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Exploring NEURAGHE: A Customizable Template
for APSoC-based CNN Inference at the Edge

Paolo Meloni, Daniela Loi, Gianfranco Deriu, Marco Carreras, Francesco Conti, Alessandro Capotondi
and Davide Rossi

Abstract—The NEURAGHE architecture has proved to be a
powerful accelerator for Deep Convolutional Neural Networks
running on heterogeneous architectures based on Xilinx Zyng-
7000 APSoCs. NEURAGHE exploits the processing system and
the programmable logic available in these devices, to improve
performance through parallelism and to widen the scope of
use-cases that can be supported. In this work, we extend the
NEURAghe template-based architecture to guarantee design-time
scalability to multi-processor SoCs with vastly different cost, size
and power envelope such as Xilinx’s Z-7007s, Z-7020 and Z-7045.
The proposed architecture achieves state-of-the-art performance
and cost effectiveness in all the analyzed configurations, reaching
up to 335 GOps/s on the Z-7045.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are one of the
most promising classes of deep learning algorithms due to
remarkable performance achieved in a broad area of appli-
cations, ranging from speech recognition to computer vision
and natural language processing [1]. However, improvements
in the accuracy of a CNN come at the expense of increased
computational and memory workload. The execution of CNN
algorithms involves a huge number of Multiply Accumulate
(MAC) operations representing the core of the convolution ker-
nels, and requires significant memory storage and bandwidth
for storing and accessing weights efficiently. Therefore, there
is a growing need for low-cost hardware platforms capable
of running computationally intensive CNN-based applications
fast and efficiently. Due to the intrinsic parallelism in such
convolutions, Field-Programmable Gate Arrays (FPGA) are a
very promising target technology for the implementation of
hardware accelerators for different kind of neural networks
[21, [3], [4], [5]. Exploiting dedicated hardware, FPGAs allow
to realize very flexible architectures. They can integrate a
high number of parallel Digital Signal Processing (DSP)
units, usable to efficiently implement MAC operations and to
deliver high throughput at limited clock frequencies. More-
over, FPGAs offer a significant amount of memory resources,
which can be used to create temporary storage buffers for
partial convolution results, and other hardware primitives,
such as registers and look-up tables (LUTSs), suitable to
implement the glue logic around the accelerators. Based on
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these considerations, in [6] we have proposed NEURAGHE,
a programmable CNN accelerator exploiting the synergistic
execution on ARM processor and on the programmable logic
of Xilinx Zynq Z-7000 All Programmable System-on-Chip
(APSoC). Automated generation of CNN processors, based
on High-level synthesis or data-flow generators, has often
been argued to be more effective than a template-based
design in maximizing the utilization of the available FPGA
resources [2], [7]. Contrary to this line of thought, in this work
we show how the NEUR AGHE architecture can be tailor-cut to
support different trade-off optimization scenarios with respect
to cost, computation efficiency and power consumption, and
to meet a wide scope of use-cases requiring at-the-edge CNN
inference. We demonstrate that, thanks to its unique flexibility,
NEURAGHE can fit on a wide scope of devices, ranging from
low-end IoT nodes to mid-to-high end embedded processing
platforms. NEURAGHE outperforms all existing architectures
on Z-7045 using 8-bit and 16-bit data (delivering up to 335
GOps/s or 173 GOps/s, respectively), achieves state-of-the-art
performance on Z-7020 using 8-bit data (up to ~85 GOps/s),
and can be used even on tiny devices such as Z-7007s.

II. NEURAGHE ARCHITECTURAL TEMPLATE

The NEURAGHE! architecture consists of a hierarchical
structure that overlaps with the hardware organization of
Xilinx Zynq SoCs (adaptable to other APSoCs on the market).
It contains a General-Purpose Processor (GPP), i.e. the ARM-
based Processing System (PS) in the Zynq, a memory-mapped
off-chip DDR (as available on the Zynq), and a set of Convo-
lution Specific Processors (CSP), hosted on the Programmable
Logic (PL), acting as accelerator. Fig. 1 illustrates the overall
system-level organization of the NEURAGHE architecture.

NEURAGHE’s CSPs are designed to operate the requested
convolutions autonomously, relieving the GPP from any
control-related action. The design enables a synergistic usage
of GPP to take care of effective computing workloads, such
as e.g. data marshaling or linear layers, while CSPs elaborate
convolutions. This execution model is available through a
dedicated software library provided with NEURAGHE [6],
optimized to exploit the NEON extension and the two cores
available on the ARM system. Each Convolution Specific
Processor is composed of: i) a RISC microcontroller (uC)
executing a control firmware for synchronizing transfers and
convolution computations; ii) a Convolution Engine (CE) that
represents the computational core of the accelerator, with a

The name of the accelerator template derives from the ancient megalithic
edifices named nuraghes, typical of the prehistoric culture in Sardinia.
The different configurations are named after most important nuraghes.
https://en.wikipedia.org/wiki/Nuraghe
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Fig. 1. NEURAGHE overall architectural template.

private weight memory and several ports to read the input
pixels and write the results of convolution; iii) a pair of Direct
Memory Access (WDMA and ADMA), respectively dedicated
to weights and to activations; iv) a Tightly Coupled Data
Memory (TCDM) to store the activations, and an instruction
memory to store the code for the RISC microcontroller.

The Convolution Engine embeds a set of Sum-of-Products
(SoP) units, used to deploy convolutions on the reconfigurable
logic, which are organized as a matrix of N columns and
M rows. The SoP matrix is the most resource-consuming
component and defines the number of input feature maps and
output feature maps processed in each iteration. Fig. 2 shows
the internal organization of the architecture, highlighting the
composition of the CE module when a SoP matrix with 4
columns and 4 rows is used. In each cycle of activity, the
CE collects up to 12 input features and computes their con-
tributions to 4 output features. The input features are loaded
through a set of line buffers, LB in the diagram, used to cache
few lines of the input image. In this way, by loading a single
new pixel per cycle, an entire new window of the image can
be dispatched to the SoP matrix for convolution. Considering
16-bit pixel data, each LB is fed with two pixels obtained from
the input port and produces two square convolution windows
per cycle. The convolution windows are then consumed by the
SoP units. To map efficiently on the FPGA DSP resources, the
SoP units can be configured at design time to be partitioned
in multi-trellis structures of multiply and addition operations,
whose outputs are summed together using a dedicated adder.
The output pixels produced by each Adder-shifter module
are then streamed into a block that, when enabled, performs
Rectifier Linear Unit (ReLU) activation function. The CE
integrates also a pooling layer, that temporarily stores and
compares output pixels in square pooling windows, to select
on-the-fly one single output pixel per window, according to the
selected operating mode (max pooling, average pooling and
simple down-sampling). To reduce the power consumption, the
CPS clock domain is partitioned in two regions. An high-speed
domain, only reserved for throughout-critical components,
such as the CE and the WDMA, and a low-speed domain
reserved for the rest of the circuitry.

III. DESIGN-TIME CONFIGURATION PARAMETERS

In this work, we have extended the architecture presented
in [6] to support different configuration parameters, to fit on
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Fig. 2. NEURAGHE CE internal organization with 4x4 SoP matrix.

different heterogeneous SoCs and to optimize the performance
of specific networks on the same target. In the following
sections, a description of each parameter is provided:

a) Number of Convolution Specific Processors:
NEURAGHE can host multiple Convolution Specific Proces-
sors that can be used in parallel to map independent layers.

b) Convolutional Engine SoP matrix size: The SoP ma-
trix is the main scalable computing datapath of each Convolu-
tion Engine. Designers can change the size of the matrix acting
on the number of rows and columns that it contains, creating
configurations that fit devices featuring different number of
DSP slices. The number of rows and columns in the matrix
defines, respectively, the number of IF maps consumed by the
engine and the number of OF maps produced by it.

¢) Convolutional Engine arithmetic precision: The de-
signer can choose to set data precision to 16-bit or 8-bit, to
trade off accuracy for performance. All data (i.e. input pixels,
output pixels, biases and weights) will be represented with the
same number of bits. It is also possible to instantiate support
for run-time selection of the data precision.

IV. HARDWARE IMPLEMENTATION

Thanks to its flexibility, the NEURAGHE template can
be reshaped to fit on a wide range of APSoC devices, to
conveniently select the best performance/power/cost trade-off
for a specific use-case. To assess the approach, we have taken
as reference the Xilinx Zyng-7000 family. We have tested
implementation on three different Zynq SoC devices, easily
accessible on commonly available development boards, which
integrate an ARM-based processing system with different sizes
of FPGA circuitry: the Zynq Z-7045, the Zynq Z-7020 and the
Zynq Z-7007s. These targets cover nearly the whole range
of devices in the family, suitable to be used in embedded
applications. As shown in Table I, we chose three config-
urations of the NEURAGHE architecture fitting respectively
in the three target devices: LOSA (4x4 SoP matrix size),
SABINA (2x2 SoP matrix size), and BANZOS (1x1 SoP
matrix size). SoP matrix sizes have been chosen to maximize
the usage of the DSP slices available on the chip (at least
82% utilization on all the configurations). Moreover, we have
implemented ARRUBIU, that fits on the Z-7045 SoC but has a
different CSP organization, featuring two CSP with a 2x4 CE
matrix per CSP. Considering that every CSP uses two High-
Performance PS-to-PL ports and that four ports are available
in Zynq devices, only one or two CSPs can be instantiated on
this family of SoCs.
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TABLE 1
RESOURCES UTILIZATION OF THE DIFFERENT CONFIGURATIONS.

LOSA ARRUBIU SABINA BANZOS
Target SoC Z-7045 Z-7045 Z-71020 Z-71007s
#CSPs; SoP 1; 4x4 2 2x4 1; 2x2 1; Ix1
DSP 864 (96%) 864 (96%) 216 (98%) 54 (82%)
LUTs 99546 (51%) 101352 (46%) 43880 (83%) 12610 (87%)
BRAMs 320 (59%) 288 (53%) 136 (97%) 44 (88%)

V. PERFORMANCE EVALUATION

Table II reports performance and efficiency levels achievable
by the four configurations on several benchmarks, in terms
of actual computational power (GOps/s), energy efficiency
(GOps/sec per Watt), and price efficiency (GOps/sec per k$).

Stage Ii 260 7260 b 72,60 LOSA (4x4 @Z-7045)
W Frame 1
stogen [J280280 18121 [JEEIEN 181,21 Frame 2
M Frame 3
Stage | I 9,’0 9,80 Frame 4
0 100 200 300 400 500 600 700 800 900 1000
Time [ms)
Stage Il 7*0 72,60 7*0 72,60 SABINA (2x2 @Z-7020)
™ Frame 1
™ Frame 3
Stage | 9,#0 9,80 Frame 4
0 500 1000 1500 2000 2500 3000
Time [ms]

Fig. 3. VGG-16 four frame execution timeline. Bars indicate execution time of
the different stages, expressed in ms. Stage I consists on input data preparation,
executed by the GPP. Stage II consists of all the computational blocks executed
on the CSP. Stage III consists all the rest, mainly fully-connected layers,
executed on the GPP. Execution stages related to different frames can overlap.

As previously mentioned, NEURAGHE exploits the inter-
action between the General Purpose Processor and the CSP.
As an example, in Figure 3 you may notice how different
execution stages on different image frames overlap with each
other in a task-level pipeline fashion. Such a parallel approach
can be exploited, with different speed-up, on all the different
target devices. In general, processing tasks assigned to the
CSP, which are the limiting nodes of the pipeline, are those
that are impacted by the scaling to different technology targets.

A. Exploring SoP matrix size

Sum-of-Products matrix size can be selected to optimally
exploit the usage of DSP slices available on the target. In gen-
eral, while implementations on more expensive devices reach
higher absolute performance levels, smaller configurations,
e.g. SABINA, expose a higher efficiency of SoP utilization
with respect to peak performance. This can be expected, as
shown by the roofline models of LOSA and SABINA plotted
in Figure 4. Smaller configurations require lower levels of
operational intensity to operate at their peak performance,
limited by computing resources. For example, in Figure 4, the
performance level achievable for the Conv layer corresponding
to the vertical line, is limited by the peak performance when
using SABINA, while it is limited by the PS-to-PL bandwidth
when using LOSA, determining an efficiency degradation.
Thus, smaller matrices work more efficiently, especially in
initial and final layers of common CNN models, that expose in
general lower operational intensity (see Figure 5). Moreover,

when the number of input features in a Conv layer is not
multiple of the number of CSP input ports, the SoP matrix is
under-utilized during the last round of computation. Reduced
SoP matrix size can mitigate the chances of under-utilization.

300 LOA
1
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5 50 500
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Fig. 4. Roofline model for LOSA and SABINA CSPs. The vertical axis
represents the throughput, while the horizontal axis represents the operational
intensity of the kernel. Vertical dashed line highlights the average operational
intensity of a convolutional layer (~51 Ops/B).
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Fig. 5. Comparison of the performance efficiency, achieved on all the convo-
lution layers (L) in ResNet-18 and VGG-16, by different NEURAGHE con-
figurations. It is estimated as the ratio between actual performance (GOps/s)
and peak performance (GOp«/s). For VGG-16 we report also efficiency for
a double-cluster configuration (ARRUBIU). We do not report CSP efficiency
for ARRUBIU on ResNet-18 since the overall network efficiency is mainly
limited by the GPP, see Section V-B.

ResNet-18
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Implementing more efficient configurations on low-cost
hardware opens a whole range of possibilities, involving
distributed processing and multi-board designs. For example,
if allowed by the use-case, a designer may choose to replace
a single LOSA with two SABINA configurations, to execute a
task based on ResNet-18, achieving around 88% of the original
performance, saving around 64% of costs.

B. Exploring number of CSPs

Multi-CSP configurations can be used to combine the ben-
efits of a bigger device with those of a reduced matrix size.
As an example, we have used the ARRUBIU configuration
to run both VGG-16 and ResNet-18 benchmarks. We have
tested two kinds of parallelism: inter-frame parallelism, that
alternately sends input frames to each of the CSP, and intra-
frame parallelism, that partitions input frames in tiles and
alternately sends tiles to each of the CSP. On the other
hand, any kind of feature-level parallel pattern significantly
increases the amount of data to be transferred through the
DMA causing huge performance drop. In general, on ARRU-
BIU inter-frame parallelism is more efficient. It leads to an
increasing performance of around 10% for VGG-16 compared
to LOSA (see Table II). On the other side, parallelizing by
tiles is not so effective. In this case the CSPs have to operate
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TABLE 11
EVALUATION OF DIFFERENT NEURAGHE CONFIGURATIONS (* indicates results based on inter-frame parallelism, the dual number indicates intra-frame).
LOSA ARRUBIU SABINA LOSA ARRUBIU SABINA BANZOS
single 4 x4 dual 2x4 single 2x2 | single 4x4 dual 2x4 single 2x2 single 1x1
Xilinx Zynq SoC Z-7045 Z-7045 Z-7020 Z-77045 Z-7045 Z-7020 Z-7007s
(Price) ($2500) ($2500) ($450) ($2500) ($2500) ($450) ($89)

DSP [#]; Freq [MHz] 864; 140 864; 140 216; 120 864; 140 864; 140 216; 120 54; 80
Benchmark net ResNet-18 ResNet-18 ResNet-18 VGG-16 VGG-16 VGG-16 SqueezeNet  All-CNN-C
GOps/s (16-bit) 61.91 59.84F 5352 2751 172.67 1887 170.81 42.48 7.46 6.21

GOps/s per Watt (16 bit) 6.19 5.98* 5.35 7.86 17.26 18.8* 17.08 12.56 2.98 2.49

GOps/s per k$ (16 bit) 25 21.4* 23.93 61.13 69 75.2* 68.3 97.5 95 27.93

GOps/s (8-bit) 111.12 63.94% 7327 49.61 335.09 37044 296.27 84.77 14.05 10.62

TABLE 11
COMPARISON BETWEEN NEURAGHE AND OTHER ALTERNATIVES IN LITERATURE WHEN USING 8- OR 16-BIT ON VGG-16.
This work Venieris et al. [7] Sharma et al. [8] Guo et al. [9] This work Venieris et al. [10] Guo et al. [9]

Xilinx Zynq SoC Z7-7020 Z-7020 Z7-7020 Z-7020 Z7-7045 Z-7045 Z-7045
Frequency [MHz] 120 125 150 214 140 125 150
Performance (16-bit) [GOps/s] 42.48 48.53 31.38 - 172.67 155.81 137
Performance (8-bit) [GOps/s] 84.77 - 84.30 335.09 - 292

on smaller features and performance overheads related mostly
with loading of line buffers have higher impact. Moreover,
input data tiles have to overlap with each other, generating an
additional overhead in terms of repeated MAC operations to be
payed when computing border pixels. Exploiting inter-frame
parallelism is not possible in every use-case. For example, in
ResNet-18, the GPP in the architecture is used very frequently
along the CNN datapath for marshalling and shortcuts. Thus
it cannot serve as companion of two different CSPs, without
compromising the overall scheduling efficiency with respect
to a single-CSP configuration like LOSA (see Table II).

C. Exploring CE arithmetic precision

In NEURAGHE configurations processing 16-bit activation
and weights, each DSP slice in the programmable logic per-
forms one MAC operation per cycle. NEURAGHE allows the
programmer to select at runtime an operating mode processing
8-bit data, allowing to execute 2 MAC operations per cycle on
each slice, prospectively improving performance by a factor of
2. As shown in Table II, speed-up measured in 8-bit operating
modes is very close to the theoretical limit.

D. Comparison With S.0.A.

In Table III, we show a comparison, on VGG-16, between
the proposed platform and some related work. The availability
of design-time configurability and runtime tuning (selection
between 8- and 16-bit data precision) makes NEURAGHE
more flexible with respect to alternatives. On Z-7020, with
respect to [7], NEURAGHE provides around the same per-
formance, but supports more data types. The same results
from comparison with [9], that does not provide results for
16-bit, and provides slightly lower performance for 8-bit.
Another alternative in literature is [8]. NEURAGHE is more
flexible, since [8] only supports 16-bit, and provides higher
performance, being ~35% faster. On Z-7045, NEURAGHE
outperforms competitors for all considered data precision val-
ues. NEURAGHE is ~10% faster of the work in [10] (20%, if
we consider ARRUBIU) when using 16-bit, and ~14% faster
than the work in [9] for 8-bit. Moreover, to the best of our
knowledge, NEURAGHE is the only alternative presenting an
implementation on very low-cost platforms such as BANZOS

(see rightmost column of Table II). This configuration is
suitable to be used to build low-cost FPGA-accelerated [oT
nodes. We report also performance achieved by BANZOS on
a lightweight CNN [11], indicated as All-CNN-C, performing
classification on low-resolution images. In this case, it supports
~7 FPS at 16-bit precision and ~13 FPS when using 8-bit.

VI. CONCLUSION

In this paper we present NEURAGHE, a customizable
architecture for CNN acceleration on FPGA-endowed SoCs,
focusing on its parametrization capabilities. Changing param-
eters of the NEURAGHE architecture leads to a variety of
configurations that may be used in different use-cases to fit in
different embedded systems, ranging from entry-level to high-
end. This offers different trade-off optimization scenarios with
respect to performance, cost and power consumption.
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