it decrements atomically an
integer counter, which tracks the number of remaining tasks. The
trunk starts when this number reaches one.

4.5 Parallel trunk growth

During the arc growth step, we keep track of the pending saddles
(saddles reached by some tasks but for which the lower link has not
been completely visited yet). The list of pending saddles enables
us to compute the trunk. Once the trunk growth has started, we
only focus on the vertices whose scalar value is strictly greater
than the lowest pending saddle, as all other vertices have already
been processed during the regular arc growth procedure. Next, we
create the sequence of arcs connecting pairs of pending saddles
in ascending order. At this point, each vertex can be projected
independently of the others along one of these arcs. Using the sorted
nature of the list of pending saddles, we can use dichotomy for a
fast projection. Moreover when we process vertices in the sorted
order of their index, a vertex can use the arc of the previous one
as a lower bound for its own projection: we just have to check if
the current vertex still projects in this arc or in an arc with a higher
scalar value. We parallelize this vertex projection procedure using
chunks of contiguous vertex indices out of the globally sorted vertex
list (chunks are dynamically distributed among the threads). For
each chunk, the first vertex is projected on the corresponding arc of

the trunk using dichotomy. Each new vertex processed next relies on
its predecessor for its own projection. Note that this procedure can
visit (and ignore) vertices already processed by the arc growth step.

5 TASK BASED PARALLEL CONTOUR TREES

As described in Sect. 1.1, an important use case for the merge tree
is the computation of the contour tree. Our task-based merge tree
procedure can be used quite directly for this purpose. First, it is
used for the computation of the join and split trees. Next these two
trees can then be efficiently combined into the output contour tree
using the linear combination pass of the reference algorithm [7]. We
describe in the following the adjustments that are necessary for this.

5.1 Post-processing for contour tree augmentation

Our merge tree procedure segments . by marking each vertex with
the identifier of the arc it projects to through ¢. In order to produce
such a segmentation for the output contour tree (Sect. 5.2), each arc
of 7 (f) needs to be equipped at this point with the explicit sorted
list of vertices which project to it. We reconstruct these explicit
sorted lists in parallel. For vertices processed by the arc growth
step, we save during each arc growth the visit order local to this
growth. During the parallel post-processing of all these vertices, we
can safely build (with a linear operation count) the ordered list of
regular vertices of each arc in parallel thanks to this local ordering.
Regarding the vertices processed by the trunk step, we cannot rely
on such a local ordering of the arc. Instead each thread concatenates
these vertices within bundles (one bundle per arc for each thread).
The bundles of a given arc are then sorted according to their first
vertex and concatenated in order to obtain the ordered list of regular
vertices for this arc. Hence, the O(nlogn) operation count of the
sort only applies to the number of bundles, which is much lower
than the number of vertices in practice.

At this point, to use the linear combination pass from the reference
algorithm [7], the join tree needs to be augmented with the nodes of
the split tree and vice-versa. This step is straightforward since each
vertex stores the identifier of the arc it maps to, for both trees.

5.2 Combination

Next, we combine the join and split trees into the output contour
tree by adding arcs from both trees leaf after leaf, according to the
reference algorithm [7]. Each time we add an arc of one of the two
trees, we have to remove the list of regular vertices of this arc from
the other tree. As this algorithm is not straightforward to parallelize,
we execute it sequentially in our current implementation. As we
detail next, this sequential procedure is very fast in practice and it
has only a limited impact on the parallel performances.

6 RESULTS

In this section we present performance results obtained on a work-
station with two Intel Xeon E5-2630 v3 CPUs (2.4 GHz, 8 CPU
cores and 16 hardware threads each) and 64 GB of RAM. By de-
fault, parallel executions will thus rely on 32 threads. These results
were performed with our VTK/OpenMP based C++ implementa-
tion (provided as additional material) using g++ version 5.4.0 and
OpenMP 4.0. This implementation (called Fibonacci Task-based
Merge tree, or FTM) was built as a TTK [51] module. FTM uses
TTK’s triangulation data structure which supports both tetrahedral
meshes and regular grids by performing an implicit triangulation
with no memory overhead for the latter. For the Fibonacci heap, we
used the implementation available in Boost.

Our tests have been performed using eight data sets from various
domains. The first one, Elevation, is a synthetic data set with only
one arc in the output tree. Five data sets (Ethane Diol, Boat, Com-
bustion, Enzo and Ftle) result from simulations and two (Foot and
Lobster) from acquisition, containing large sections of noise. For
the sake of comparison, these data sets have been re-sampled on the
same regular grid and have therefore the same number of vertices.

Table 1: Running times (in seconds) of the different FTM steps on
a 5123 grid for the join tree (white background) and split tree (gray
background) computations. |.7(f)| is the number of arcs in the tree.

Sequential Parallel (32 threads on 16 cores)
Leaf Arc Trunk
Data set |7 ()] Overall | Sort search growth growth Overall | Speedup
Elevation 1 29.67 1.39 1.17 0 0.20 297 9.99
1 29.65 | 142 1.17 0 0.21 2.99 9.92
Ethane Diol 17 85.83 | 3.41 1.17 7.52 0.50 12.81 6.70
19 81.15 | 343 1.16 2.41 0.51 7.74 10.48
Boat 1,596 7536 | 3.69 1.17 0.09 0.82 5.99 12.58
1,673 77.11 3.84 1.17 0.74 0.81 6.77 11.39
Combustion 26,981 87.29 | 3.46 1.17 3.33 0.78 8.97 9.73
23,606 84.85 | 3.51 1.17 0.57 0.79 6.24 13.60
Enzo 96,061 190.27 | 3.67 1.17 14.05 0.79 19.91 9.56
115,287 98.28 | 3.72 1.17 4.14 0.96 10.19 9.64
File 147,748 83.34 | 3.21 1.17 1.58 0.90 7.07 11.79
202,865 86.51 | 3.21 1.18 0.69 0.91 6.20 13.95
Foot 241,841 57.57 | 234 1.18 0.90 0.68 533 10.80
286,654 7523 | 239 1.18 7.65 0.72 12.17 6.18
Lobster 472,862 122.12 | 2.49 1.18 3.99 0.89 8.77 13.92
490,236 61.38 | 2.51 1.19 6.37 0.76 11.03 5.56
16 T T T T
Ideal — -
Elevation —s— 7/
14 | Combustion
Enzo / r
Boat
Ethane Diol —e— /
12 - Foot —e— L
Ftle —a—
Lobster —b— d
10 - 4
o
=
& 8r
2
(Y]
p
6 -
4 -
2 —
fo] 1 I I I I

1 ful 8 12 16 32
Number of threads

Figure 5: Merge tree scalability on various 5123 data sets. The gray
area denotes using 2 threads per core.

6.1 Merge tree performance results

Table 1 details the execution times and speedups of FTM for the
join and the split tree on a 5123 grid. One can first see that the FTM
sequential execution time varies greatly between data sets despite
their equal input size. This denotes a sensitivity on the output tree,
which is common to most merge tree algorithms. Moving to parallel
executions, the leaf search times are the same for all data sets since
this step merely depends on the number of input vertices. Compared
to sequential leaf search times (not shown here), this step, being
embarrassingly parallel, offers very good speedups greater than 14.
The key step for parallel performance is the arc growth. On most
of our data sets this step is indeed the most-time consuming in
parallel, but its times vary in a large range: this will be investigated
in Sect. 6.3. The last step is the trunk computation, which takes
less than one second. Overall, with a minimum speedup of 5.56, a
maximum one of 13.95 and an average speedup of 10.4 on 16 cores,
our FTM implementation achieves an average parallel efficiency
greater than 64%. These speedups are detailed on the scaling curves
of the join tree computation in Fig. 5. The first thing one can notice is
the monotonous growth of all curves. This means that more threads
always implies faster computations, which enables us to focus on

Table 2: Process speeds in verts/sec of the different FTM steps on a
5123 grid for the join tree computation in sequential.

| Dataset | Sort Leaf Search Arcs growth Trunk growth Overall |
Elevation 12,959,274 7,942,846 0 102,983,615 4,607,907
Ethane Diol 2,518,028 7,943,999 470,459 20,763,762 1,554,494
Boat 2,783,166 7,939,169 419,286 11,083,335 1,720,265
Combustion 2,554,022 7,943,867 431,910 13,420,788 1,496,260
Enzo 2,299,084 7,935,284 328,118 9,882,932 709,224
Ftle 2,563,862 7,925,717 606,633 12,638,528 1,576,565
Foot 4,745,053 7,930,530 416,211 23,287,623 2,331,692
Lobster 5,118,903 7,029,316 709,345 23,578,774 1,076,218

Table 3: FTM execution stability on our 5123 grid for 10 executions

| Data set | Min Max Range Average Std.dev |
Elevation 5.24 5.45 0.21 5.32 0.05
Ethane Diol | 20.18 21.29 1.10 20.74 0.33
Boat 1299 13.77 0.77 13.40 0.25
Combustion | 1491 16.07 1.16 15.74 0.35
Enzo 2771 29.45 1.73 28.73 0.67
Ftle 1535 16.20 0.85 15.72 0.26
Foot 1942 21.08 1.65 20.21 0.50
Lobster 2237 25.59 3.21 24.36 0.83

the 32-thread executions. Another interesting point is the Lobster
data set presenting speedups greater than the ideal one for 4 and 8
threads. This unexpected but welcome supra-linearity is due to the
trunk processing of our algorithm.

As highlighted in Table 2, in sequential mode, the trunk step
is able to process vertices much faster than the arc growth step,
since no breadth-first search traversal is performed in the trunk step
(see Sect. 3.5). However, for a given data set, the size of the trunk
highly depends on the order in which leaves have been processed.
Since the trunk is detected when only one growth remains active, dis-
tinct orders in leaf processing will yield distinct trunks of different
sizes, for a given data set. Hence maximizing the size of this trunk
minimizes the required amount of computation, especially for data
sets like Lobster where the trunk encompasses a large proportion
of the domain. Note however, that the leaf ordering which would
maximize the size of the trunk cannot be known in advance. In a
sequential execution, it is unlikely that the runtime will schedule
the tasks on the single thread so that the last task will be the one
that corresponds to the greatest possible trunk. Instead, the runtime
will likely process each available arc one at a time, leading to a
trunk detection at the vicinity of the root. On the contrary, in par-
allel, it is more likely that the runtime environment will run out of
leaves sooner, hence yielding a larger trunk than in sequential, hence
leading to increased (possibly supra-linear) speedups.

As the dynamic scheduling of the tasks on the CPU cores may
vary from one parallel execution to the next, it follows that the
trunk size may also vary across different executions, hence possibly
impacting noticeably runtime performances. As shown in Table 3,
the range within which the execution times vary is clearly small
compared to the average time and the standard deviation shows a
very good stability of our approach in practice.

Finally, in order to better evaluate the FTM performance, we
compare our approach to two reference implementations, which are,
to the best of our knowledge, the only two public implementations
supporting augmented trees:

e libtourtre (LT) [15], an open source sequential reference im-
plementation of the traditional algorithm [7];

« the open source implementation [51] of the parallel Contour
Forest (CF) algorithm [22].

In both implementations, TTK’s triangulation data structure [51] is
used for mesh traversal. Due to its imgportant memory consumption,
we were unable to run CF on the 512° data sets on our workstation.

Table 4: Sequential join tree computation times (in seconds) and
ratios between libtourtre (LT), Contour Forest (CF) and our Fibonacci
Task-based Merge tree (FTM), on a 256 grid (bold: FTM speedups).

| Dataset | LT | CF | FTIM LT/FITM CF/FTM |
Elevation 5.81 7.70 3.57 1.63 2.15
Ethane Diol 11.59 | 17.75 7.14 1.62 2.48
Boat 11.84 | 17.11 6.93 1.70 2.46
Combustion | 11.65 | 16.87 8.06 1.44 2.09
Enzo 1433 | 1799 | 17.94 0.79 1.00
Ftle 11.32 | 15.62 7.15 1.58 2.18
Foot 945 | 12.72 5.94 1.59 2.14
Lobster 11.65 | 14.80 | 13.99 0.83 1.05

Table 6: Contour tree computation times (in seconds) with FTM-CT
on the 5123 grid. The construction of the merge trees (join plus split)
is reported under the MT column. The post-processing step needed
for the contour tree is in the Post-MT column and the sequential
combination of these trees in the Combine column.

Sequential Parallel (32 threads on 16 cores)
Dataset |7 (f)] Overall | Sort MT Post-MT Combine Overall | Speedup
Elevation 1 5254 | 137 292 0.98 0 5.87 8.96
Ethane Diol 36 139.05 | 3.45 13.51 1.72 3.26 22.52 6.17
Boat 3,269 140.06 | 3.60 5.16 1.40 4.13 14.90 9.40
Combustion 50,587 154.6 | 331 8.10 1.15 3.73 16.88 9.16
Enzo 211,347 263.60 | 3.56 23.17 1.36 442 33.10 7.96
Ftle 350,603 141.17 | 3.24 7.14 145 4.45 16.85 8.38
Foot 528,495 129.17 | 2.38 13.21 1.51 4.75 21.51 6.01
Lobster 963,069 189.93 | 2.04 15.64 2.68 5.49 26.62 7.13

Table 5: Parallel join tree computation times (in seconds) and ratios
between libtourtre (LT), Contour Forest (CF) and our Fibonacci Task-
based Merge tree (FTM), on a 2563 grid.

| Dataset | LT | CF | FIM LT/FTM CE/FTM |
Elevation 500 | 2.33 | 043 11.63 5.42
Ethane Diol | 895 | 4.54 | 133 6.73 3.41
Boat 824 | 440 | 0.69 11.94 6.38
Combustion | 7.96 | 582 | 0.94 8.47 6.19
Enzo 12.18 | 892 | 198 6.15 4.51
File 8.19 | 498 | 1.04 7.88 479
Foot 760 | 6.94 | 127 5.98 5.46
Lobster 8.40 | 9.02 | 240 3.50 3.76

Thus, we have created a smaller grid (2563 vertices) with down-
sampled versions of the scalar fields used previously. For the first
step of this comparison we are interested in the sequential execution.
The corresponding results are reported in Table 4. Our sequential
implementation is about twice faster than Contour Forests and more
than one and half time faster than libtourtre for most data sets. This
is due to the faster processing speed of our trunk step. The parallel
results for the merge tree implementation are presented in Table 5.
The sequential libtourtre implementation starts by sorting all the
vertices, then computes the tree. Using a parallel sort instead of the
serial one is straightforward. Thus, we used this naive paralleliza-
tion of LT in the results reported in Table 5 with 32 threads. As for
Contour Forest we report the best time obtained on the workstation,
which is not necessarily with 32 threads. Indeed, as detailed in [22]
increasing the number of threads in CF can result in extra work due
to additional redundant computations. This can lead to greater com-
putation times, especially on noisy data sets. The optimal number of
threads for CF has thus to be chosen carefully. On the contrary, FTM
always benefits from the maximum number of hardware threads. In
the end, FTM largely outperforms the two other implementations
for all data sets: libtourtre by a factor 7.8 (in average) and Contour
Forest by a factor 5.0 (in average). We here emphasize that the two
main performance bottlenecks of CF in parallel, namely extra work
and load imbalance among the threads, do not apply to FTM thanks
to the arc growth algorithm and to the dynamic task scheduling.

6.2 Contour tree performance results

The performance results obtained using our merge tree implementa-
tion ada?ted for Contour Tree (Sect. 5, named hereafter FTM-CT) on
the 512° grid are presented Table 6. We recall that the combination
of the two merge trees is performed sequentially. These results still
show good speedups varying between 6.01 and 9.40. The average
speedup is 7.9 leading to an average parallel efficiency of 49%.

As the merge tree in Sect. 6.1, we compare our implementation
with libtourtre (LT) and Contour Forest (CF) using the smaller (256°
vertices) grid. The sequential comparison is shown Table 7. As
previously, our sequential implementation is faster for most data
sets, improving in average libtourtre by a factor 1.5 and Contour
Forest by a factor 1.3. For the parallel comparison (see Table 8), we
have created a naive parallel implementation of libtourtre by sorting

Table 7: Sequential contour tree computation times (in seconds) and
ratios between libtourtre (LT), Contour Forest (CF) and our Fibonacci
Task-based Merge tree adapted for Contour Tree (FTM-CT), on a 2563
grid (bold: FTM-CT speedups).

| Dataset | LT | CF | FIM-CT LT/FIM-CT CF/FTM-CT |
Elevation 10.84 8.15 6.53 1.66 1.25
Ethane Diol | 21.54 | 17.73 12.37 1.74 143
Boat 21.10 | 16.63 11.99 1.76 1.39
Combustion | 21.52 | 16.92 13.57 1.59 1.25
Enzo 27.79 | 19.71 25.83 1.08 0.76
Ftle 23.05 | 15.89 14.38 1.60 111
Foot 19.24 | 13.41 14.30 135 0.94
Lobster 23.39 | 51.32 22.75 1.03 2.26

in parallel using 32 threads and by computing the join and split trees
in parallel (with 2 threads). Here again for Contour Forest, we report
the best time on the workstation, which can be obtained with less
than 32 threads (due to possible extra work in parallel). Despite
our straightforward contour tree computation based on FTM, which
includes a sequential combination, we clearly outperform the two
other implementations for all data sets: libtourtre with a factor of 4.7
(on average) and Contour Forest with a factor of 2.7 (on average).

6.3 Limitations

In order to understand the limitations of the our approach, we first
detail the arc growth step in Fig. 6 which presents the number of
remaining tasks through time, focusing on the part where this number
of tasks becomes lower than the number of threads (32). From the
time the curve is lower than 32, until it reaches 1, our arc growth
step has less remaining tasks than available threads and does not thus
fully exploit the parallel compute power of our CPUs. Depending on
the data set, this suboptimal section can have different proportions:
30% for Foot, but 100% for Ethane Diol. As we launch one task by
leaf and this latter data set has only 8 leaves, we can not expect this
arc growth step to have a speedup greater than 8. More generally,
depending on the data set and the number of cores, this suboptimal

1 Lobster

Number of tasks

eim==cSSaEEEL

0 05 1 15 2 25 3 35 4 45 5 55 &6 65 7 75 & 85 9 95 10 105 11 115 12 125 13 135
Time (seconds)

Figure 6: Number of remaining tasks throughout time. This chart is
cropped at 32 to highlight the suboptimal section.

Table 8: Parallel contour tree computation times (in seconds) and
ratios between libtourtre (LT), Contour Forest (CF) and our Fibonacci
Task-based Merge tree for Contour Tree (FTM-CT), on a 256° grid.

| Dataset \ LT | CF | FIM-CT LT/FTM-CT CF/FTM-CT |
Elevation 5.15 2.53 0.83 6.20 3.04
Ethane Diol | 12.65 5.39 227 5.57 2.37
Boat 12.95 4.97 1.46 8.87 3.40
Combustion | 10.59 6.89 1.95 5.43 3.53
Enzo 1482 | 11.72 4.37 3.39 2.68
Ftle 12.51 6.28 2.80 447 2.24
Foot 10.85 8.30 4.52 2.40 1.84
Lobster 13.05 | 17.69 8.14 1.60 2.17

Al

Figure 7: Worst case data set with the initial scalar field (left), with 50%
of added randomness (middle), and with 100% of added randomness
(right). The color map goes from blue (low) to green (high).

section can limit our parallel speedups for the arc growth step. The
larger the number of cores, the sooner this step becomes suboptimal.

In order to study this effect further, we have created a worst
case data set composed of only two large arcs as illustrated on the
left of Fig. 7. As expected, the speedup of the arc growth step
on this data set does not exceed 2, even when using 32 threads
(results not shown). Then we randomize this worst case data set
gradually, starting by the leaf side as illustrated in Fig. 7 and report
the corresponding computation times with 2 and 32 threads in Fig. 8.
As the random part progresses (from 10 to 40%), the 32-thread
execution takes less time while the 2-thread execution takes more.
This is due to the faster processing of the leaf growths associated
with random noise with 32 threads. When the random part becomes
too large, the execution time increases for both 2 and 32 threads,
probably since most of our tasks are now too small. Fortunately,
in practice such a worst case and such a large random section are
unlikely to appear in real life acquired or simulated data sets.

Finally, a last limitation of our current approach lies in the sequen-
tial combination of the contour tree computation. This combination
takes a minor part in the overall computation in sequential (about 2%
of the total time). However when using a high number of cores in
parallel, this sequential step can limit the overall parallel speedups
according to Amdahl’s law. As a future work, an efficient paral-
lel combination could lead to even better speedups than the ones
presented in Table 6.

7 APPLICATION

The merge tree is a well known tool for data segmentation used in
various applications. It is especially used in the medical domain [§]

20
19
18-
17
16.
15
14
13
12
n

10

Time (seconds)

o-NOBMOON®

- 2 threads

- 32 threads
0 & 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Random part (percentage)

Figure 8: FTM computation time for 2 and 32 threads on our worst
case data set as the random part progresses form 0 to 100%.

R

(a) ®) ©

Figure 9: The Foot data set is a 3D scan of a human foot on which
the scalar field is the density. We use the split tree segmentation
to extract bones. (a) One contour corresponding to the skin of the
foot. (b) The different bones highlighted using the segmentation of the
deepest arcs of the tree. (c) Using topological simplification enables
us to identify bones belonging to a same finger.

as illustrated by Fig. 9 which shows a 3D scan of a human foot. The
scalar field is the matter density, different densities corresponding to
different tissues. The skeleton is easy to detect as it corresponds to
the highest density. We can extract the corresponding regions using
the segmentation of deepest arcs of the split tree (the arcs adjacent to
the leaves) as shown in Fig. 9(b). By using topological simplification
we can merge regions of interest to identify bones belonging to the
same toe as illustrated by Fig. 9(c). Thanks to our approach this
processing can be done in a handful of seconds, even for 5123 grids,
which greatly improves interactivity in visual exploration tasks.

8 CONCLUSION

In this paper, we have presented a new algorithm to compute the
augmented merge tree on shared memory multi-core architectures.
This new approach makes use of the Fibonacci heaps to completely
revisit the traditional algorithm and compute the merge tree using
independent local growths which can be expressed using tasks. This
work is well suited for both regular grids and unstructured meshes.
We also provided a lightweight generic VTK-based C++ reference
implementation of our approach, based on the OpenMP task runtime.
This implementation is the fastest to our knowledge to compute this
topological data structure in augmented mode, both sequentially
and in parallel. Moreover, using our implementation to compute
the contour tree gives competitive results, clearly outperforming
libtourtre and Contour Forest in all our test cases.

As future work, we plan to improve our parallel performance in
four different ways. First, we would like to investigate improve-
ments to our arc growth step, whose scalability is currently bounded
by the number of leaves in the output tree (Sect. 6.3). Such im-
provements could be beneficial for machines with a large number
of cores, such as the Intel Xeon Phi. Second, we plan to improve
our parallel contour tree performances on multi-core architectures
thanks to a parallel combination algorithm. Third, while our efforts
focused so far on time efficiency, we would also like to further im-
prove the memory complexity of our implementation, to be able to
address larger data-sets; for 10243 grids, only topologically simple
scalar fields are currently handled by our implementation on our test
hardware (64 GB of RAM, Sect. 6). A fourth interesting research
direction would be to study the relevance of our approach for in-situ
visualization, where the analysis code is executed in parallel and in
synergy with the simulation code generating the data.

ACKNOWLEDGMENTS

This work is partially supported by the Bpifrance grant "AVIDO” (Programme
d’Investissements d’ Avenir, reference P112017-2661376/D0OS0021427) and by the
French National Association for Research and Technology (ANRT), in the framework
of the LIP6 - Kitware SAS CIFRE partnership reference 2015/1039. The authors would
like to thank the anonymous reviewers for their thoughtful remarks and suggestions.

REFERENCES

[1]
[2]
[3]

[4]
[5]

[6]

[9]

[10]

(1]
[12]
[13]

[14]

[15]
[16]
(17]

[18]

(19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Acharya and V. Natarajan. A parallel and memory efficient algo-
rithm for constructing the contour tree. In PacificVis, 2015.

T. F. Banchoff. Critical points and curvature for embedded polyhedral
surfaces. The American Mathematical Monthly, 1970.

S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb graphs
for shape analysis and applications. TCS, 2008.

O. A. R. Board. OpenMP Application Program Interface, V 4.0, 2013.
R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar
simulation. In Proc. of the IEEE Fall Joint Computer Conference.

P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell.
Interactive exploration and analysis of large scale simulations using
topology-based data segmentation. /[EEE TVCG, 2011.

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. In Symposium on Discrete Algorithms, 2000.

H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible
isosurfaces using local geometric measures. In Proc. of IEEE VIS, pp.
497-504, 2004.

H. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak
pruning for scalable smp contour tree computation. In Proc. of IEEE
Large Data Analysis and Visualization, 2016.

Y. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-
sensitive construction of contour trees using monotone paths. Compu-
tational Geometry Theory and Applications, 2005.

K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in Reeb graphs of 2-manifolds. In SoCG, 2003.

T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

M. De Berg and M. van Kreveld. Trekking in the alps without freezing
or getting tired. Algorithmica, 18(3):306-323, 1997.

L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse com-
plexes for shape segmentation and homological analysis: discrete
models and algorithms. Computer Graphics Forum, 2015.

S. Dillard. libtourtre: A contour tree library. http://graphics.cs.

ucdavis.edu/~sdillard/libtourtre/doc/html/, 2007.

H. Edelsbrunner and J. Harer. Computational Topology: An Introduc-
tion. American Mathematical Society, 2009.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persis-
tence and simplification. Discrete & Computational Geometry, 2002.
H. Edelsbrunner and E. P. Mucke. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Trans. on
Graph., 9:66-104, 1990.

G. Favelier, C. Gueunet, and J. Tierny. Visualizing ensembles of
viscous fingers. In IEEE SciVis Contest, 2016.

M. Fredman and R. Tarjan. Fibonacci Heaps and their Uses in Improved
Network Optimization Algorithms. Journal of the ACM, 1987.

D. Guenther, R. Alvarez-Boto, J. Contreras-Garcia, J.-P. Piquemal, and
J. Tierny. Characterizing molecular interactions in chemical systems.
IEEE Trans. on Vis. and Comp. Graph., 2014.

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Contour Forests: Fast
Multi-threaded Augmented Contour Trees. In Proc. of IEEE Large
Data Analysis and Visualization, 2016.

A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci.
Stability of dissipation elements: A case study in combustion. Comp.
Graph. For., 2014.

A. Gyulassy, P-T. Bremer, B. Hamann, and P. Pascucci. A practical ap-
proach to Morse-Smale complex computation: scalabity and generality.
IEEE Trans. on Vis. and Comp. Graph., pp. 1619-1626, 2008.

A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer, M. Papka, L. A.
Curtiss, and V. Pascucci. Interstitial and interlayer ion diffusion geom-
etry extraction in graphitic nanosphere battery materials. JEEE Trans.
on Vis. and Comp. Graph., 2015.

A. Gyulassy, V. Natarajan, M. Duchaineau, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann. Topologically Clean Distance
Fields. IEEE Trans. on Vis. and Comp. Graph., 13:1432—1439, 2007.
C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based
methods in visualization. Comp. Graph. For., 2016.

M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes. In

[29]

(30]

[31]

[32]

(33]
[34]
(35]
(36]
[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(511

[52]

[53]
[54]
[55]

[56]

Proc. of ACM SIGGRAPH, 2001.

J. Kasten, J. Reininghaus, I. Hotz, and H. Hege. Two-dimensional
time-dependent vortex regions based on the acceleration magnitude.
IEEE Trans. on Vis. and Comp. Graph., 2011.

A. Landge, V. Pascucci, A. Gyulassy, J. Bennett, H. Kolla, J. Chen,
and T. Bremer. In-situ feature extraction of large scale combustion
simulations using segmented merge trees. In SuperComputing, 2014.
D. E. Laney, P. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Un-
derstanding the structure of the turbulent mixing layer in hydrodynamic
instabilities. IEEE Trans. on Vis. and Comp. Graph., 2006.

S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel al-
gorithm for computing and tracking level set topology. In International
Conference on High Performance Computing, 2012.

J. Milnor. Morse Theory. Princeton U. Press, 1963.

D. Morozov and G. Weber. Distributed contour trees. In Topological
Methods in Data Analysis and Visualization 111, 2013.

D. Morozov and G. Weber. Distributed merge trees. In ACM Sympo-
sium on Principles and Practice of Parallel Programming, 2013.

V. Pascucci and K. Cole-McLaughlin. Parallel computation of the
topology of level sets. Algorithmica, 2003.

V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution
computation and presentation of contour trees.

V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas. Robust
on-line computation of Reeb graphs: simplicity and speed. ACM Trans.
on Graph., 2007.

V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny. Topological Data
Analysis and Visualization: Theory, Algorithms and Applications.
Springer, 2010.

G. Reeb. Sur les points singuliers d’une forme de Pfaff completement
intégrable ou d’une fonction numérique. Comptes-rendus de
I’Académie des Sciences, 222:847-849, 1946.

V. Robins, P. Wood, and A. Sheppard. Theory and algorithms for
constructing discrete morse complexes from grayscale digital images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.
P. Rosen, J. Tu, and L. Piegl. A hybrid solution to calculating aug-
mented join trees of 2d scalar fields in parallel. In CAD Conference
and Exhibition (accepted), 2017.

P. Rosen, B. Wang, A. Seth, B. Mills, A. Ginsburg, J. Kamenetzky,
J. Kern, and C. R. Johnson. Using contour trees in the analysis and vi-
sualization of radio astronomy data cubes. Technical report, University
of South Florida, 2017.

Y. Shinagawa, T. Kunii, and Y. L. Kergosien. Surface coding based on
morse theory. IEEE Computer Graphics and Applications, 1991.

N. Shivashankar, P. Pranav, V. Natarajan, R. van de Weygaert, E. P.
Bos, and S. Rieder. Felix: A topology based framework for visual
exploration of cosmic filaments. IEEE TVCG, 2016.

D. Smirnov and D. Morozov. Triplet Merge Trees. In TopolnVis, 2017.
B. S. Sohn and C. L. Bajaj. Time varying contour topology. [EEE
Trans. on Vis. and Comp. Graph., 2006.

T. Sousbie. The persistent cosmic web and its filamentary structure:
Theory and implementations. Royal Astronomical Society, 2011.

S. Tarasov and M. Vyali. Construction of contour trees in 3d in o(n log
n) steps. In SoCG, 1998.

D. M. Thomas and V. Natarajan. Multiscale symmetry detection in
scalar fields by clustering contours. /EEE TVCG, 2014.

J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE TVCG (Proc. of IEEE VIS), 2017. https:
//topology-tool-kit.github.io/.

J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for
volumetric meshes: Reeb graphs reduced to contour trees. IEEE Trans.
on Vis. and Comp. Graph., 15:1177-1184, 2009.

M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pasucci, and D. Schikore.
Contour trees and small seed sets for isosurface traversal. In SoCG.
G. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann.
Topology-controlled volume rendering. /EEE TVCG, 2007.

G. H. Weber, P. Bremer, and V. Pascucci. Topological Landscapes: A
Terrain Metaphor for Scientific Data. IEEE TVCG, 2007.

K. Weiss, F. Iuricich, R. Fellegara, and L. D. Floriani. A primal/dual
representation for discrete morse complexes on tetrahedral meshes.
Comp. Graph. For., 2013.

http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/
http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/
https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/

	Introduction
	Related work
	Contributions

	Preliminaries
	Background
	Overview

	Merge tree computation by local arc growth
	Leaf search
	Leaf growth
	Saddle stopping condition
	Saddle growth
	Trunk growth

	Task-based parallel merge trees
	Parallel leaf search
	Leaf growth tasks
	Saddle stopping condition
	Saddle growth tasks
	Parallel trunk growth

	Task based parallel contour trees
	Post-processing for contour tree augmentation
	Combination

	Results
	Merge tree performance results
	Contour tree performance results
	Limitations

	Application
	Conclusion

