
HAL Id: hal-00730930
https://hal.science/hal-00730930

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zebra : Building Efficient Network Message Parsers for
Embedded Systems

Julien Mercadal, Laurent Réveillère, Yérom-David Bromberg, Bertrand Le
Gal, Tegawendé F. Bissyandé, Jigar Solanki

To cite this version:
Julien Mercadal, Laurent Réveillère, Yérom-David Bromberg, Bertrand Le Gal, Tegawendé F. Bis-
syandé, et al.. Zebra : Building Efficient Network Message Parsers for Embedded Systems. IEEE
Embedded Systems Letters, 2012, PP (99), pp.1-4. �10.1109/LES.2012.2208617�. �hal-00730930�

https://hal.science/hal-00730930
https://hal.archives-ouvertes.fr

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

Zebra: Building Efficient Network Message Parsers
for Embedded Systems

Julien Mercadal, Laurent Réveillère,
Yérom-David Bromberg

LaBRI, University of Bordeaux,
France

Bertrand Le Gal
IMS, University of Bordeaux,

France

Tegawendé F. Bissyandé, Jigar
Solanki

LaBRI, University of Bordeaux,
France

Abstract—Supporting standard text-based protocols in embed-
ded systems is challenging because of the often limited compu-
tational resources that embedded systems provide. To overcome
this issue, a promising approach is to build parsers directly in
hardware. Unfortunately, developing such parsers is a daunting
task for most developers as it is at the crossroads of several
areas of expertise, such as low-level network programming, or
hardware design. In this paper, we propose Zebra, a generative
approach to drastically ease the development of hardware parsers
and their use in network applications. To validate our approach,
we have used Zebra to generate hardware parsers for widely used
protocols, namely HTTP, SMTP, SIP, and RTSP. Our experiments
show that Zebra-based parsers are up to 11 times faster than
software-based parsers.

I. INTRODUCTION

Embedded systems are increasingly required to interact
both among them and with legacy infrastructures to provide
advanced services to end-users. This kind of communication
among heterogeneous entities requires a protocol to manage
their interaction. Traditionally, because of their highly con-
strained resources, they have used non-standard, application-
specific, binary protocols where message parsing and mes-
sage construction are simple [18]. The use of non-standard
protocols, however, complicates the interaction with other
systems, as it is required in many emerging applications. Thus,
attention is turning to the use of standard text-based protocols.
For example, the SIP protocol is now being used in sensor
networks [8] and mobile ad-hoc networks [9], [16].

Standard text-based protocol message parsers are typically
implemented in software as Finite State Machines (FSM),
using a low-level language such as C to provide efficiency.
However, developing such parsers is challenging because of
the limited resources, particularly with regards to computa-
tional power, memory, and energy, that embedded systems
often provide. Indeed, such FSM may contain several hundred
states and several thousand complex transitions, making the
size of corresponding parsers too large (several dozen kilo-
bytes) for embedded systems. To simplify parser construction,
automatic approaches including Gapa [1] and Zebu [2] have
been proposed for generating a FSM implementation from a
high-level specification of a protocol. However, to the best of
our knowledge, existing automatic approaches do not address
embedded systems requirements and, in particular, have not
explored the use of a dedicated hardware to improve their

performances, i.e., the resulting generated code is still CPU
intensive.

Implementing a FSM using a dedicated hardware archi-
tecture improves performance compared to a software-based
implementation. Indeed, a hardware parser can be designed
specifically to execute multiple computations in parallel, in
one processor clock cycle. Moreover, conditional jumps, which
are massively used in software implementation of FSM, are
processed in one clock cycle without pipeline break penalties.
Finally, a hardware-based FSM requires a lower working
frequency to reach the same performance than its software
counterpart, and thus consumes less energy.

Nonetheless, developing a network application that uses
hardware parsers is challenging, requiring not only expertise
in hardware design and integration, but also a substantial
knowledge of the protocols involved and an understanding of
low-level network programming. These issues are challenging
to take into account individually, and the need to address all
of them at once makes hardware protocol message parsers
development particularly difficult.

In this paper, we propose a co-design based architecture and
a generative approach for building and using hardware parsers
in a network application. To this end, we present a domain-
specific language, Zebra, for describing standard text-based
protocol message formats and related processing constraints.
Zebra is an extension of ABNF [6], the variant of BNF used
in RFCs to specify the syntax of network protocol messages,
implying that the programmer can simply copy a network
protocol message grammar from an RFC to begin developing
a parser. It extends ABNF with annotations indicating which
message fragments should be stored in data structures, and
other semantic information.

A Zebra specification is processed by a compiler that
generates both the HDL source code of the hardware parser
implemented as a FSM, and the associated C code to drive it.
The application runs on top of a middleware that hides low-
level details to developers and manages the generated hardware
parsers. The contributions of this paper are as follows:
• We have designed and implemented a generative ap-

proach for building hardware parsers for embedded sys-
tems. Our approach is based on a co-design architecture
to provide hardware parsing capabilities to software ap-
plications.

• We have conducted a set of experiments on protocols such
as HTTP, RTSP, SIP, and SMTP to assess our approach.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

Preliminary results show a speedup of message parsing
from 3.9 to 11 compared to software-based parsers.

The remainder of this paper is structured as follows. Sec-
tion II presents the Zebra hardware platform designed to
support the execution of message parsers, the middleware
to manage the underlying hardware units, and the Zebra
language to describe message formats, and its compiler that
produces necessary HDL and C code. Section III presents
the performance evaluation of Zebra-based parsers. Finally,
Section IV reviews related research works and Section V
concludes the paper and discusses future work.

II. ZEBRA APPROACH

The most efficient way to implement an embedded system
application is to develop a fully-customized architecture, using
programmable logic devices or even dedicated Application-
Specific Integrated Circuits (ASIC). However, hardware de-
sign is a tedious and time consuming process compared to
traditional software development. To alleviate the burden in
hardware-based implementations, the co-design methodology
proposes to slice an application based on performances it
requires. Parts of the application that require high performance
are implemented using dedicated hardware units. Less sen-
sitive performance parts are implemented as software code
running over a general-purpose micro-processor. Typically, the
lowest part of a network application, known as the protocol-
handling layer, consumes 25% of the total message processing
time [5], [19]. This layer must thus be efficient and calls
for a hardware-based implementation to reach the expected
level of performance. To do so, we have developed the Zebra
approach dedicated to building of efficient network message
parsers. Our approach consists of a hardware platform to
support parser execution and a middleware to transparently
integrate hardware parsers into network applications. The main
objective of Zebra is to minimize the need for developer
intervention in the complex process of developing and using
a hardware parser in a software application. Accordingly,
Zebra provides a high-level specification language to describe
text-based protocol message formats and related processing
constraints. From this specification, a compiler automatically
generates both the HDL synthesisable specification to be
plugged in the hardware platform and the associated C code
tailored to application needs. Figure 1 illustrates our approach.

We now describe in more details the Zebra approach.
First, we describe the hardware platform we have designed
to support the execution of message parsers. We then present
the middleware we have developed to drive the underlying
hardware-dedicated units and interconnect them with the net-
work application running on top of a general-purpose micro-
processor. Finally, we introduce the Zebra language to describe
message formats, and its compiler that produces necessary
HDL and C code.

A. Zebra Hardware Platform

We have combined the micro-processor and parsing units
into one chip (SoC) to: (i) reduce power consumption, (ii)
simplify board layout, (iii) preserve signal integrity, (iv) avoid

Developer

Zebra
spec

Compiler

Applications

ASIC/FPGA

DriverZebra Middleware
C code

HDL code

General
Prupose

CPU

.C

#include<stdio.h>

void main(int argc,
char** argv){

}

.vhdl

Parsing
Unit

Parsing
Unit

...

Fig. 1. Zebra approach

electromagnetic interference and, (v) allow very fast com-
munication links between them. We use Field Programmable
Gate Array (FPGA) devices for system integration since they
are particularly suitable for embedded system prototyping [4].
However, proposed approach is not limited to FPGA devices
and can be easily extended to ASIC targets.

As illustrated in Figure 1, the Zebra platform consists of
a general-purpose micro-processor to execute the application
logic, and a set of dedicated hardware units for message
parsing. Our current implementation relies on a LEON3 soft
CPU core, which is an open-source implementation of the
SPARCv8 32-bit architecture, allowing its instruction set to
be extended. The use of such a soft CPU core, combined with
the generation of generic HDL code, enables to implement our
system on any ASIC or FPGA target, without any change.

In Zebra, parsing units are implemented as co-processors,
interconnected with the micro-processor through a set of
dedicated links. Particularly, a parsing unit has a specific
design that includes: a 32-bit data input interface for receiving
data stream to parse from the micro-processor, a 32-bit data
output interface to send back parsing results, a set of both
dedicated interfaces and control signals for managing the
parser. The 32-bit data interfaces enable up to 4 bytes transfer
per micro-processor clock cycle. The instruction set of the
micro-processor has been extended to provide commands and
read/write operations to each parsing unit. The number of
parsing units that can be embedded depends on the size of
the FPGA device and the complexity of the protocol state
machines.

B. Zebra Middleware

To process network messages, an application registers a call-
back function to the Zebra middleware, gives the input stream
from which reading data, the protocol to use, and additionally
some optional parameters. The Zebra middleware manages
registered applications by reading data on input streams as
they are received and sending these data to the corresponding
parsing unit. The middleware then reads parsing results from
the output interface of the parsing unit. When the parsing of
a message element is completed, the middleware executes ad-
hoc code to make the value accessible by the application.
Note that the middleware can perform other computations

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

while waiting for the parsing units to complete their work.
To increase sharing of parsing units between several tasks,
the middleware seamlessly save and restore parser state when
required. This context switch on the hardware parsing units
is very efficient and requires only about 9 micro-processor
cycles.

The Zebra middleware has been implemented in C and
successfully cross-compiled for the LEON3 micro-processor.
Additionally, we have modified the gcc toolchain to support
the extended instruction set that we have introduced for
controlling parsing units.

C. Zebra Language

The Zebra language is based on the ABNF notation used
in RFCs to specify the syntax of protocol messages to ease
its adoption by network application developers. Once having
created a basic Zebra specification, the developer can further
annotate it according to application-specific requirements. Fig-
ure 2 shows an excerpt of the Zebra specification for the HTTP
protocol as defined in RFC 2616.

Request = Request_Line
((general_header
| request_header
| entity_header) CRLF)*
CRLF
message_body? {clen} ¸;

Request_Line = Method SP Request_URI ˆuri · SP
HTTP_Version CRLF;

Request_URI = ’*’ | absoluteURI | abs_path | authority;
entity_header = Allow

| Content_Length
| ...

Content_Length = ’Content-Length: ’ digit+ ˆclen as uint32 ¶;

Fig. 2. Excerpt of Zebra specification for HTTP

Annotations define the message view available to the ap-
plication, by indicating the message elements that this view
should include. These annotations drive the generation of
the data structure that contains the message elements. For
example, three message elements are annotated in Figure 2.
To make an element available, the programmer only has to
annotate it with the ˆ symbol and the name of a field in the
generated data structure that should store the element’s value.
For instance, in Figure 2, the Zebra programmer indicates that
the application requires the URI of the request line (·). Hence,
the data structure representing the message will contain one
string field: uri.

Besides tagging message elements that will be available to
the application, annotations impose type constraints on these
elements. This can be specified using the notation as followed
by the name of the desired type. For example, in Figure 2, the
Content-Length field value (¶) is specified to represent
an unsigned integer of 32 bits (uint32). A type constraint
enables representing an element as a type other than string.
The use of both kinds of annotations allows the generated data
structure to be tailored to the requirements of the application
logic. This simplifies the application logic’s access to the
message elements.

In our experience in exploring RFCs, the ABNF specifica-
tion does not completely define the message structure. Indeed,

further constraints are explained in the accompanying text. For
example, the RFC of HTTP indicates that the length of the
body of a HTTP message depends on the Content-Length
field value. To express this constraint, the developer only has
to annotate the variable-length field message-body (¸) with
the name of the field, between curly brackets, that defines its
size (i.e., clen). Note that such fields must have be typed as
an integer.

Finally, the Zebra compiler generates a hardware parser
tailored to the application needs according to the provided
annotations, and associated C code to drive it. The hardware
parser corresponds to a FSM whose some transitions signal
the start or the end of message elements annotated in the
Zebra specification. Thus, when such transitions are fired, the
hardware parser writes into its output interface the name of
the message element being parsed, the current position of
the consumed data, and if it is the start or the end. This
information is then used by the Zebra middleware to execute
the corresponding generated C code, enabling to extract and
save the value of the parsed message element.

III. EVALUATION

We have conducted a set of experiments to assess our
approach. For our experiments, we use a Xilinx Virtex-5
board and a LEON3 micro-processor configured at 50MHz.
We have written Zebra specifications for four of the most
ubiquitous protocols on the Internet: HTTP, SMTP, SIP, and
RTSP. For each of them, we have used the Zebra compiler to
automatically produce the corresponding VHDL and C code.
The generated VHDL code is then synthesized in the FPGA
device using the Xilinx ISE toolchain. The generated C code
is cross-compiled using a modified vesion of the SPARC gcc
toolchain and plugged into the Zebra middleware.

In order to evaluate the processing time to parse an input
message from either HTTP, SMTP, SIP or RTSP, we have
developed a logging application, one for each protocol, that
logs messages received from the network. For each applica-
tion, we have implemented two versions of its parsers: one
fully implemented in software and one based on Zebra. For
the software-based version, we used the Ragel [17] tool to
produce an optimized FSM implementation in C.

We now present a micro-benchmark for these applications
using real messages. The datasets were collected in a graduate
students work area in our research laboratory during 2 hours.
In our experiments, a client application replays a real trace,
extracting and sending each message of this trace. We have
instrumented the code of the logging applications to measure
the parsing time for each received message.

Figure 3 presents the results of our evaluation. We observe
that the Zebra-based parsers are between 3.9 and 11 times
faster than their fully software-based counterparts.

IV. RELATED WORK

Over the last decade, many approaches have emerged to
avoid the painful task of hand writing network protocol
message parsers [1], [2], [10], [15]. These approaches mainly
propose a three-step process: (i) describing network protocol

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Soft-based parser Hard-based parser

Min Max Med Min Max Med
H

T
T

P

Size 330 779 557 330 779 557
Time 10435 20383 14917 939 1771 1326
Avg(Clk/Char) 27.3 2.4
Factor 9.9 12.1 9.3

R
T

SP

Size 56 210 151 56 210 151
Time 1946 5993 4435 409 708 573
Avg(Clk/Char) 30.6 4.4
Factor 4.8 9.9 7.2

SI
P

Size 274 1357 582 274 1357 582
Time 7879 19416 14842 731 1828 1354
Avg(Clk/Char) 24.4 2.2
Factor 9.7 11.7 11

SM
T

P Size 6 1003 27 6 1003 27
Time 141 8422 817 116 2090 166
Avg(Clk/Char) 25.5 9.1
Factor 1 5.5 3.9

Size in number of characters ; Soft and Hard measures in CPU cycles.

Fig. 3. Zebra-based parsers and soft-based parsers comparison

messages in a high-level specification, (ii) generating software
parsers from this high-level specification, and, (iii) providing
a framework to ease the development of applications on top
of generated parsers. However, none of these approaches
specifically targets highly constrained embedded systems. For
instance, sensor networks relying on dedicated hardware such
as ASIC or FPGA do not have enough energy, code, and
memory to support the aforementioned approaches.

To overcome this issue, one emerging solution is to im-
plement parsers directly in hardware. Hence, high-level speci-
fications of network protocol messages are mapped directly
into hardware description languages such as VHDL to be
then successively synthesized into ASIC or FPGA [12],
[13], [14]. However, hardware parsers are provided as is and
require strong understanding of hardware design fundamentals
to integrate them with network programming applications. In
contrast, the Zebra approach covers the development life-cycle
of a network message parser, from its specification to the
generation of hardware accelerators, to its integration into
network applications.

Many commercial and academic High-Level Synthesis
(HLS) tools have been proposed to generate hardware archi-
tectures from algorithmic descriptions written in C, C++, or
SystemC [3], [7], [11]. However, these tools remain general
purpose and are mostly oriented to datapath applications [11].
Thus, they do not provide good results for control applications,
such as protocol message parsers. For example, hardware
parsers generated using the LegUp tool [3] from software-
based parsers used in our evaluation are at least 4.5 times
slower than their Zebra-based counterparts, and consume up
to 50 times more hardware resources.

To the best of our knowledge, Zebra is the only one
solution that bridges the gap between HDL designs and system
software engineering in the context of control applications for
embedded systems.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented Zebra, a generative ap-
proach for building hardware parsers for embedded systems.
We have conducted a set of experiments on four commonly

used protocols to assess our approach. Preliminary results,
using micro-benchmarks, show that Zebra-based parsers are
up to 11 times faster than software-based only parsers.

We are currently investigating the dynamic reconfiguration
capabilities of FPGA to update at run-time the protocols sup-
ported by Zebra. We are also extending the Zebra middleware
to provide advanced scheduling of available parsing units
based on active clients to reduce cache misses when accessing
received buffered messages stored in central memory.

REFERENCES

[1] N. Borisov, D. J. Brumley, H. J. Wang, J. Dunagan, P. Joshi, and C. Guo.
A Generic Application-Level Protocol Analyzer and its Language. In
14th Annual Network & Distributed System Security Symposium, 2007.

[2] L. Burgy, L. Réveillère, J. Lawall, and G. Muller. Zebu: A Language-
Based Approach for Network Protocol Message Processing. IEEE
Transactions on Software Engineering, 37:575–591, 2011.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski. LegUp: High-Level Synthesis for FPGA-
Based Processor/Accelerator Systems. In Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’11, pages 33–36, New York, NY, USA, 2011. ACM.

[4] R. Cofer and B. F. Harding. Rapid System Prototyping with FPGAs:
Accelerating the design process. Newnes, 1st edition, 2005.

[5] M. Cortes and J. R. Ensor. Narnia: A virtual machine for multimedia
communication services. In Proceedings of the Fourth International
Symposium on Multimedia Software Engineering, pages 246–254, 2002.

[6] D. Crocker, Ed. and P. Overell. RFC 2234: Augmented BNF for syntax
specifications: ABNF, 1997. Status: PROPOSED STANDARD.

[7] M. Fingeroff. High-Level Synthesis Blue Book. Xlibris Corporation,
2010.

[8] S. Krishnamurthy. TinySIP: Providing seamless access to sensor-based
services. In 3rd International Conference on Mobile and Ubiquitous
Systems: Networking and Services, number 4611 in Lecture Notes in
Computer Science, pages 1–9, 2006.

[9] S. Leggio, J. Manner, A. Hulkkonen, and K. Raatikainen. Session
initiation protocol deployment in ad-hoc networks: A decentralized
approach. In 2nd International Workshop on Wireless Ad-hoc Networks,
2005.

[10] A. Madhavapeddy. Creating High-Performance, Statically Type-Safe
Network Applications. PhD thesis, Cambridge University, 2007.

[11] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future.
IEEE Design & Test of Computers, 26(4):18–25, July 2009.

[12] A. Mitra, M. R. Vieira, P. Bakalov, W. A. Najjar, and V. J. Tsotras.
Boosting XML Filtering with a Scalable FPGA-based Architecture.
CoRR, abs/0909.1781, 2009.

[13] J. Moscola, J. W. Lockwood, and Y. H. Cho. Reconfigurable Content-
based Router using Hardware-Accelerated Language Parser. ACM
Transactions on Design Automation Electronic Systems, 13(2):28:1–
28:25, 2008.

[14] J. Öberg, A. Hemani, and A. Kumar. Grammar-Based Hardware
Synthesis from Port-Size Independent Specifications. IEEE Transactions
on Very Large Scale Integration Systems, 8(2):184–194, 2000.

[15] T. Stefanec and I. Skuliber. Grammar-based SIP Parser Implementation
with Performance Optimizations. In Proceedings of the 11th Interna-
tional Conference on Telecommunications, ConTEL ’11, pages 81–86,
2011.

[16] P. Stuedi, M. Bihr, A. Remund, and G. Alonso. SIPHoc: Efficient
SIP middleware for ad hoc networks. In Proceedings of the 8th
ACM/IFIP/USENIX International Conference on Middleware, 2007.

[17] A. D. Thurston. Parsing Computer Languages with an Automaton
Compiled from a Single Regular Expression. In Proceedings of the
11th International Conference on Implementation and Application of
Automata, CIAA’06, pages 285–286, Berlin, Heidelberg, 2006. Springer-
Verlag.

[18] B. Upender and P. Koopman. Communications protocols for embedded
systems. ACM Transactions on Programming Languages and Systems,
11(7):46–58, 1994.

[19] S. Wanke, M. Scharf, S. Kiesel, and S. Wahl. Measurement of the SIP
parsing performance in the SIP Express Router. In Dependable and
Adaptable Networks and Services, number 4606 in Lecture Notes in
Computer Science, pages 103–110, 2007.

