
ar
X

iv
:1

70
6.

06
36

9v
1 

 [
cs

.S
E

] 
 2

0 
Ju

n 
20

17

Towards the Trustworthy Development of Active

Medical Devices: A Hemodialysis Case Study

Atif Mashkoor and Miklos Biro

Abstract—The use of embedded software is advancing in
modern medical devices, so does its capabilities and complexity.
This paradigm shift brings many challenges such as an increased
rate of medical device failures due to software faults. In this letter,
we present a rigorous “correct by construction” approach for the
trustworthy development of hemodialysis machines, a sub-class
of active medical devices. We show how informal requirements
of hemodialysis machines are modeled and analyzed through a
rigorous process and suggest a generalization to a larger class of
active medical devices.

Index Terms—Formal methods, requirements modeling, ver-
ification and validation, active medical devices, hemodialysis
machines

I. INTRODUCTION

An Active Medical Device (AMD) is a health-care device

whose operation depends on a source of electrical energy or

any source of power other than that directly generated by

the human body or gravity and which acts by converting this

energy [1]. Until recently, AMDs were mostly composed of

mechanical components. However, recently embedded soft-

ware has shown to have a determining impact on the con-

sumer value of AMDs and their competitive differentiation.

Consequently, according to the latest directive 2007/47/EC of

the EU concerning medical devices [2], a stand-alone software

can also be considered as an AMD. The main reason of this

change is that software lends itself to adaptation to individual

requirements and requirements changes clearly much faster

than hardware.

As AMDs become more and more software-intensive, due to

the immaterial nature of software, their certification becomes

a crucial issue. Certification is the process to determine the

fitness of a device for public use. Despite the stringent mecha-

nisms already in place to check the quality of medical products

with respect to their safe operation, several incidents have been

reported that were caused by software faults. Sandler et al.

[3] show that more than a fourth of the recalls of defective

medical devices during the first half of 2010 were likely caused

by software problems. Furthermore, because of the increased

deployment of powerful programmable processors in medical

devices, software-related recalls are on the rise [4].

Certification regimes have responded to these issues by

proposing various medical software-related international stan-

A. Mashkoor and M. Biro work at Software Competence Center Hagenberg,
Hagenberg, Austria (e-mail: firstname.lastname@scch.at). The writing of this
article is supported by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Science, Research and Economy, and the
Province of Upper Austria in the frame of the COMET center SCCH.

The final publication is available at IEEE via
https://doi.org/10.1109/LES.2015.2494459.

dards and guidelines such as IEC 62304 [5] and FDA General

Principles of Software Validation [6] or more general software-

related standards such as IEC 61508-3 [7]. The standard IEC

62304 categories medical software into three classes. Class A

software cause no injury or damage to health. Class B software

cause no serious injury to health. Finally, class C software may

cause serious injury or even death. Additionally, the standard

also describes the software documents which are required to be

produced for each class. Likewise, FDA also proposes several

guidelines for medical software development. Some of the key

documents of both IEC standards and FDA guidelines are: a

requirements specification, a detailed architecture and design

document, and an elaborated plan for early and rigorous verifi-

cation and validation (V&V) supporting all phases of software

development life cycle. Although a device manufacturer has

some flexibility in choosing V&V principles, the manufacturer

retains the ultimate responsibility for demonstrating that the

software has been proven correct.

One of the key recommendations of these standards and

guidelines is to adopt formal methods for the development of

software-intensive critical systems. The use of formal methods

is, in fact, “highly recommended” at higher Safety Integrity

Levels (SILs). The safety integrity of a system can be defined

as the probability of a safety-related system performing the

required safety function under all of the stated conditions

within a stated period of time. Highly recommended means

that if the mentioned technique or measure is not used, then

the rationale behind this choice has to be justified during safety

planning and assessment. IEC 61508-3 further states that the

confidence that can be placed in the software safety require-

ments specification, as a basis for safe software, depends on

the rigor of techniques by which the desirable properties of

the specification have been achieved.

The main contribution of this letter is to show how a

rigorous refinement-based approach can be applied to the

trustworthy development of a sub-system of Hemodialysis

(HD) machines, a sub-class of AMDs. The resulting formal

model demonstrates an example of generalization, that how

requirements can be rigorously specified and analyzed through

a chain of refinements to be represented at various abstraction

levels, to a larger class of AMDs. The approach also leads to

a software safety requirements specification that guarantees

correctness of the addressed aspects of behavior, supports

verification of the specification based on systematic analysis,

avoids intrinsic specification faults, reduces ambiguities in

specification writing, and ultimately generates programming

language code. The combined approach of requirements mod-

http://arxiv.org/abs/1706.06369v1


eling, analysis and development based on techniques such as

refinement, V&V and translation, and tools such as proof

checkers, model checkers, animation engines and code gen-

erators results in obtaining high-assurance and trustworthy

AMDs. According to IEC 62304, HD machines are charac-

terized as class C devices and the applied rigorous technique

is particularly suitable for this class of AMDs as most of its

components belong to a higher SIL.

Formal methods have been used in the past for the devel-

opment of various health-care devices such as cardiac-care

products [8], [9], [10] and infusion pumps [11], [12]. However,

the novelty of this work is that this is the first instance of the

application of formal methods for the modeling, analysis and

development of a sub-class of AMDs responsible for renal

replacement therapy. We believe that our work will inspire

the manufacturers of such systems to adopt formal paradigms

for the safe and trustworthy development of variants of this

domain.

II. METHODOLOGY

The development of embedded software for AMDs is a

complex process. The degree of complexity often leads to

an artifact that, although requires a great amount of time,

resources and attention to develop, yet proving its safe op-

eration is challenging. While guaranteeing the absence of

mistakes in a piece of software is not always possible, even the

identification of their presence is not an easy task. Traditional

quality assurance techniques like code reviews or test case

generation are also insufficient in this case due to the critical

nature of the medical domain. Additionally, the lack of domain

knowledge of software engineers makes the matter worse.

We present an approach where a system is synthesized

using an incremental refinement process synchronizing and

integrating different views and abstraction levels of the system.

The process of quality assurance is embedded in the model

development. Requirements of the system are supplied to a

refinement-based development process that rigorously checks

them for consistency and conformance. Every time a new

requirement is specified, it first undergoes an internal con-

sistency check and then, additionally, it is also confirmed with

the stakeholders whether this requirement indeed captures the

desired behavior. The stakeholders, in this way, become part

of the development process right from the start and also the

chance of an error to trickle down to the later stages of the

development process is minimized.

As shown in Figure 1, our approach for the development of

high-assurance AMDs consists of four major steps:

1) formal requirements specification,

2) verification,

3) validation, and

4) code generation.

In the requirements specification step, informal user and

system requirements are translated into a formal specification

using a rigorous method. During this process, requirements

are precisely written using mathematical and logical structures

which are amenable to formal analysis to determine their

correctness.

One of the important cornerstones of the specification

process is the representation of requirements at various ab-

straction levels using the notion of refinement. By following

this technique, requirements are easy to specify, analyze and

implement. In this style of specification writing, requirements

are incrementally added to the model until the model is

detailed enough to be effectively implemented.

Once the informal requirements have been translated into

a formal specification, the next step is to make sure that the

requirements conform to verification standards, i.e., require-

ments are consistent and verifiable. During this process, it is

determined that a specification conforms to some precisely

expressed properties that the model is intended to fulfill such

as well-definedness, invariant preservation and other safety

conditions.

According to [13], two well-established formal verification

approaches are theorem proving and model checking. While

the former refers to reasoning about defined properties using

a rigorous mathematical approach, the latter is the process

of exploration of the whole state space of a model to ver-

ify dynamic properties. Both deductive theorem proving and

model checking are important for proving the consistency

of an AMD. While theorem proving is helpful in ensuring

safety constraints of the system, model checking is effective

in verifying temporal constraints of the system such as liveness

and fairness properties.

Once a requirement is specified and verified, the next step

to consider is its validation. Validation is a process where it

is established by examination and provision of objective evi-

dence that the stakeholders’ requirements have been captured

correctly and completely in the requirements specification

document. Verification alone is not sufficient to guarantee

correctness of the model because it does not check whether the

specification documents the requirements from the viewpoints

of stakeholders.

In order to make stakeholders understand the formal spec-

ification, we propose to animate the specification. Animation

is a process to demonstrate the fundamental operations of a

specification using a dynamic and interactive graphical display.

This technique is very well-suited for making a quick mental

image of the model even for non-technical domain experts.

The last step of the formal development process is the trans-

lation of the requirements specification into programmable

code. The last refinement step of the specification writing

process is, in fact, already very detailed and close to the

implementation stage. An automatic code generation utility

capable of translating a formal specification into the target

language code such as [14] or [15] can be used at this step.

III. CASE STUDY: HEMODIALYSIS MACHINES

For the experimental validation of our approach, we apply

our approach to a HD machine case study [16]. The approach

is applied by employing the formal method Event-B [17]

and its support platform Rodin [18]. A typical specification



Fig. 1. The formal development paradigm

in Event-B consists of two parts: states and events. A state

is a mapping between names and values constrained by an

invariant. An event is responsible for transitions between one

state and another. For practical purposes, Event-B models are

split into Contexts and Machines, each describing the constant

and the variable part of the state respectively.

A. Hemodialysis process

HD is a treatment for kidney failure that uses a machine

to send the patient’s blood through a filter, called a dialyzer,

for extracorporeal removal of waste products. The blood is

taken through the arterial access of the patient’s body. The

blood then travels through a tube that takes it to the dialyzer.

Inside the dialyzer, the blood flows through thin fibers that

filter out wastes and extra fluid using dialysate, a chemical

substance that is used in HD to draw fluids and toxins out and

to supply electrolytes and other chemicals to the bloodstream.

The cleaned blood is then recycled back to the patient through

the venous access. A vascular access lets large amounts of

blood flow continuously during HD treatments to filter as

much blood as possible per treatment. A specific amount of

blood is conducted through the machine every minute. The

working principle of HD machines is depicted by Figure 2.

Fig. 2. Working principle of HD machines

B. Model development

1) Specification step: The model has been developed using

the following pattern:

1) Synchronize each requirement with a refinement step,

2) Distinguish and specify the static and dynamic elements

of the requirement in the context and the machine of the

related refinement respectively,

3) Introduce the safety properties expressed in the require-

ment as machine invariants,

4) Introduce the monitoring events.

The following is an example of how the requirements of the

HD machine case study are specified in the Event-B model.

Requirement: If the system is in the preparation mode

and performs priming or rinsing or if the system is in the

therapy mode and if the dialysate temperature exceeds

the maximum temperature of 41◦C, then the software

shall disconnect the dialyser from the dialysate within

60 seconds and execute an alarm signal.

We first initiate a context that defines requirement-related

static data such as modes, operations, and alarms. Then the

corresponding machine of the refinement is specified. It con-

tains several variables and invariants. The following invariants

inv1 and inv2 specify the related safety requirements.

inv1 softwareMode = Preparation ∧ (operation = Priming ∨ operation = Rinsing)
∧ dialysateTemperature > 41 ⇒
dialyserState = {Dialysate 7→ DialyserDisconnected} ∧
dialyserDisconnectionTime < 60 ∧ alarm = ALM377

inv2 softwareMode = Therapy ∧ dialysateTemperature > 41 ⇒
dialyserState = {Dialysate 7→ DialyserDisconnected} ∧
dialyserDisconnectionTime < 60 ∧ alarm = ALM639

Then we specify two monitoring events to capture the

behavior of the system because both events trigger different

alarms. As shown in Figure 3, the event disconnectDial-

yserPreparation is triggered when the software is in the

preparation mode and the temperature of the dialysate rises to

more than 41◦C during the operation. However, if the software

is in the therapy mode while the same thing happens, then the

other monitoring event is triggered.

Event disconnectDialyserPreparation
Where
softwareMode = Preparation ∧ dialysateTemperature > 41 ∧
(operation = Priming ∨ operation = Rinsing) ∧
dialyserState = {Dialysate 7→ DialyserConnected} ∧
dialyserDisconnectionTime < 60

Then
dialyserState := {Dialysate 7→ DialyserDisconnected} ∧
alarm := ALM377 ∧ dialyserDisconnectionTime := 0

End

Fig. 3. Event disconnectDialyserPreparation

An additional event dialyserDisconnecitonClock is also

specified to monitor the timing constraint of the requirement.

The tick of the clock is modeled as N that increments

dialyserDisconnectionTime by 1 (second).

2) Verification step: Verification of a model is achieved

when it is proven that the model is free from specifica-

tion errors and inconsistencies. Our fully-proven specification

ensures that the model is consistent, well-defined and its

events preserve its invariants. Additionally, we also prove that

concrete events in later refinement steps maintain invariants of



the abstract refinements, maintain abstraction invariants, and,

when appropriate, decrease variants monotonically.

Temporal properties (safety and liveness) of the system are

checked by a combination of theorem proving, model checking

and animation. Using theorem proving, we proved that safety

invariants are preserved by the behavior of the system, the

system is non-divergent, i.e., new events do not take control

forever by preventing events from the abstract models from

happening, and the system preserves enabledness, i.e., if an

event is enabled at an abstract level then it is also enabled at

the concrete level. Using model checking, we ensured that

legal states of the model are reachable, specified formulas

are satisfiable and the model does not contain any deadlock.

Using animation, we successfully checked that system traces

eventually reach their intended final states.

3) Validation step: Validation of a model is achieved when

it is demonstrated that the model is free from requirements

errors and reflects the stakeholders’ wishes adequately. The

most common way to validate a specification in the Event-

B method is to animate the specification by invoking its

operational semantics to inspect its behavior.

For animation and model checking of our specification,

we have used the ProB tool [19] that supports automated

consistency checking of Event-B machines via constraint

solving techniques. Animation using ProB worked very well.

We created several behavioral scenarios and executed them

accordingly to demonstrate the behavior of the system to

stakeholders. The ProB tool assisted us in finding potential

invariant problems and their improvement by generating coun-

terexamples whenever an invariant violation is discovered.

ProB also helped us in improving invariant expressions by

providing hints for strengthening invariants each time an

invariant was modified or a new proof was generated by the

Rodin platform. We corrected more errors during specification

modeling and reviewing than during discharging proofs and

animation.

4) Code generation step: At the last refinement step, when

the specification is sufficiently detailed, we extract the pro-

graming language code out of it. This is the result of the

translation process that converts the B code into a sequential

programing language code that runs on the given hardware.

Our target language is C. We use the EB2All tool [15] for the

translation purpose.

IV. DISCUSSION, CONCLUSION AND FUTURE WORK

This letter focuses on the rigorous development of a

software-controlled safety-critical AMD responsible for renal

replacement therapy. Our employed approach successfully

enabled us to specify and analyze various critical components

of HD machines at different abstraction levels. Our approach

also enabled us to detect and correct errors and omissions

close to the point of their introduction. The formal Event-B

method supported by the Eclipse-based open source Rodin tool

has also lent itself to the development of such systems. We

have found Event-B an adequate method for the modeling and

analysis of critical medical devices. Its refinement principles

and V&V mechanisms provide all the elements that are

necessary for the safe development of AMDs and are in full

accordance with IEC standards and FDA guidelines.

However, during the development, we also faced several

challenges. For example, sophisticated tools and elaborated

guidelines for managing the complexity of growing models by

decomposition are missing in Event-B and Rodin. There is also

no implicit notion of time in Event-B, although this will be

necessary for an elegant expression of timing properties which

play a critical role in medical devices. Currently, we resort to

ProB for proving various temporal properties of the system,

but ProB often fails (at the detailed level of refinements) due

to the state space enumeration and explosion problems. In

our opinion, a standard and more natural way is required

to specify and prove that temporal properties of the system

are preserved by Event-B refinements. Finally, a tool that is

able to generate ready-to-deploy machine code from Event-

B formal models is also missing; currently available tools

can not do this. The notable problems with these tools is

that the Event-B model must be restricted to a well-defined

subset in order to generate C code and a formal proof that the

translation process preserves the safety properties of the model

is missing. Extensions of available code generation tools in

these directions is an issue for future work.

REFERENCES

[1] EU, “Council Directive 93/42/EEC,” Official Journal of the European
Union, June 1993.

[2] ——, “Directive 2007/47/EC of the European Parliament and of the
Council,” Official Journal of the European Union, September 2007.

[3] K. Sandler, L. Ohrstrom, L. Moy, and R. McVay, “Killed by code: Soft-
ware transparency in implantable medical devices,” Software Freedom

Law Center, pp. 308–319, 2010.

[4] D. R. Wallace and D. R. Kuhn, “Failure modes in medical device
software: an analysis of 15 years of recall data,” International Journal of

Reliability, Quality and Safety Engineering, vol. 8, no. 04, pp. 351–371,
2001.

[5] IEC 62304:2006, “Medical device software - Software life cycle pro-
cesses,” Geneva, Switzerland, 2006.

[6] Food and Drug Administration (FDA), “General Principles of Software
Validation; Final Guidance for Industry and FDA Staff,” 2002.

[7] IEC 61508-3 Ed 2.0, “Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems - Part 3: Software require-
ments,” Geneva, Switzerland, 2010.

[8] C. Li, A. Raghunathan, and N. Jha, “Improving the trustworthiness of
medical device software with formal verification methods,” Embedded

Systems Letters, IEEE, vol. 5, no. 3, pp. 50–53, Sept 2013.

[9] D. Méry and N. K. Singh, “Formal specification of medical systems by
proof-based refinement,” ACM Trans. Embed. Comput. Syst., vol. 12,
no. 1, pp. 15:1–15:25, Jan. 2013.

[10] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “From
verification to implementation: A model translation tool and a pacemaker
case study,” in Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2012 IEEE 18th, April 2012, pp. 173–184.

[11] J. Bowen and S. Reeves, “Modelling safety properties of interactive
medical systems,” in Proceedings of the 5th ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, ser. EICS’13. New
York, NY, USA: ACM, 2013, pp. 91–100.

[12] P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby,
“Model-Based Development of the Generic PCA Infusion Pump User
Interface Prototype in PVS,” in Computer Safety, Reliability, and Se-

curity, ser. Lecture Notes in Computer Science, F. Bitsch, J. Guiochet,
and M. Kaniche, Eds. Springer Berlin Heidelberg, 2013, vol. 8153, pp.
228–240.



[13] E. M. Clarke and J. M. Wing, “Formal methods: state of the art and
future directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626–643,
1996.

[14] S. Wright, “Automatic Generation of C from Event-B,” in Workshop on

Integration of Model-based Formal Methods and Tools, 2009.
[15] N. Singh, “EB2ALL: An Automatic Code Generation Tool,” in Using

Event-B for Critical Device Software Systems. Springer London, 2013,
pp. 105–141.

[16] A. Mashkoor, “The hemodialysis machine case study,” Software Com-
petence Center Hagenberg GmbH, Tech. Rep., 2015.

[17] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[18] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B,” International Journal on Software Tools for Technology Transfer,
vol. 12, no. 6, pp. 447–466, 2010.

[19] M. Leuschel and M. Butler, “ProB: An Automated Analysis Toolset for
the B Method,” International Journal on Software Tools for Technology

Transfer, vol. 10, no. 2, pp. 185–203, 2008.


	I Introduction
	II Methodology
	III Case Study: Hemodialysis Machines
	III-A Hemodialysis process
	III-B Model development
	III-B1 Specification step
	III-B2 Verification step
	III-B3 Validation step
	III-B4 Code generation step


	IV Discussion, conclusion and future work
	References

