
DIVA: A Declarative and Reactive Language for in situ Visualization
Qi Wu*

University of California, Davis,
United States

Tyson Neuroth†

University of California, Davis,
United States

Oleg Igouchkine‡

University of California, Davis,
United States

Konduri Aditya§

Indian Institute of Science, India
Jacqueline H. Chen¶

Sandia National Laboratories,
United States

Kwan-Liu Ma||

University of California, Davis,
United States

ABSTRACT

The use of adaptive workflow management for in situ visualization
and analysis has been a growing trend in large-scale scientific simu-
lations. However, coordinating adaptive workflows with traditional
procedural programming languages can be difficult because system
flow is determined by unpredictable scientific phenomena, which of-
ten appear in an unknown order and can evade event handling. This
makes the implementation of adaptive workflows tedious and error-
prone. Recently, reactive and declarative programming paradigms
have been recognized as well-suited solutions to similar problems in
other domains. However, there is a dearth of research on adapting
these approaches to in situ visualization and analysis. With this pa-
per, we present a language design and runtime system for developing
adaptive systems through a declarative and reactive programming
paradigm. We illustrate how an adaptive workflow programming
system is implemented using our approach and demonstrate it with
a use case from a combustion simulation.

1 INTRODUCTION

Scientific simulations running on petascale high-performance com-
puting (HPC) platforms such as Summit [50] can easily produce
datasets at scales beyond what can be efficiently processed. There-
fore, scientists often have to compromise the allocation of strained
resources, such as I/O bandwidth, to maximize the overall efficiency
of simulations [8, 29]. An ideal solution is to manage the system
workflow adaptively through trigger-action mechanisms (which are
termed “in situ triggers” in some literature [11, 31]) because they
can prioritize the allocation of these strained resources to the most
interesting phenomena as they emerge [56]. However, adaptive
workflows are usually more difficult and error-prone to program be-
cause they are reactive applications rather than transformational [48].
Control flows in adaptive workflows are often driven by evolving
simulation outcomes and event sequences that cannot be predicted
in advance. Therefore, domain scientists must anticipate all possible
scenarios in advance and create sophisticated rules to dynamically
trigger actions in response to the events [6]. Moreover, because the
quality of adaptive workflows often relies heavily on the accuracy
of trigger conditions, having an in situ infrastructure that simplifies
the customization process is important [8, 31].

A common approach to implementing reactive systems is through
synchronous dataflow programming models [14, 15, 26]. In such
models, programs are formed by wiring primitive processing ele-
ments and composition operators into a directed graph structure. The
dataflow programming model provides a natural form of modularity

*e-mail: qadwu@ucdavis.edu
†e-mail: taneuroth@ucdavis.edu
‡e-mail: oigouchkine@ucdavis.edu
§e-mail: konduri.adi@gmail.com
¶e-mail: jhchen@sandia.gov
||e-mail: ma@cs.ucdavis.edu

for many applications. VTK [61] also partially adopted this ap-
proach, however, VTK is designed for programming unidirectional
visualization pipelines, and provides limited support for highly dy-
namic dataflows. Moreover, the synchronous dataflow model is
somewhat difficult to use and does not always lead to modular pro-
grams for large scale applications when control flows become com-
plicated [19]. Functional reactive programming (FRP) [19,24,48,53]
further improved this model by directly treating time-varying values
as first-class primitives. This allowed programmers to write reac-
tive programs using dataflows declaratively (as opposed to callback
functions), hiding the mechanism that controls those flows under
an abstraction. By enabling such a uniform and pervasive man-
ner to handle complicated data flows, applications gain clarity and
reliability.

Through our work, we demonstrate how FRP abstractions can be
used to better assist adaptive in situ visualization and analysis work-
flow creation, using a domain-specific language (DSL) we created
called DIVA. This language consists of two components: an FRP-
based visualization specific language and a low-level C++-based
dataflow API. Rather than replacing existing in situ infrastructures,
it aims to work as a middle layer which can extend existing systems
such as VTK [61]. Through the description of our design, we empha-
size the key principles that ensure a correct implementation of the
FPR abstractions in a parallel environment. These principles can also
be applied to in situ systems that are aimed at enabling declarative
and reactive programming, without adopting DIVA itself.

Our design provides four primary benefits:
Simple. Traditionally, in situ infrastructures employ callback

functions to handle separated programming stages. Useful callback
functions include initialization, per-timestep execution, finalization,
and feedback loops [36]. As such, a single data dependency could
be broken into multiple pieces that are controlled by interleaving
control flows, making it hard to read and maintain. If an operation
requires information from multiple timesteps, the handling of static
storage will also be involved, making the implementation even more
complex. Declarative programming simplifies these tedious and
redundant low-level tasks by placing more of the burden on the
tool developers. This allows the user to focus on specifying the
results they desire. Meanwhile, reactive programming offers the
ability to automatically coordinate data dependencies and propagate
changes from inputs to outputs. This model is commonly used to
greatly simplify the handling of time-varying signals, such as events
triggered by human interaction. Since adaptive workflows similarly
specify the reaction of a system to time-varying signals, we believe
reactive programming is also a good solution for coordinating them.

Extensible. By providing a fully programmable interface and
a low-level C++ API, DIVA allows flexible extension through the
development of new custom modules.

Portable. The low-level API also makes the integration with
existing visualization infrastructures easier, by only asking for a
short binding implementation; this can typically be just one source
file. Thus, DIVA can be used as a wrapper to enable declarative
and reactive programming for these infrastructures. This also means
that workflows written in DIVA for one infrastructure can be easily
reused in a different infrastructure if the proper bindings are supplied

ar
X

iv
:2

00
1.

11
60

4v
2

 [
cs

.P
L

]
 6

 S
ep

 2
02

0

for both of them.
Dynamic. DIVA’s API resolves linking through dynamic load-

ing; therefore, adding or updating linked libraries does not always
require recompilation nor restarting. This feature can be useful for
scientific simulations on HPC systems, because allocations for these
simulations are usually limited; removing unnecessary restarts al-
lows for more useful simulation work to be done and gives a higher
chance for scientific discoveries.

In this paper, we first begin with a summary of related works. We
then describe the principles and features of our language with a set
of examples. We also provide a set of examples to demonstrate how
our design meets the needs of in situ visualization and analysis, and
how it supports our assertion that declarative and reactive models
are good approaches for adaptive workflow management in this
domain. Next, we discuss implementation details of our language.
Finally, we showcase the use of DIVA to program an adaptive in situ
workflow for a leading edge simulation code running on the Summit
supercomputer.

2 BACKGROUND AND MOTIVATION

We begin with an overview of recent advances in reconfigurable
in situ workflows, and a history of functional reactive program-
ming. We then compare existing methods in our domain with the
FRP model. Finally, we conclude with a discussion about how our
approach is suitable for better assisting adaptive workflow design.

2.1 Reconfigurable in situ Workflows
We review recent research in reconfigurable in situ workflows from
two categories that are particularly relevant to visualization: having a
“human-in-the-loop” with a focus on improved interactivity, and au-
tomatically looking for regions of importance during the simulation.
In the first category, many successful infrastructures for in situ visu-
alization and analysis, such as Libsim [72] and Catalyst [4], support
interactive exploration during the simulation. However, even with
these infrastructures, tasks like searching for infrequent scientific
phenomena can still be challenging, because scientists do not always
know which aspects of the simulation to focus on. In the second
category, many have attempted to automate the search for important
regions for in-depth analysis, visualization, and storage [10, 46, 49].
Notably, recent works following in this direction usually involve
defining indicator functions known as “in situ triggers” for charac-
terizing features. These triggers can be domain-agnostic algorithms
such as data reduction, aggregation, statistical analysis, and machine
learning [7, 33, 40, 47, 77], or domain-specific routines that require
special knowledge from domain-experts [11, 56, 67, 76]. Through
this approach, a system could automatically focus resources on the
most interesting phenomena from the simulation, but only if the
triggers are well-designed. However, manually designing and im-
plementing these triggers can be tedious (e.g., by directly working
on an infrastructure’s source code) or error-prone (e.g., misuse of
algorithms). Tools to simplify the development and composition of
in situ triggers into workflows are much needed. Recent work by
Larson et al. demonstrates a flexible interface for creating in situ
triggers in the ASCENT [31] infrastructure. Our work is inspired
by this. However, with DIVA, we contribute a complete DSL for
programming trigger-based dynamic workflows. In this language,
fine-grained in situ triggers are automatically generated based on
user-specified data dependencies and high-level constraints. This
approach frees users from manually writing every trigger and allows
them to create potentially better and more reliable workflows.

2.2 Functional Reactive Programming
Functional reactive programming (FRP) is a declarative program-
ming paradigm for working with time-varying values. Particularly,
FRP defines time-varying values as signals, which conceptually can
be viewed as functions that include time as a parameter. In in situ

workflow management, such signals can represent the outputs from
a simulation [53]. Although there are many variations of FRP focus-
ing on different applications, they all fall into two main branches:
classical FRP [24] and arrowized FRP [48].

Classical FRP was first proposed for creating interactive anima-
tions. It introduced notations called behaviors (another name for
signals) and events, to represent continuous time-varying values and
sequences of time-stamped values respectively. Although initially
focused on animation, it inspired many later works of broader scope
due to its elegant semantics [20]. However, because it is a denota-
tional model which does not restrict the length of a signal stream
that can be operated on, classical FRP programs can have a high
memory footprint and long computation times [20].

Arrowized FRP (AFRP) [48] aims to resolve the space and time
leaks without losing the expressiveness of classical FRP. Instead of
working with signals or similar notations directly, AFRP focuses on
manipulating causal functions between signals, connecting to the
outside world only at the top level [53]. However, programs written
in AFRP can still suffer from issues like global delay or unnecessary
updates, depending on their implementations [20].

Real-time FRP (RT-FRP) [70], event-driven FRP (E-FRP) [71]
and asynchronous FRP (e.g., the original version of Elm) [21] are
other variations developed to optimize classical FRP. RT-FRP in-
troduced a two-tiered language design for reactive programming;
It uses a closed, unrestricted language to give direct operational se-
mantics, making it possible to measure computational expenses [70],
along with a simpler and more limited reactive language for manipu-
lating signals [70]. This separation makes it much easier to prove
properties of RT-FRP, at the expense of expressiveness [20]. Simi-
larly, E-FRP makes the assumption that signals are all discrete. This
property makes it suitable for intensive event-driven applications,
including interactive visualization [18, 43, 57–59]. Asynchronous
FRP allows programmers to explicitly enable asynchronous event
processing, and thus enables efficient concurrent execution of FRP
programs. This ensures that the responsiveness of the user interface
will not be affected by long-running computations [21]. Implemen-
tations of asynchronous FRP can also be found in many imperative
languages through Reactive Extensions [1].

2.3 Dataflow Model for Visualization
There is a rich literature [9, 22, 23, 39, 42, 45, 51, 61, 65, 68] on using
dataflow models to realize configurable visualization systems. In
these frameworks, workflows are represented as simple pipelines
or directed graphs, with nodes representing low-level visualization
components (also called functions, filters, modules, or processors).
Data is processed hierarchically as it flows through components to
form a complete workflow [64]. Even though this method works
very well for traditional post hoc scenarios, there is still room for im-
provements in terms of abstraction and efficiency when adaptive in
situ workflows are considered. From the perspective of abstraction,
these frameworks do not supply first-class representations for time-
varying primitives. This makes the management of time-varying
storage manual and tedious. From the perspective of efficiency, be-
cause in situ workflows are expected to be executed repeatedly for a
large number of timesteps, lazy evaluation can help to avoid needless
recomputation. However, many popular visualization frameworks
lack system-wide support for lazy evaluation, leaving it to the de-
veloper to avoid unnecessary computation. This makes the quality
of module implementations a more important factor for efficiency,
and makes it difficult for novice programmers to implement efficient
modules inside such frameworks.

2.4 Programmable Interfaces for Visualization
By directly incorporating low-level APIs (e.g., C++ or Fortran),
users can always create visualizations and analyses using arbitrary
algorithms, and fully utilize modern architectures for cutting-edge

Figure 1: A DIVA program is processed through three layers. Users typically specify their program using the declarative interface (left); then the language parser will translate it into an
internal DAG representation; this representation will then be interpreted into a low-level dataflow API for execution. A) A DIVA program computes a volume rendering for every 5
timesteps, and saves the rendering on disk. B) The same program in the DAG representation. C) The same program in the low-level API. Because the C++ API is not declarative, in part
C), statements have to be executed in order. Moreover, because C++ does not track data dependencies automatically, all variables declared in C) should be wrapped by lifting operators
(e.g., divaCreateSource). D) The hierarchy of primitives defined by the low-level dataflow API: All values in DIVA are signals; values depending on external inputs are sources;
values returning to the environment are actions (e.g., a saved image file); triggers are special primitives that decide which actions to compute based on predicates; rest values are internal
to the workflow and are represented by either pure (i.e., DivaPureOp) or impure functions (i.e., DivaImpure).

techniques such as ray-tracing [69], and heterogeneous parallelism.
However, novice programmers are prevented from doing so due to
the complexity and difficulty in low-level programming. End users
often prefer to compose the low-level modules using high-level dy-
namic languages like Python; and in this field, almost all major in
situ infrastructures provide this support, by employing one of two
approaches [34–36]. In the first approach, the capabilities are ex-
posed through wrapped objects or functions that can be configured
using Python [3, 4, 16, 30, 44, 72]. In the other, the infrastructure
embeds user-supplied high-level codes directly into its pipeline, pro-
viding users with direct access to the simulation data and the ability
to analyze natively in the high-level language [5, 36]. However,
Python has a major drawback when it comes to supporting FRP
features. Because Python is designed for a much wider range of
tasks than just programming adaptive in situ workflows, it makes
fewer assumptions about data abstraction and data dependencies;
the implementation of features like lazy evaluation and dependency
tracking often rely on wrapper functions and special inheritance
patterns, which can be complicated to use and increase the verbosity
of the program.

DSLs use specialized grammars that are tailored for particular
domains. Several DSLs have been designed for visualization and
analysis over the years, including Data Explorer [38], Scout [41],
Diderot [17, 28], ViSlang [54], Mathematica [74], MATLAB [66]
etc. Such DSLs enable users to express programs in domain-specific
semantics that they are familiar with, and hide more complicated
implementation details [64]. A well-designed DSL can greatly sim-
plify the learning process. A declarative design can further improve
a DSL by introducing only declarative grammars for system config-
urations. It also improves usability by not only providing a large
number of domain-specific built-in functions, but also introducing
new language abstractions to hide underlying execution models [59].
Because FRP itself is a variant of declarative language (for han-
dling time-varying data), implementing FRP abstractions using a
declarative DSL approach is straightforward. Several information vi-
sualization toolkits have already adopted declarative [12, 13, 73] and
reactive [57,58] grammars for specifying visual encodings. Some of
these have become very popular due to their ease of use and flexibil-
ity. These works have inspired further work to improve usability in
other areas, including high-performance information visualization
systems [32], and for the configuration of complex GPU shader

pipelines for advanced volume rendering of scientific data [64]. Our
work is inspired by these existing designs; however, we focus on
using a declarative and reactive programming model to correctly
handle parallel in situ visualization and analysis workflows.

2.5 Motivation for a New Language

Since it takes time to learn a new programming language, embedding
our system within an existing language would have some advantages.
However, we believe that, for programming complicated adaptive in
situ workflows, DIVA is favorable, for the following reasons: First,
data abstractions introduced by FRP enable not only declarative
programming, but also systematic tracking of time-varying data de-
pendencies. They also create a new way for users to think of the data
(in terms of time-sequences rather than iteratively updated values).
Implementing this abstraction in C++ or Python is possible, but that
would require a new set of data wrappers to be provided. When pro-
gramming using this API, they would also need to manually lift all
the native types provided by the host language using these wrappers.
This process alone might significantly steepen the learning curve.
Second, workflows programmed in DIVA might be more flexible,
better to optimize, and easier to debug, as the language compiler
knows exactly what users write. For example, in a well-defined DSL
environment, users only need to write down essential information
about the algorithm; technical details such as updating the DAG and
building the dependency diagram can be computed automatically.
Thirdly, code written in an actively developed DSL can be more
portable across platforms, because DSLs are usually simpler and
easier to port (due to their limitations and simplicity). For exam-
ple, it is fairly easy to rewrite our DIVA system in JavaScript and
enable web-based visualization. However, porting Python or C++
to browsers can be challenging compared to rewriting the workflow
entirely. Finally, we do observe that it might be difficult to fully
understand DIVA’s methods, but we believe that these difficulties
are coming from the new abstractions and concepts being intro-
duced, rather than the syntax of the language itself. DIVA’s syntax
shares many features from popular high-level languages including
Python and Lua. Thus, understanding DIVA’s syntax should not be
a challenging task.

1 /* --- DIVA --- */
2 pair = window(data.HeatRelease , 2 ...)
3 grad = gradient(pair, data.ldims) // compute gradient
4 // record gradients for every 10 timesteps
5 hist = window(/*trigger=*/time%10==0, grad, 100,...)
6 // integrate the streamline
7 seed = random_3d(vec3f(0), data.ldims)
8 streamline = integrate_line(seed, hist)
9 // render and save images when the window is full

10 img = line(streamline ,...)
11 Trigger(time%1000==0) { save_png(img, "img-"+str(time)) }
12
13 /* --- Python --- */
14 pair, hist, seed = [], [], None
15 def Init():
16 seed = random_3d(vec3f(0), data.ldims)
17 def Process(time):
18 pair.append(data.HeatRelease)
19 if (len(pair) > 2): pair.pop(0)
20 if (time % 10 == 0):
21 grad = gradient(pair, data.ldims,...)
22 hist.append(grad)
23 if (len(hist) > 100): hist.pop(0)
24 if (time % 1000 == 0):
25 streamline = integrate_line(seed, hist)
26 img = line(streamline ,...)
27 save_png(img, "img-" + str(time))

Listing 1: Code comparison between DIVA and Python. Both programs render
streamlines that are computed by integrating the gradient of an input volume.
By introducing the signal abstraction, DIVA can automatically remember the
dependencies between variables. As it is optimized using lazy evaluation, it only
updates variables that are changing. Therefore, users do not have to explicitly compute
the “seed” in the initialization function. The signal abstraction also automatically
considers time-varying objects as sequences, thus there is no need to manually create
static storage, such as “pair” and “hist”, nor to manipulate them iteratively. Note that,
syntactically DIVA can use either “{}” or “()” to declare nodes with parameters.

3 THE DIVA LANGUAGE DESIGN

We implemented DIVA through three components (as shown
in Fig. 1): the language parser for translating DIVA workflow speci-
fications into DAG representations; the workflow manager, which
is in charge of managing system resources, detecting logical errors,
and making decisions about how to execute the DAG; and the C++
dataflow API for executing low-level components. In this section,
we illustrate our design decisions using examples and discuss the
advantages of these choices through comparison with code written
in other models.

3.1 Signal Abstraction
DIVA adopts the abstraction of signals from classical functional re-
active programming (FRP) to represent time-varying values. Specif-
ically, a signal of type α in DIVA, denoted as α̂ , can be considered
as a function from time to typed values:

α̂ : Time→ α

In this formulation, time refers to the simulation timesteps, and can
be represented as a non-negative integer. For the sake of simplicity,
DIVA assumes that all variables are treated as signals implicitly and
they cannot be deleted or modified upon construction. DIVA also
assumes that new signals can only be created using pure functions,
where the “pureness” is defined conventionally through referential
transparency [55]. However, there are two exceptions, which are
discussed in Sect. 3.3. These simplifications make it possible for our
system to systematically resolve the evaluation schedule for signals
and correctly update their values when necessary. It also allows users
to process time-sequences directly using array-like operations rather
than using iterative algorithms. The effects of the signal abstraction
in DIVA can be found in Listing 1, where a code comparison between
DIVA and Python is demonstrated. In this example, both programs
compute and render streamlines from volume gradients. Because the
computation of gradients and streamlines requires data from multiple
timesteps, developers need to explicitly manipulate multiple static
storages; to avoid unnecessary recomputations, they should also
seed streamlines in the initialization function (e.g., Init). In DIVA,
these steps are not needed. Users of DIVA can therefore focus less

on program execution (e.g., when to generate the initial seedings for
streamlines) and more on the specification of desired results (e.g.,
seedings are the initial condition for the line integral).

3.2 Language Structure
Similar to RT-FRP, DIVA uses a two-tier language design to pro-
vide tractable notions of computational costs. In particular, there
is a restricted reactive language for declaratively manipulating sig-
nals, and an unrestricted low-level imperative API for implementing
details of the reactive abstraction.

The reactive language is a combination of classical FRP abstrac-
tions and the dataflow model used by VTK for constructing visual-
ization pipelines. However it enriches the use of directed acyclic
graphs (DAGs) and expression of the data flow through source-
filter-mapping, by replacing variables with signals. This enrichment
makes DIVA’s reactive programming interface more suitable for
writing components that require inputs from multiple timesteps, be-
cause users are freed from the manual handling of global or static
storage. Moreover, in this language, signals and their dependencies
are conceptually represented as parameterized nodes and directed
links. Based on the location of a node in the DAG, nodes are clas-
sified as a source, function, or action. Sources are root nodes in
the graph for representing predefined signals (e.g., simulation out-
puts) that initiate data flows. Functions are internal nodes requiring
both inputs and outputs for computing intermediate values within
the workflow. Because all values in DIVA’s declarative interface
are signals, functions are essentially constructors for signals. As
a result, most functions cannot produce side effects. Actions are
terminating nodes in the graph, defining how the workflow interacts
with the external environment. They are generalizations of VTK’s
mappers, because they can not only map visualizations to display
devices, but also conduct tasks like data storage and in situ steering1.
They do not return values back to the workflow, and their implemen-
tations are expected to have side effects. In addition to the three
categories mentioned above, DIVA also introduces a special type of
node — triggers, which are higher-order2 functions for signals of
the following type:

Trigger A : (‘bool, A)→Maybe A

where A refers to an action and Maybe A represents a type that can
return either A or nothing. They are responsible for dynamically
controlling the execution of actions based on a Boolean signal: when
the signal evaluates to true, the corresponding action is returned and
executed; signal evaluates to false, the execution is skipped. Fig. 1
A, shows an example where the “temperature” field is rendered once
every 5 timesteps.

The low-level interface for DIVA is implemented in C++ follow-
ing a traditional dataflow model. This API is intended for imple-
menting all the reusable modules that can be called from DIVA,
rather than implementing the workflow itself. Therefore, users of
DIVA do not have to directly use this API. Because the low-level
API is not declarative, code translated into this API is much more
verbose (Fig. 1C) compared to code written declaratively (Fig. 1A).
However, with this API, DIVA can be extended easily and flexi-
bly, by taking advantages of three features. First, the low-level
runtime provides a simple but generic command pattern API. Al-
though simple, this API fully implements the reactive language’s
abstractions. For example, generic classes for signals, actions, and
pure and impure functions are provided for programming differ-
ent features as shown in Fig. 1D; within those classes, developers
can manipulate parameters and return outputs using functions like

1A feedback mechanism that allows the modification of the simulation
based on visualization/analysis outputs while the simulation is running.

2A function that takes one or more functions as arguments or returns a
function as its result.

Figure 2: Window is a special impure function that collects a signal’s historical values
into an array at timesteps where the “condition” is true. A window can be constructed
in sparse mode, or consecutive mode. In the sparse mode, up to “max size” values are
collected, even if they appeared sparsely in time. In the consecutive mode, values that
appear within an interval of consecutive time steps are recorded, and when the condition
becomes false, the window is cleared. As an example, a consecutive window can track
history for a period time while a phenomena is active, then automatically reset when
the phenomena subsides, and then begin tracking the phenomena again if it becomes
active another time.

setInput, addAction, and setValue. Second, the API provides
detailed indications about different stages of computation, such as
initialize, and commit (which resolves types), and execute. This
allows developers to better optimize their implementations when
they are trying to extend DIVA with customized modules. However,
this does not mean that all of the low-level development burdens
are thrown to developers; instead, features such as lazy-evaluation
(see Sect. 4) are implemented system wide in base classes, making
them immediately available to all extensions. Third, through our
low-level API, developers can register custom types, that can then be
used directly in the reactive language layer. This helps make it easier
to integrate existing, well-optimized libraries. Finally, integrating
new packages into DIVA often does not require a full code recompi-
lation. Instead, DIVA uses dynamic loading to look for registered
function symbols during runtime. As long as the added packages
are compiled with the core components and placed correctly, the
DIVA back-end system can automatically link them, even while the
simulation is running. This allows incremental development without
restarting a simulation.

3.3 Impure Functions
As discussed previously, programs written in a classical FRP lan-
guage have unrestricted access to a signal’s history. Thus a correct
classical FRP implementation will have to to track all signal val-
ues automatically. Although this method has been proven to be
fast enough for many applications [70], holding extra copies of the
simulation data might not be suitable for in situ workflows because
of the high expense in terms of processing time and memory. To
solve this issue, DIVA introduces dedicated impure functions for
accessing values across time, while other functions are prohibited
from doing so. Those impure functions are specialized constructors
for creating stateful signals (i.e., signals with static storage). During
the construction, a finite description of the computational cost must
be presented explicitly, which effectively prevents users from acci-
dentally writing programs that can produce large memory footprints
unexpectedly.
Window is one of the impure functions provided by DIVA, which

creates array-like signals by collecting values over a range of
time. Its definition (shown in Fig. 2) takes a target signal (field)

as the value source, a Boolean condition (trigger) controlling
when a value is saved, and a pair of integers (max size and
min size) defining the shape of the output array. For example,
window(true,isosurface,10,5) retains up to 10 isosurfaces at
a time, where for every time step a new isosurface is pushed into
the window; if the number of time steps computed falls between 5
and 10, then the size of this window is the same as the time step
number; if the current time step is less than 5, then the size of the
returned array will be 5 with the values in the empty space unde-
fined. Such an operation offers support for time-sequence analysis,
as well as backward feature tracking. For example, once a feature is
detected, the data histories associated with the feature that are within
a window can be retained. To provide the user with the ability to ex-
press complicated triggering conditions on events, DIVA also adopts
operations from the field of temporal logic programming [25]. By
abstracting commonly used Boolean operations on time sequences,
they can simplify the expression of time-varying control logic. For
example, until(x) creates a Boolean signal which will be true
until the first true occurrence of x. Similarly, after(t>1700)
defines a signal whose value is false until the first time where t
is above 1700, and true thereafter. Other basic operators include
first(x),firstN(x,n) and afterN(x,n). In addition to these
basic temporal logic operations, developers can also implement other
customized impure functions. However they must be inherited from
a dedicated base class and evaluated once for each timestep to ensure
correctness.

3.4 Global Functions
Operations involving global synchronizations are very common for
data-distributed simulations and visualizations. Although it is not
completely obvious, it is important for lazily evaluated workflows
to have them explicitly handled to ensure program efficiency and
correctness. There are two reasons. Firstly, in a typical classical
FRP language with lazy evaluation enabled, computations might be
accumulated until they are needed. If computations are parallelized,
there might be many synchronizations dispatched in a relatively
short period of time, making the system less balanced and more
difficult to be optimized toward overall throughput. Secondly, main-
stream parallel programming interfaces typically implement global
synchronization as matching calls (e.g., MPI send, MPI recv) that
should be executed simultaneously on multiple ranks. However, in
a lazily evaluated workflow, this requisite can easily be violated
because the program control flows are data-driven; programs run-
ning on different ranks do not always yield the same data values and
control flows.

DIVA resolves this problem by classifying functions as global or
non-global. Global functions by definition are those whose execution

Trigger

count count count count count

activated activated

51
Count
Result

Time

reduce reduce reduce reduce reduce

activated

reduce operation executed on all ranks

rank 1 rank 2 rank 3 rank 4 rank 5

A B

Figure 3: Special rules are used to control the evaluation of impure functions and global
synchronizations. A) As a minimal example, the impure function “count” increments
an internal counter automatically for each timestep. Because of that, the execution of
this operation cannot be simply skipped, even if its output values are not immediately
required. B) Global function “reduce” reduces values across multiple MPI ranks, and its
result is then used by another operation. In this case, this operation becomes a dependent
of all instances of “reduce”. Thus, even if only one of the operations is activated (by
a triggered action on that rank), all instances of “reduce” shall be executed to ensure
correctness.

involves global synchronizations. Thus reductions and distributed
rendering are global functions. We refer to these as “intrinsic” global
functions. Additionally, if a global function (g) is being used as an
input to a normally non-global function (f), then the result (f ◦g)
is also a global function, because its evaluation would potentially
invoke g. This behavior can also be understood as building de-
pendencies across ranks as shown in Fig. 3B, where an activated
function (A) is pulling data from an intrinsic global function (B).
This makes A a dependent of all Bs (e.g. on each rank). Therefore,
all the instances of B should be evaluated, even if only one instance
of A needs to be evaluated. This is an example of the second type
of global functions, which we refer to as inherited global functions.
Different from impure functions, a global operation can sometimes
still be evaluated lazily, because the entire program will be correct,
as long as they are evaluated in unison on all ranks. Thus, both pure
functions and impure functions can be global functions. Though
being important for performance and correctness, in DIVA, the com-
putation of “globalness” is totally transparent to users. Intrinsic
global functions can be developed using DIVA’s lower level API
by calling parent constructors (e.g., DivaImpure or DivaPureop)
with certain flags. If these flags are specified, parent classes will
pass MPI handlers (initialized by the simulation) to their children.
In contrast, inherited global functions can only be identified once
the workflow has been composed. In this case, DIVA will traverse
the DAG and propagate “globalness” at runtime by marking descen-
dants of intrinsic global functions as global as well. Because the
definition of a signal in DIVA cannot be changed after compilation,
its “globalness” only needs to be checked once for each workflow.

4 IMPLEMENTATION DETAILS

4.1 Language Parser
The DIVA runtime translates a declarative and reactive DIVA code
into an internal DAG representation using a parsing algorithm devel-
oped from scratch. In particular, the parser first scans through the
program and constructs a namespace object for signals. If a signal
value is defined using an inline expression, each operator used in the
expression would create a separate namespace entry. This design
makes it easy for the system to only re-evaluate signals whose values
have been changed. Once the namespace has been built, a DAG
representation can be easily constructed and validated. In particular,
the parser checks for “cycles”. A cycle means that two graph nodes
are dependent on each other. Because DIVA does not allow vari-
able rebinding at runtime, this structure can produce non-executable
workflows. The parser also performs a topological sort on the DAG
and computes a unique evaluation order for graph nodes. This effec-
tively prevents the appearance of temporary inconsistencies in the
DAG (i.e., “glitches”). Thus, a node can be evaluated if and only if
all of its dependencies are up-to-date. After this, the DAG is sent to
the workflow manager for execution. Listing 2 demonstrates how
the DIVA parser should be used by the simulation in a nutshell.

4.2 Workflow Manager
The workflow manager is the component for evaluating the con-
structed DAG. For every timestep, it is invoked once by the simu-
lation to execute an iteration of the workflow (see Listing 2). The
workflow manager optimizes the execution following the lazy evalu-
ation principle, by deferring the evaluations of computations until
their results are absolutely needed. Additionally, it also implements
a value caching mechanism, which avoids repeatedly executing the
same computation [62]. (Details about how different signal types are
cached can be found in Sect. 3.3.) Specifically, at each timestep, the
workflow manager evaluates the DAG through the following four
passes.

First, the workflow will try to reinitialize the execution environ-
ment and reload dynamic libraries if necessary. This step is intended
to support programmers who wish to incrementally develop and

1 map<string,diva_source_t> sources; Language lang; ...
2 void Init(int tstep, double time, double* ...) {
3 sources["data"] = divaSourceCreate("data");
4 lang.parse("case-study.diva",...);
5 }
6 void Process(int tstep, double time) {
7 sources["data"]->addData("geom", GeomInput(...));
8 for (auto f : sim.fields())
9 sources["data"]->addData(f.name(), FieldInput(f));

10 sources["data"]->commit();
11 /* code executed by the workflow manager */
12 lang.setSources(tstep, sources);
13 for (auto v : lang.getAllImpures()) v->evaluate();
14 for (auto v : lang.getAllTriggers()) v->evaluate();
15 }

Listing 2: Pseudocode demonstrating how DIVA is integrated into S3D. In particular,
two C++ functions are introduced in S3D for initialization and in situ processing.
Because we do not change workflow specifications while the simulation is running,
the parsing process is written in the Init routine. Since sources are essentially inputs
to the workflow, they are updated (with fields passed as pointers) for each timestep.
After that, DIVA’s workflow manager is invoked to evaluate impure functions and
triggers respectively.

verify their ideas, without shutting down the simulation entirely.
However, as shown in Sect. 3.3, if workflow specifications are never
changed, repeated reinitialization is carefully avoid.

Then, it starts evaluating all of the impure functions that appear in
the workflow. Even though they are internal computations, they need
to be handled separately because they are allowed to produce side-
effects, such as mutations of static states. Processing them using lazy
evaluation might lead to incorrect results. For instance, the count
operation shown in Fig. 3A computes the number of timesteps that
have gone by, by maintaining a counter locally; however, if the
evaluation was skipped in a previous timestep, the value returned
from the operation would be wrong when it is needed. Thus, to
ensure the correctness of the program, these impure operations
should be processed eagerly.

After having all impure internal components evaluated, DIVA will
then move to impure external nodes — actions. Particularly, DIVA
assumes that, in a DAG, only paths ending in triggers are meaningful,
and all the other paths can be skipped. For example, the process of
rendering can be skipped for some timesteps if the rendered image is
not eventually saved in the current timestep. However, data storage
processes should always be executed for each timestep, since they
permanently save files to disks. Such a prioritized evaluation is
correct because a workflow in DIVA can only produce side effects to
the environment through actions and impure functions (but impure
functions are already handled in the previous step).

Finally, to avoid repeated evaluation of unused operations, DIVA
also maintains a caching table to track pure functions’ most recent
input parameters and values. If none of the inputs are changed in
the current timestep, then the evaluation of a pure function can be
short-circuited. Notably, because users do not directly specify the
execution order for all programs, DIVA also implements the same
short-circuit mechanism internally for Boolean operations. This
effectively allows Boolean expressions like “x and y” to termi-
nate earlier without computing y when the result of x turns out to
be false. This is a crucial feature for implementing multi-level
triggers, because these triggers are typically designed by having
expensive analyses guarded by some looser but cheaper constraints
(e.g., y is being guarded by x in the expression mentioned above);
computing the Boolean value after evaluating all input variables
would defeat the purpose of multi-level triggers.

5 CASE STUDY: ANOMALY DETECTION IN S3D
In this section, we show a real visualization and analysis workflow
for combustion simulations implemented using DIVA. Particularly,
we begin with a review of the simulation and the anomaly detection
algorithm. Then we explain the workflow with example codes and
comparisons. Afterwards, we describe how we establish benchmarks
on the Summit supercomputer. Finally, we conclude with benchmark

results and discussion.
S3D is a scalable, reacting, compressible flow direct numerical

simulation (DNS) solver, which is extensively used to simulate key
combustion phenomena relevant to internal combustion and gas
turbine engines [27]. The code solves the conservation equations for
mass, momentum, energy, and chemical species at each grid point
of a computational mesh, and over several hundreds of thousands of
time steps. At extreme scale, the volumetric data (comprised of the
velocity field, pressure, temperature, and mass fractions of about 10
to 110 chemical species) generated from each simulation runs into
several terabytes, often overwhelming the I/O bandwidth and storage
allowance. Therefore, the output is usually reduced by saving to
disk at a significantly reduced temporal frequency. However, at
this reduced frequency, the data often misses transient dynamics
of exponential processes, such as auto-ignition that are essential
for understanding the combustion phenomena. In many situations,
events such as auto-ignition appear in highly localized regions of
space and/or time. Hence, in situ algorithms and workflows that
capture the events of interest are being developed to intelligently
guide the saving of data and reduce the storage costs [2].

5.1 Case Overview
For the demonstration and evaluation of our system, we simulate
a turbulent premixed auto-ignition problem that is relevant to ho-
mogeneous charge compression ignition (HCCI) and stationary gas
turbine engines [60]. Some of the features of interest in analyzing
such simulations are the conditions surrounding the ignition events
and flame surfaces. Analyzing these conditions enables scientists to
better understand the combustion phenomena, including the flame
stabilization mechanisms, fuel consumption rates, and pollutant
formation.

The inception and growth of ignition kernels in the premixed re-
actants occur rapidly and, are often missed in coarse check-pointing
of the data. The anomaly detection algorithm mentioned earlier can
be used to identify an ignition kernel at its inception, as it can be
defined as an extreme event. The algorithm first computes feature
moment metrics (FMM) for different sub-regions or MPI ranks of
the computational domain. The FMMs are measures in state space
that contain the signatures of the extreme events. They also quan-
tify the contribution of different chemical components towards the
ignition kernel formation. By comparing the FMM in the current
MPI rank with the average FMM among all MPI ranks, we obtain a
spatial anomaly metric (m1); by comparing this FMM with its values
from the previous timestep, we obtain a temporal anomaly metric
(m2). If any of these two metrics are large enough (e.g., m1 > 0.7 or
m2 > 0.7), an anomaly (i.e., auto-ignition) can be pronounced.

However, this anomaly detection algorithm has two major draw-
backs. Firstly, its complexity is bounded by O(mn4), where n is the
number of chemical components and m is the number of grid points
in the sub-domain. Thus, executing the algorithm can be quite expen-
sive. Secondly, the algorithm can detect an auto-ignition event when
it first occurs, but cannot be used to predict the event a priori. Hence,
when an auto-ignition is detected, features leading to it, which need
to be visualized, would already have disappeared. Other methods
such as CEMA [37, 63] or noise-tolerant trigger detection [11] are
also suitable for this problem and are interchangeable for anomaly
detection in our study; but because they also suffer from the similar
drawbacks, principles for designing workflows with them should
remain the same.

5.1.1 Defining Pre-Filters for Auto-Ignition

Because the cost of running the anomaly detection is currently high,
pre-filtering (i.e., ad-hoc conditions) can be introduced to identify
candidate regions and timesteps in advance. There are two well
established pre-conditions of auto-ignition. First, there is a delay
time associated with the formation of ignition kernels, which can

be estimated from simple a priori calculations. In our particular
simulation setup, the delay time is about 200 timesteps. Second,
an ignition is accompanied by “heat release” events, which can be
computed in situ. In particular, the phenomena of auto-ignition can
only happen when there is a big enough “heat release”, which is
characterized locally by the maximum value within an MPI rank.
With this understanding, we formulated our pre-conditions:

1 /* a) DIVA ---*/
2 hr = max_array(data.HeatRelease)
3 wait = (time > 200) && (time % 40 == 0)
4 adhoc, valid = hr > 1E-3, wait && adhoc
5 /* b) C++ Naive --*/
6 double hr = max_array(data.data("HeatRelease"));
7 bool wait = (time_i > 200) && (time_i % 40 == 0);
8 bool adhoc = hr < -1E-3;
9 bool valid = wait && adhoc;

10 /* c) C++ with Lazy Evaluation ---------------------------*/
11 bool flag = true; // define a callback function and a flag
12 auto hr = [&]() { // to ensure the computation can only be
13 if (flag) { // done once per time step.
14 flag = false; return max_array(data.data("HeatRelease"));
15 } return 0.0;
16 }
17 bool wait = (time > 200) && (time % 40 == 0);
18 bool adhoc = valid = false; // avoid re-evaluating
19 if (wait) { adhoc = hr() < -1E-3; if (adhoc) valid = true }

In this example, three code snapshots are displayed. Part a) is written
using DIVA, part b) is a similar implementation in C++, and c) is
an optimized version in C++ following the lazy evaluation principle.
Clearly, program b) is very simple, but less efficient compared to the
other programs, because in program b), the maximum “heat release”
value will be calculated for every timestep. However, this value will
be useful only when the Boolean variable “wait” becomes true. In
part c), lazy evaluation is correctly implemented, at the expense of
creating a callback function and using nested control flow.

Although we have only demonstrated one particular case here,
the same principles apply to in situ analyses with multi-level fil-
tering mechanisms in general. These types of workflows can be
programmed in DIVA more concisely without compromising perfor-
mance due to redundant computation.

5.1.2 Automatic Synchronization

To correctly detect the anomalous events, we need to compare the
feature moment metrics across time, and across the decomposed
domain. To achieve that in a traditional language, static storage
and standard MPI synchronizations can be used as shown in List-
ing 3B. Since metrics m1 and m2 are only used once in a while
(when variable “valid” is true), we can further optimize the code
by guarding anomaly detection, MPI Allreduce and the manip-
ulation of “fmm win”with an if-statement. However, part of this
optimization is in fact wrong, as the value of the Boolean condition
“valid” can be different on different MPI ranks. Clearly, if one of
the program instance enters a different branch, the execution of the
simulation will be blocked infinitely. To fix this issue, we have to
synchronize the Boolean condition before entering the associated
control flows (by calling the globalSync function in Listing 3B).
As we can see in practice, correctly deciding which control flow
conditions to synchronize can be tedious and error-prone. In DIVA,
with the help of its built in dependency tracking, synchronizations
are automatically handled, which results in a much simpler code (as
shown in Listing 3A). These details are discussed in Sect. 3.4.

5.1.3 Establishing Short-Term Memory

The second drawback of the anomaly detection algorithm, is that
it cannot predict anomalies in advance. Because this algorithm is
also expensive, it is undesirable to execute the algorithm at every
timestep. Therefore, it is very likely that when an auto-ignition
event is found, the regions of interests for visualization have already
been missed. One approach to solve the issue is to aggressively
memorize all features of interests from candidate regions in a limited
RAM space. Within these candidate regions, the anomaly detection

1 /* ---- Code A -- DIVA -----------------------------------*/
2 features = [data.H2, ..., data.temperature]
3 /* feature moment metrics */
4 fmm = anomaly_detection(features);
5 fmm_hst = window(/*trigger=*/valid, fmm, 2, 2)
6 fmm_avg = reduce_avg(fmm)
7 /* determine anormaly */
8 m1 = anomaly_metrics(d1=fmm, d2=fmm_avg)
9 m2 = anomaly_metrics(data=fmm_hst)

10 anomaly = valid && (m1 > 0.7 || m2 > 0.7)
11 Trigger(valid) { print("m1=" + str(m1)) }
12 Trigger(valid) { print("m2=" + str(m2)) }
13
14 /* ---- Code B -- C++ with Lazy Evaluation ---------------*/
15 inline bool globalSync(int ret,...) {
16 MPI_Allreduce(&ret,&ret,/* MPI_BOR...*/); return ret;
17 } ------------ main program ------------
18 auto features = vector<double*>{...};
19 auto fmm = deque<vector<double>>();
20 static auto fmm_avg = vector<double>(features.size());
21 static auto fmm_win = deque<vector<double>>();
22 if (globalSync(valid,...)) {
23 fmm = anomaly_detection(features);
24 // compute the average fmm per-feature across ranks
25 }
26 if (valid) {
27 fmm_win.push_back(fmm);
28 if (fmm_win.size() > 2) fmm_win.pop_front();
29 }
30 // spatial metrics (m1) & temporal metrics (m2)
31 double m1 = 0, m2 = 0;
32 if (globalSync(valid,...)) m1=anomaly_metrics(fmm,fmm_avg);
33 if (valid) m2=anomaly_metrics(fmm_win[1],fmm_win[0]);

Listing 3: Code comparison between DIVA and C++. Both codes compute the
anomaly metrics by comparing the local FMM with the average FMM among all MPI
ranks and with its values from the previous timestep. In the C++ version (B), because
the MPI operation is guarded by a if-statement, the Boolean condition needs to be
manually synchronized; however, because the manipulation of “fmm win” is local
to the MPI rank, its control flow condition should not be synchronized. This creates
complexities for users. In the DIVA version (A), global synchronization steps for
control flows are automatically handled, which not only makes coding easier, but also
reduces the chances for mistakes.

algorithm can then be executed. If an auto-ignition is found in a
region, recorded data in the short-term, within this region, can then
be transferred to long term storage, or be used to trigger downstream
visualization and analyses for causality studies. This approach is
practical, because data stored in short term memory are limited, and
local to a small number of regions. We also consider this solution
superior to traditional fixed policy workflows, because it can capture
pre-ignition events correctly with much less overhead. In DIVA we
can implement this method using the window function:

1 stats_ftr_avg = avg_list(features) // pre-ignition
2 stats_ftr_min = min_list(features) // statistics
3 stats_ftr_max = max_list(features)
4 len = 40 /* record 40 steps */
5 recorded_avg = window(stats_ftr_avg , len)
6 recorded_min = window(stats_ftr_min , len)
7 recorded_max = window(stats_ftr_max , len)
8 Trigger(anomaly) { save_statistics(data=recorded_avg ,...)
9 save_statistics(data=recorded_min ,...)

10 save_statistics(data=recorded_max ,...) }

5.1.4 Temporal Logic to Simplify Control Flow
One important objective for this workflow is to correctly visualize
spatialtemporal regions near the ignition kernel. In particular, this
means we should not only identify the period of time before the auto-
ignition, but also start downstream visualizations after the ignition
(as illustrated by Fig. 5). Formally, the pre-ignition period is defined
as the time interval between the appearance of the first pre-filtering
condition till the appearance of anomaly; while the post-ignition
interval starts with the anomaly and lasts for a fixed period of time.
However, because the pre-filtering condition is data-driven, it will
naturally fluctuate as the data changes, making it unsuitable for
defining continuous time intervals. In DIVA, these sort of problems
are handled by built-in temporal logic functions (as discussed in
Sect. 3.3). Particularly, DIVA provides functions like “switch”3 and

3The “switch” function is analogous to the behavior of a light switch,
which can be turned on by the first “on” condition if it is currently off, and

Figure 4: C++ implementations of the pre-anomaly condition and the post-anomaly
condition. The pre-anomaly phase is defined as a continuous time interval from the
moment that variable “valid” becomes true, to the moment that variable “anomaly”
becomes true. The post-anomaly phase is defined as a fixed length interval since
“anomaly ” becomes true. As we can see, defining continuous time intervals from
time-varying values can be tedious in traditional languages such as C++.

Figure 5: Visualizations generated by our case study workflow. The maximum heat
release value and feature moment metrics are used to jointly detect the phenomena
of auto-ignition. To study the cause of auto-ignition, we visualize the statistics of
raw variables computed by the simulation (e.g., chemical mass fractions, temperature,
pressure, etc.) using joint PDF plots (at time steps leading up to, and till the moment
of ignition). We use volume renderings of important characteristic variables (e.g., the
heat release and temperature), to visualize the geometry and scales of the phenomena.
We also generate histograms of the feature moment metrics as guidance for statistical
analysis.

“countN” to convert discrete events into intervals. Therefore, we
can easily define our pre-ignition and post-ignition events as in the
following example:

1 pre_anomaly = switch(on = valid, off = anomaly)
2 post_anomaly = countN(since = anomaly, n = 10)
3 /* render the heat release after anomaly for 10 steps */
4 vol = volume(field = data.HeatRelease ,...)
5 Trigger(post_anomaly) { save_ppm(vol, "img-" + str(time)) }

Although these temporal functions look very simple in DIVA,
they can be fairly hard to implement in traditional languages like
C++ or Python (examples are shown in Fig. 4). This is not only
because the manipulation of static storage can be complicated, but
also because those functions should only be executed once globally
for each timestep. In other words, these functions can only be
implemented with separately maintained local storage (as DIVA
does internally).

5.2 Benchmark
To effectively estimate the performance of our system, we compare
our adaptive workflow implemented using DIVA with a reference
implementation of the workflow written directly using C++. We
optimized this reference implementation following almost the same
principles we used to optimize DIVA, except we did not implement

turned off by the first “off” condition if it’s currently on.

Table 1: Benchmark Results.

Grid Size 1283 1283 2563 2563 5123 5123

Size per Rank 323 163 323 163 323 163

Nodes 2 16 16 128 128 1024
Proc per Node 32 32 32 32 32 32
GPU per Node 1 1 1 1 1 1

TimeRef (s) 1677 769 2321 980 2959 1444
TimeDIVA (s) 1639 779 2194 959 2607 1388
% Difference -2.3% 1.3% -5.5% -2.1% -12.0% -3.9%

lazy evaluation for trivial computations, such as simple arithmetic.
We believe our reference implementation is an efficient implemen-
tation of the workflow when no additional parallelism layers are
involved. For modular operations, such as the computation of the
feature moment metrics, identical implementations are used in both
workflows.

To verify our assertions, we compiled both implementations with
a CPU-based S3D using identical compiler settings (PGI compiler
in the default “Release” mode configured by CMake), and bench-
marked them across 6 different configurations on the Summit su-
percomputer. For each configuration, we ran both implementations
once. For each configuration, we placed 32 MPI ranks on each
compute node with 2 IBM POWER9 22-core CPUs, and requested 1
NVIDIA Volta V100 GPU for each compute node. The GPUs were
used by the GPU-based volume rendering library integrated in DIVA.
The number of compute nodes we requested for each configuration
can be found in Table 1. To qualitatively assess our implementa-
tion, we measured the overall workflow processing time for each
run by summing the workflow time of each timestep. In particular,
we profiled each run for exactly 220 steps, starting from a middle
timestep checkpoint, and we guaranteed that: first, runs of the same
configuration shared the same checkpoint file; second, auto-ignition
was happening by the end of each run; third, visualizations and
statistics produced by runs from the same configurations agreed with
each other.

Our results are summarized in Table 1 with all timings measured
in seconds. We found that, for most of the configurations, the
two implementations indeed have similar performance, with low
percentage differences4 (<±6%). The 5123-323 configuration was
the only exception. For this configuration, we found that DIVA was
able to compute FMM faster consistently (by about 10 seconds).
However, we did not observe the same phenomenon with other
configurations, which suggests that the discrepancy might not be
due to DIVA.

6 DISCUSSION

There are other potential uses of DIVA beyond programming dy-
namic in situ workflows. For example, the current implementation
of DIVA does not directly support in transit workflows. But we
could implement a workaround by developing customized sources
and actions using in transit libraries such as ADIOS [35] and having
two workflows running alongside each-other either synchronously
or asynchronously. In particular, this would require one workflow to
be running in situ and writing data using an ADIOS action, and the
other workflow to be running separately and receiving data using
a connected ADIOS source. With a focus on expressiveness and
code portability, DIVA can also be used as a thin layer to enable
declarative and reactive programming on existing frameworks like
ALPINE [30] and SENSEI [5]. This would also allow users to port
codes across different platforms and frameworks. For example, one
could use the native DIVA implementation and a GPU worksta-
tion to develop and debug a workflow, and then directly deploy the

4 Percentage Difference (%) = TimeDIVA−TimeRef
TimeRef

×100

program to a supercomputer that features a CPU-based rendering
infrastructure such as VisIt-OSPRay [75].

There are several limitations for DIVA. First, DIVA currently
does not support programming loops and functions directly in its
declarative interface. If these are needed, the low-level API needs
to be used. Second, DIVA’s current implementation has almost no
restrictions for module implementations. Bugs in the extension (e.g.,
accessing MPI handlers from non-global functions) can be very
hard to find and can lead to unpredictable results as workflows are
highly dynamic. Third, DIVA currently allows global functions to
communicate directly through MPI. While modules can also exploit
heterogeneous parallelism internally (e.g., through VTKm worklets),
there are remaining challenges towards optimizing data and resource
management (e.g. through dynamic resource allocation). To solve
this problem, a more generic low-level data parallel programming en-
vironment such as Legion [52] would be needed. Fourth, integrating
DIVA into simulations currently requires changes to be made to the
simulation code because the simulation would be in charge of creat-
ing DIVA sources. This could result in many different customized
versions being maintained for only slightly different purposes. Thus
a simpler and more generic way for the simulation side integration
would be very helpful. Finally, DIVA’s current design prohibits
variable re-definition. Thus, data dependencies in a DIVA workflow
can not be modified once compiled. This assumption greatly reduces
the complexity of DIVA in design; however, it also prohibits the use
of triggers on internal functions. Finding a way to achieve this could
be an interesting direction for future work.

7 CONCLUSION

As we enter the age of extreme scale supercomputing and Big Data,
the support of in situ data analysis and visualization becomes in-
dispensable to application developers and domain scientists. The
introduction of DIVA, a declarative and reactive programming en-
vironment, overall makes adaptive in situ workflow development a
simpler process. We find the key benefits that it provides include:
more autonomy between developers, modularity of workflow compo-
nents, extensibility through the back-end runtime system, protection
against logical programming errors by using implicit control flow
execution, and a more results-oriented paradigm that better reflects
end goals. As DIVA matures, it shall continue to be refined and
extended to support a wide range of applications.

ACKNOWLEDGMENTS

The authors wish to thank Martin Rieth at Sandia National Labo-
ratories for providing advice, support, and data for this research.
This research is sponsored in part by the U.S. Department of Energy
through grant DE-SC0019486. The work at Sandia National Labora-
tories was supported by the US Department of Energy, Advanced
Scientific Computing Research Office. Sandia National Laborato-
ries is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. De-
partment of Energys National Nuclear Security Administration under
contract DE-NA0003525. The work at Indian Institute of Science
was supported by the institute’s Start-up Research Grant provided to
Konduri Aditya.

REFERENCES

[1] Reactivex. http://reactivex.io. Accessed: 2020-03-03.
[2] K. Aditya, H. Kolla, W. P. Kegelmeyer, T. M. Shead, J. Ling, and

W. L. Davis. Anomaly detection in scientific data using joint statistical
moments. J. Comput. Phys., 387:522–538, 2019.

[3] J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for
Large-Data Visualization. In Visualization Handbook, pp. 717–731.
Butterworth-Heinemann, 2005.

[4] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin. Paraview catalyst: Enabling in situ data analysis and
visualization. In Proc. 1st Workshop ISAV, pp. 25–29, 2015.

[5] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, and
E. W. Bethel. The SENSEI Generic In Situ Interface. In Proc. 2nd
Workshop ISAV, pp. 40–44, 2016.

[6] E. Bainomugisha, A. L. Carreton, T. van Cutsem, S. Mostinckx, and
W. d. Meuter. A Survey on Reactive Programming. ACM Comput.
Surv., 45(4), 2013.

[7] D. Banesh, J. Wendelberger, M. Petersen, J. Ahrens, and B. Hamann.
Change Point Detection for Ocean Eddy Analysis. In Proc. Workshop
EnvirVis, pp. 27–33, 2018.

[8] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W.
Bethel. In Situ Methods, Infrastructures, and Applications on High
Performance Computing Platforms. Comput. Graph. Forum, 35(3):577–
597, 2016.

[9] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: enabling interactive multiple-view
visualizations. In IEEE Visualization (VIS), pp. 135–142, 2005. doi:
10.1109/VISUAL.2005.1532788

[10] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen. Combining In-Situ and in-Transit
Processing to Enable Extreme-Scale Scientific Analysis. In Proc. Int.
Conf. SC, pp. 1–9, 2012.

[11] J. C. Bennett, A. Bhagatwala, J. H. Chen, A. Pinar, M. Salloum, and
C. Seshadhri. Trigger Detection for Adaptive Scientific Workflows
Using Percentile Sampling. SIAM J. Sci. Comput., 38(5):S240–S263,
2016.

[12] M. Bostock and J. Heer. Protovis: A Graphical Toolkit for Visualization.
IEEE Trans. Vis. Comput. Graph., 15(6):1121–1128, 2009.

[13] M. Bostock, V. Ogievetsky, and J. Heer. D: Data-Driven Documents.
IEEE Trans. Vis. Comput. Graph., 17(12):2301–2309, 2011.

[14] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declara-
tive language for real-time programming. In Proc. 14th ACM SIGACT-
SIGPLAN Symp. POPL, p. 178188, 1987. doi: 10.1145/41625.41641

[15] P. Caspi and M. Pouzet. Synchronous functional programming : The
lucid synchrone experiment. 2008.

[16] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, K. Bonnell,
M. Miller, G. H. Weber, C. Harrison, T. Fogal, C. Garth, S. Allen,
E. Wes Bethel, M. Durant, D. Camp, J. M. Favre, O. Rübel, P. Navrátil,
M. W. A, P. S. A, and F. Vivodtzev. VisIt: An End-User Tool for
Visualizing and Analyzing Very Large Data. In In Proc. of SciDAC, pp.
357–372. 2012.

[17] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer. Diderot:
a parallel DSL for image analysis and visualization. In Proc. 33rd
ACM SIGPLAN Conf. PLDI, pp. 111–120, 2012.

[18] J. A. Cottam and A. Lumsdaine. Stencil: A Conceptual Model for
Representation and Interaction. In Proc. 12th Int. Conf. IV, pp. 51–56,
2008.

[19] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade. In Proc.
ACM SIGPLAN Workshop Haskell, p. 718, 2003. doi: 10.1145/871895.
871897

[20] E. Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis,
Harvard University, 2012.

[21] E. Czaplicki and S. Chong. Asynchronous Functional Reactive Pro-
gramming for GUIs. In Proc. 34th ACM SIGPLAN Conf. PLDI, pp.
411–422, 2013.

[22] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris:
How to efficiently leverage multicore parallelism to achieve scalable,
jitter-free i/o. pp. 155–163, 2012. doi: 10.1109/CLUSTER.2012.26

[23] M. Dreher and T. Peterka. Decaf: Decoupled dataflows for in situ
high-performance workflows, 2017.

[24] C. Elliott and P. Hudak. Functional reactive animation. In Proc. 2nd
ACM SIGPLAN ICFP, p. 263273, 1997. doi: 10.1145/258948.258973

[25] D. M. Gabbay, I. M. Hodkinson, and M. Reynolds. Temporal logic:
mathematical foundations and computational aspects, vol. 1. Claren-
don Press, 1994.

[26] T. Gautier, P. Le Guernic, and L. Besnard. Signal: A declarative

language for synchronous programming of real-time systems. In Proc.
Conf. FPLCA, p. 257277, 1987.

[27] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen. Scalar
mixing in direct numerical simulations of temporally evolving plane jet
flames with skeletal CO/H2 kinetics. Proc. Combust. Inst., 31(1):1633–
1640, 2007.

[28] G. Kindlmann, C. Chiw, N. Seltzer, L. Samuels, and J. Reppy. Diderot:
a Domain-Specific Language for Portable Parallel Scientific Visualiza-
tion and Image Analysis. IEEE Trans. Vis. Comput. Graph., 22(1):867–
876, 2016.

[29] Kwan-Liu Ma. In situ visualization at extreme scale: challenges and
opportunities. IEEE Comput. Comput. Appl., 29(6):14–19, 2009.

[30] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci,
and C. Harrison. The ALPINE In Situ Infrastructure: Ascending from
the Ashes of Strawman. In Proc. Workshop ISAV, pp. 42–46, 2017.

[31] M. Larsen, A. Woods, N. Marsaglia, A. Biswas, S. Dutta, C. Harrison,
and H. Childs. A flexible system for in situ triggers. In Proc. Workshop
ISAV, pp. 1–6, 2018.

[32] J. K. Li and K.-L. Ma. P4: Portable Parallel Processing Pipelines
for Interactive Information Visualization. IEEE Trans. Vis. Comput.
Graph., pp. 1–1, 2018.

[33] J. Ling, W. P. Kegelmeyer, K. Aditya, H. Kolla, K. A. Reed, T. M.
Shead, and W. L. Davis. Using feature importance metrics to detect
events of interest in scientific computing applications. In IEEE 7th
Symp. LDAV, pp. 55–63, 2017.

[34] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Sama-
tova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu. Hello adios:
the challenges and lessons of developing leadership class i/o frame-
works. Concurr. Comput., 26(7):1453–1473, 2014. doi: 10.1002/cpe.
3125

[35] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata
rich IO methods for portable high performance IO. In Proc. IEEE
IPDPS, pp. 1–10, 2009.

[36] B. Loring, A. Myers, D. Camp, and E. W. Bethel. Python-Based in
Situ Analysis and Visualization. In Proc. Workshop ISAV, pp. 19–24,
2018.

[37] T. F. Lu, C. S. Yoo, J. H. Chen, and C. K. Law. Three-dimensional
direct numerical simulation of a turbulent lifted hydrogen jet flame in
heated coflow: a chemical explosive mode analysis. J. Fluid Mech.,
652:4564, 2010. doi: 10.1017/S002211201000039X

[38] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L. Gresh, and
K. P. McAuliffe. An Architecture for a Scientific Visualization System.
In Proc. 3rd Conf. VIS, pp. 107–114, 1992.

[39] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L. Gresh, and
K. P. McAuliffe. An architecture for a scientific visualization system.
In Proc. Vis. ’92, pp. 107–114, 1992. doi: 10.1109/VISUAL.1992.
235219

[40] P. Malakar, V. Vishwanath, C. Knight, T. Munson, and M. E. Papka.
Optimal Execution of Co-analysis for Large-Scale Molecular Dynamics
Simulations. In Proc. Int. Conf. SC, pp. 702–715, 2016.

[41] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and
S. Cummins. Scout: A Data-Parallel Programming Language for
Graphics Processors. Parallel Comput., 33(10):648–662, 2007.

[42] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. H. Hinrichs.
Voreen: A rapid-prototyping environment for ray-casting-based volume
visualizations. IEEE Comput. Comput. Appl., 29:6–13, 2009.

[43] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: a programming language
for Ajax applications. In Proc. 24th ACM SIGPLAN Conf. OOPSLA,
pp. 1–20, 2009.

[44] K. Moreland, C. Sewell, W. Usher, L.-T. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the Visualization
Toolkit for Massively Threaded Architectures. IEEE Comput. Graph.
Appl., 36(3):48–58, 2016.

[45] D. Morozov and Z. Lukic. Master of puppets: Cooperative multitasking
for in situ processing. In HPDC ’16, 2016.

[46] D. Morozov and G. Weber. Distributed Merge Trees. SIGPLAN Not.,
48(8):93–102, 2013.

[47] K. Myers, E. Lawrence, M. Fugate, C. M. Bowen, L. Ticknor,
J. Woodring, J. Wendelberger, and J. Ahrens. Partitioning a Large
Simulation as It Runs. Technometrics, 58(3):329–340, 2016.

[48] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive program-
ming, continued. In Proc. ACM SIGPLAN Workshop Haskell, p. 5164,
2002. doi: 10.1145/581690.581695

[49] B. Nouanesengsy, J. Woodring, J. Patchett, K. Myers, and J. Ahrens.
ADR visualization: A generalized framework for ranking large-scale
scientific data using Analysis-Driven Refinement. In IEEE 4th Symp.
LDAV, pp. 43–50, 2014.

[50] S. Oral, S. S. Vazhkudai, F. Wang, C. J. Zimmer, C. Brumgard, J. Han-
ley, G. S. Markomanolis, R. Miller, D. Leverman, S. Atchley, and
V. V. V. Larrea. End-to-end I/O portfolio for the summit supercomput-
ing ecosystem. In Proc. Int. Conf. SC, pp. 1–14, 2019.

[51] S. G. Parker and C. Johnson. SCIRun: A Scientific Programming
Environment for Computational Steering. Proc. IEEE/ACM SC95
Conf., pp. 52–52, 1995.

[52] P. Pébaÿ, J. C. Bennett, D. Hollman, S. Treichler, P. S. McCormick,
C. M. Sweeney, H. Kolla, and A. Aiken. Towards Asynchronous
Many-Task in Situ Data Analysis Using Legion. In IEEE IPDPSW, pp.
1033–1037, 2016.

[53] I. Perez, M. Bärenz, and H. Nilsson. Functional reactive programming,
refactored. In Proc. 9th Int. Symp. Haskell, p. 3344, 2016. doi: 10.
1145/2976002.2976010

[54] P. Rautek, S. Bruckner, M. E. Gröller, and M. Hadwiger. ViSlang:
A System for Interpreted Domain-Specific Languages for Scientific
Visualization. IEEE Trans. Vis. Comput. Graph., 20(12):2388–2396,
2014.

[55] B. Russell and A. N. Whitehead. Principia mathematica to* 56, vol. 2.
Cambridge University Press Cambridge, UK, 1997.

[56] M. Salloum, J. C. Bennett, A. Pinar, A. Bhagatwala, and J. H. Chen.
Enabling adaptive scientific workflows via trigger detection. In Proc.
1st Workshop ISAV, pp. 41–45, 2015.

[57] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
Lite: A Grammar of Interactive Graphics. IEEE Trans. Vis. Comput.
Graph., 23(1):341–350, 2017.

[58] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive
Vega: A Streaming Dataflow Architecture for Declarative Interactive
Visualization. IEEE Trans. Vis. Comput. Graph., 22(1):659–668, 2016.

[59] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative inter-
action design for data visualization. In Proc. 27th Annu. ACM Symp.
UIST, pp. 669–678, 2014.

[60] B. Savard, E. R. Hawkes, K. Aditya, H. Wang, and J. H. Chen. Regimes
of premixed turbulent spontaneous ignition and deflagration under gas-
turbine reheat combustion conditions. Combust. Flame, 208:402–419,
2019.

[61] W. J. Schroeder, B. Lorensen, and K. Martin. The visualization toolkit:
an object-oriented approach to 3D graphics. Kitware, 2004.

[62] M. L. Scott. Programming language pragmatics. Morgan Kaufmann,
2000.

[63] R. Shan, C. S. Yoo, J. H. Chen, and T. Lu. Computational diagnostics
for n-heptane flames with chemical explosive mode analysis. Combust.
Flame, 159(10):3119 – 3127, 2012. doi: 10.1016/j.combustflame.2012
.05.012

[64] M. Shih, C. Rozhon, and K.-L. Ma. A Declarative Grammar of Flexible
Volume Visualization Pipelines. IEEE Trans. Vis. Comput. Graph.,
25(1):1050–1059, 2018.

[65] E. Sunden, P. Steneteg, S. Kottravel, D. Jonsson, R. Englund, M. Falk,
and T. Ropinski. Inviwo - an extensible, multi-purpose visualization
framework. In IEEE SciVis, pp. 163–164, 2015. doi: 10.1109/SciVis.
2015.7429514

[66] C. Thompson and L. Shure. Image Processing Toolbox: For Use with
MATLAB;[user’s Guide]. MathWorks, 1995.

[67] P. A. Ullrich and C. M. Zarzycki. TempestExtremes: a framework
for scale-insensitive pointwise feature tracking on unstructured grids.
Geosci. Model Dev., 10(3):1069–1090, 2017.

[68] C. Upson, T. A. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The application visualization
system: a computational environment for scientific visualization. IEEE
Comput. Comput. Appl., 9(4):30–42, 1989.

[69] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,
J. Gunther, and P. Navratil. OSPRay - A CPU Ray Tracing Frame-
work for Scientific Visualization. IEEE Trans. Vis. Comput. Graph.,
23(1):931–940, 2017.

[70] Z. Wan, W. Taha, and P. Hudak. Real-time frp. SIGPLAN Not.,
36(10):146156, 2001. doi: 10.1145/507669.507654

[71] Z. Wan, W. Taha, and P. Hudak. Event-driven frp. In Proc. 4th Int.
Symp. PADL, p. 155172, 2002.

[72] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel in situ coupling of
simulation with a fully featured visualization system. In Eurographics
Symposium on Parallel Graphics and Visualization (EGPGV), vol. 10,
pp. 101–109, 2011.

[73] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Use R!
Springer, 2016.

[74] S. Wolfram. The MATHEMATICA ® Book, Version 4. Cambridge
University Press, 1999.

[75] Q. Wu, W. Usher, S. Petruzza, S. Kumar, F. Wang, I. Wald, V. Pascucci,
and C. D. Hansen. VisIt-OSPRay: Toward an Exascale Volume Visual-
ization System. In Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV), 2018.

[76] M. Zhao, I. M. Held, S.-J. Lin, and G. A. Vecchi. Simulations of Global
Hurricane Climatology, Interannual Variability, and Response to Global
Warming Using a 50-km Resolution GCM. J. Clim., 22(24):6653–6678,
2009.

[77] B. Zhou and Y.-J. Chiang. Key Time Steps Selection for Large-Scale
Time-Varying Volume Datasets Using an Information-Theoretic Story-
board. Comput. Graph. Forum, 37(3):37–49, 2018.

