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Abstract—Nowadays, hardware devices are meant to host
the execution of many complex, multicore applications, whose
functional and nonfunctional requirements vary according to
the specific working domain. In this work, we propose a design
methodology that combines an efficient reconfigurable archi-
tecture and a related mapping flow. In particular, the proposed
island-based hardware architecture couples an efficient area usage
and an adaptable communication infrastructure. The proposed
mapping flow distributes the cores on the device to optimize both
performance and reconfiguration related metrics.

Index Terms—CAD tools, field-programmable gate arrays
(FPGAs), platform-based design, reconfigurable computing.

I. INTRODUCTION

ODERN Systems-on-Chip (SoCs) are often required to
M execute different multicore applications, which are gen-
erally very complex and whose characteristics may differ ac-
cording to the working scenario. These SoCs have tight func-
tional requirements in terms of performance (which has been
proved to be mainly affected by the communication among the
cores [1]), area and power consumption, as well as nonfunc-
tional requirements such as flexibility and time-to-market.
Depending on the application field, the system requirements
are weighted in different ways: in real-time systems, for in-
stance, a low switching time between the different applications
is crucial to meet the strict deadlines. Conversely, in other kinds
of specialized systems the switching time becomes less critical,
as even a temporary interruption of the system may be accept-
able. In the former case, static or parametric systems [2], [3]
are generally employed, as they trade a low switching time for
larger area requirements and low flexibility, i.e., no application
can be added to the system at a later time. In the latter case, the
system can provide optimized performance for each application
by coupling traditional processing elements and reconfigurable
devices [4], which allows each application to be designed in-
dependently and loaded on the device by means of a complete
reconfiguration. This approach allows new applications to be
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added after the deployment, but it requires a high switching time
(in the order of seconds [5]).

There exist other classes of problems, such as multimedia
systems or wireless sensor networks (WSNs), where a low
switching time is desirable to avoid a perceptible interrup-
tion of the service. On the other hand, these systems require
high flexibility to remain up-to-date (e.g., to add new coding
standards), while guaranteeing high performance for each
application. Area requirements may also be strict, in particular
in the WSNs domain where each sensor node has a limited
amount of resources. Thus, it is not reasonable to deploy this
kind of systems by switching among applications using a
complete reconfiguration of the device, because the latency
and the power consumption would be unacceptable. This can
be avoided when the applications belong to the same domain,
and thus they are very likely to share cores to perform common
operations. In this work, we focus on this scenario, and we aim
at limiting the reconfigurations to a small portion of the device
by means of partial dynamic reconfiguration [6], [7], taking
advantage of the similarity among the applications.

Unlike the static systems and the ones based on complete
reconfiguration, the design of partially-reconfigurable SoCs is
mainly carried out manually on custom hardware architectures,
thus affecting the time-to-market for complex systems. Even the
most modern and comprehensive methodologies, such as the
one in [8], generally do not provide a framework to exploit appli-
cation similarity to reduce the reconfiguration latency. To over-
come these limitations, we introduce a reconfigurable architec-
ture to provide an efficient support for applications switching,
achieving an improvement of 69.6% in terms of wasted area
with respect to other state-of-art architectures. Furthermore, we
define an adaptive mapping flow that distributes the cores on the
reconfigurable resources both at design-time and at run-time,
while optimizing performance and reducing the reconfiguration
latency (a 74.5% reduction is achieved with respect to a com-
plete reconfiguration of the device).

II. ISLAND-BASED HARDWARE ARCHITECTURE

Over the last years, networks-on-chip (NoCs) [9] have
emerged as the leading technology to provide efficient and
flexible communication among a large number of cores [10].
However, NoCs are generally proposed either for static systems
[11], [12], or for hardware architectures based on complete
reconfiguration. In the former case, the topology is designed
to optimize the bandwidth of a predefined set of cores with
well-known communication requirements, but new cores
cannot be added at run-time. In the latter case, a separate NoC
is designed for each application, though a considerable latency
is introduced when it is reconfigured along with the cores.

Other works aim at combining NoCs and partial dynamic re-
configuration, such as the ones in [13], which focuses on the
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Fig. 1. Island-based hardware architecture.

hardware architecture, and in [14], where a complete design
flow is proposed. In general, the idea is to design a grid-based
architecture, where the device area is divided into small recon-
figurable regions called slots of the same size, containing either
a single core or a network switch. As each slot can be reconfig-
ured independently, shared cores can be kept configured on the
device during an application switching, thus reducing the timing
overhead. The slots are connected using a NoC whose topology
can be modified at run-time by adding or removing switches
from the device. However, this architecture shows some struc-
tural limitations, as the number of topologies that can be im-
plemented by placing cores and switches on the same grid is
limited, and furthermore the reconfiguration of a switch makes
it unavailable for a certain time, which may affect the traffic
over the NoC. Finally, the slot area must be as large as the max-
imum core size in the application set, which may lead to a lot
of wasted area, i.e., unused area that still needs to be recon-
figured, as shown in Fig. 1. This is especially true when cores
have different sizes, which is a scenario that frequently occurs
in practice.

In this work, we propose a novel architecture which over-
comes the limitations of the grid-based approach, and a map-
ping flow that efficiently takes advantage of this architecture.
The proposed approach is named island-based architecture, and
it is structured as a grid of larger reconfigurable slots that can
contain one or more cores (i.e., an island of cores). This choice
is motivated by the improved area usage, as shown in Fig. 1, be-
cause smaller cores can now be grouped in the same slot and re-
configured at once. The designer can define the number of slots,
and consequently their size, according to the characteristics of
the target device, and to the cores size.

We provide the island-based architecture with a multilevel
communication infrastructure to balance flexibility and perfor-
mance. A reconfigurable and local intraslot NoC guarantees a
fast communication among the cores in the same slot: as it is re-
configured along with the cores, the local NoC is specifically
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designed to optimize the communication inside the slot, and
it guarantees good performance while enhancing the flexibility
of the system. On the other hand, a static and global interslot
NoC guarantees connectivity among the slots, and it is never re-
configured during the application switching process. Though its
topology is fixed, this static backbone allows communication to
be delivered even while one or more slots are being reconfig-
ured, thus avoiding any denial of service.

III. THE PROPOSED MAPPING FLOW

The benefits of the proposed architecture can be fully ex-
ploited by trying to map cores that frequently communicate
with each other into the same slot, or at least to slots that are
closely connected by the intercore NoC topology. This assign-
ment should also aim at minimizing the number of slots that are
reconfigured when an application switching occurs. We propose
a combined design-time and run-time mapping flow (see Fig. 2)
that keeps both communication and reconfiguration related is-
sues into account.

A. Design-Time Mapper

In the first phase of the proposed flow, a design-time algo-
rithm maps a known set of applications before the system de-
ployment according to the computational steps shown in Fig. 2.
At first, the algorithm identifies a set of cores that should be ini-
tially deployed on the device because they are frequently used
by a large number of applications. Then, the remaining cores are
mapped into specific islands that are used to load the cores that
are peculiar of each application [15].

The algorithm starts with the preprocessing stage, where the
cores are sorted (ordering phase) according to their occurrences
in the application set and their size, as larger cores are more diffi-
cult to map in fixed-sized slots and thus they should be handled
first. Then, the cores achieving the highest scores are selected
(selection phase) until the device area availability is reached,
and they are used to form a graph-based data structure. In the
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Fig. 2. Proposed mapping flow.

graph, each pair of cores is connected by an edge whose weight
is proportional to the number of times the two cores appear to-
gether in the same application, which allows the algorithm to
detect similarities among the applications. The graph is then
processed by a partitioner (partitioning stage) that identifies a
number of partitions equal to the number of slots, and thus gen-
erates an island for each slot in the architecture. As the parti-
tioner aims at minimizing the weight of the edges that cross
the partition boundaries, the cores connected by high-weighted
edges (and thus, frequently used in the same applications) are
generally clustered in the same island. Each island generated in
the partitioning stage is then assigned to a specific slot on the de-
vice (primary mapping phase) by means of a genetic algorithm
[15] that aims at reducing the traffic over the global NoC. Once
the primary mapping has been completed, a binary file named
bitstream is generated to program the entire FPGA at the system
start-up.

The cores that have not been picked in the selection phase
are peculiar of a few applications, thus they should be reconfig-
ured on-demand when an application requires them. For each
unmapped core, the algorithm identifies the best target slot (sec-
ondary mapping phase) by evaluating the communication be-
tween the core and the already-mapped ones. As this phase cre-
ates a set of specific islands for each application, the corre-
sponding partial bitstreams must be generated to reconfigure the
device and to switch between two applications.

B. Run-Time Mapper

In the second part of the proposed flow, we introduce run-time
adaptability by defining a mapper (shown in the right-hand side

of Fig. 2) that allows the dynamic addition of new applications
to an existing system. These new applications may be either
updates of the existing ones or brand new functionalities, and
the mapper aims at reducing their deployment time. Thus, the
algorithm does not modify the mapping computed at design-
time, but it only focuses on the new application to detect the
similarities with the already-mapped ones [16].

The deployment time of the new application is mainly af-
fected by the bitstream generation process, thus the goal is to re-
duce the number of bitstreams that must be created from scratch.
If some of the cores are already used by other applications, it
is possible to reuse existing bitstreams (bistream reuse phase)
to deploy part of the application, thus a new generation is not
required. The algorithm selects a set of existing configurations
that contain a large number of cores used by the new application,
and stops when the area availability of the device becomes low.
Then, the unmapped cores are ordered (core sorting phase) and
assigned to a slot (core mapping phase) according to the amount
of communication they generate with the already-mapped cores,
also trying to use a low number of slots to keep the solution
compact.

IV. MULTIMEDIA ENCODING/DECODING CASE STUDY

We analyze a real-world multimedia case study based on the
encoding and decoding of a multisource video stream, in order
to validate the proposed adaptable architecture and mapping
flow. The standards included in the case study are MPEG-2,
H.263, and MPEG-4 [17]. On average, these applications share
from 70% to 80% of their cores to perform common signal pro-
cessing operations. The right-hand side of Fig. 3 shows which
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Fig. 3. Implementation of an island-based architecture on a Virtex-4 device (left), and a Venn diagram of the proposed multimedia encoders (right).

cores are required by each multimedia encoder, and which ones
are in common.

A. Application Mapping

It is not possible to deploy all the proposed applications at
the same time using a static system because of their large area
requirements and power-related issues. Furthermore, as codecs
evolve over time, a static solution would not allow the addition
of a new standard after the system deployment. Nevertheless,
an approach based on a complete reconfiguration of the device
is also unsuitable, mainly because it would introduce a perceiv-
able delay (in the order of seconds) every time the encoding of
the input stream changes. Our approach, on the other hand, al-
lows to configure the right decoding algorithm in a short time,
in the order of few hundreds of milliseconds. Thus, we map the
multimedia applications on our island-based architecture with
six slots, which are connected using an interslot NoC with mesh
grid topology, as the one shown in the left-hand side of Fig. 3
(implemented on a Xilinx Virtex-4 XC4VLX60 device [18]).

The resulting mapping deploys most of the shared cores at
the system start-up, including a general-purpose CPU, a frame
buffer, and a motion estimation and compensation units. Then,
a set of specific bitstreams is generated to load the applica-
tion-specific cores. For instance, two bitstreams are generated
to deploy the MPEG-4 decoder: one of them includes the IDCT
unit, and the other includes the Huffinan decoder, the inverse
quantizer and the ZigZag unit [17]. The IDCT is assigned to a
slot that initially contains the motion estimation unit, while the
second bitstream overwrites a slot containing the rescale unit,
as both cores are not required during the decoding process.

B. Comparison Among Design-Time Deployment Strategies

On the selected target device, a complete reconfiguration
requires a switching time of 1488 ms, whereas the proposed
system can switch between two applications by reconfiguring
an average of 1.53 slots, which requires only 380 ms, a 74.5%
reduction. Conversely, a static or parametric system [2], [3]

would not introduce any switching time because all the applica-
tions are concurrently implemented on the device, but its area
requirements are up to 76% higher.

The case study also proves the benefits of the island-based
approach with respect to the grid-based one [14]. We set the
slot size of the grid-based architecture to be exactly equal to the
largest core in the system (i.e., the motion compensation core):
in this case, an average of 58.7% of the slot area is unused when
smaller cores are mapped, which does not even allow the solu-
tion to be deployed on the selected FPGA. Furthermore, 93%
of the slot area is left unused when the slot includes one of the
NoC switches. Conversely, the average amount of wasted area in
the island-based architecture is 22.7%, a 69.6% reduction with
respect to the grid-based one, while preserving the same com-
munication performance.

C. Run-Time System Adaptation

Now, let us assume that only the two older codecs (MPEG-2
and H.263) are available at design-time, while the MPEG-4
is added after the product release, thus the system has to be
adapted to support the new standard. The initial design in-
cludes MPEG-2 and H.263 and, given their high similarity, the
mapping only requires an average switching time of 32 ms (a
97.8% reduction with respect to a complete reconfiguration).
However, 62% of the cores required by the MPEG-4 standard
are not included in the original design, and the corresponding
switching time requires 480 ms. Still, this behavior is accept-
able, as it does not require any modification to the mapping of
both MPEG-2 and H.263, and the MPEG-4 application can be
deployed without a complete reconfiguration, which requires
1488 ms (thus, our run-time adaptive approach provides a
67.7% reduction in terms of reconfiguration time).

Finally, it is important to notice that the proposed mapping
flow fits the time-to-market requirements of this kind of sys-
tems. In fact, the design-time mapper can compute the solution
in less than one minute on a standard workstation, and it is gen-
erally followed by a bitstream generation phase that can take a
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Fig. 5. Results of the run-time mapper w.r.t. the design-time approach.

few hours. The run-time algorithm can find a mapping in less
than one second, and it may not even require the generation of
any new bitstream.

V. SCALABILITY ANALYSIS

In this section, we aim at estimating the benefits of the is-
land-based architecture and the related mapping flow on a set of
large (i.e., 25 to 35 cores) synthetic benchmarks. The proposed
applications represent typical highly-distributed multicore ap-
plications that can spread over the next years.

At first, we target a hardware architecture that includes up to
16 slots, and we aim at mapping 8 applications at design-time
using the proposed flow. Fig. 4 shows a comparison between
the proposed approach and a communication-oriented mapping
technique which does not explicitly consider the cost of dy-
namic reconfiguration [15]. The results show that our mapping
flow reduces the switching time by 29.1% on average, while
achieving the same communication performance. Specifically,
the improvement reaches 43.2% when the number of slots is
low, and core grouping can be applied more effectively.

Finally, we performed additional experiments to validate the
addition of new applications to an existing system. In particular,
after six applications have been mapped at design-time and the
system has been deployed, a seventh application becomes avail-
able at run-time. We map the new application using our run-time
mapper, and we compare the results to an execution of the de-
sign-time mapper over all the seven applications, which is ex-
pected to extract similarities in a more efficient way. The results
of this comparison, in terms of reconfiguration latency and an
index of the amount of traffic over the global NoC, are shown
in Fig. 5 as a function of the number of cores that are used only
by the new application. Though the design-time algorithm out-
performs the run-time mapper in terms of communication, the
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difference is limited to less than 5% on average, thus proving
that the system is adaptable at run-time with only a minor loss
of performance.

VI. CONCLUSION

We have proposed an MPSoC design approach which pro-
vides high flexibility as well as good performance and area
usage, and a mapping flow to assign the application cores to a
specific island, aiming at optimizing both communication and
the switching time among different applications. A case study
based on real-world multimedia applications validated the
proposed approach, as the amount of wasted area is reduced by
69.6% with respect to other state-of-art architectures, and the
reconfiguration latency is reduced by 74.5% with respect to a
complete reconfiguration of the device. Additional experiments
on synthetic benchmarks show that the proposed approach
scales well on larger applications and on larger devices.
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