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Abstract—Networks-on-Chip (NoCs) used in commercial
many-core processors typically incorporate priority arbitration.
Moreover, they experience bursty traffic due to application work-
loads. However, most state-of-the-art NoC analytical performance
analysis techniques assume fair arbitration and simple traffic
models. To address these limitations, we propose an analytical
modeling technique for priority-aware NoCs under bursty traffic.
Experimental evaluations with synthetic and bursty traffic show
that the proposed approach has less than 10% modeling error
with respect to cycle-accurate NoC simulator.

I. INTRODUCTION

Industrial many-core processors incorporate priority arbi-
tration for the routers in NoC [1]. Moreover, these designs
execute bursty traffic since real applications exhibit bursti-
ness [2]. Accurate NoC performance models are required to
perform design space exploration and accelerate full-system
simulations [3, 4]. Most existing analysis techniques assume
fair arbitration in routers, which does not hold for NoCs with
priority arbitration used in manycore processors, such as high-
end servers [5] and high performance computing (HPC) [1].
A recent technique targets priority-aware NoCs [6], but it
assumes that the input traffic follows geometric distribution.
While this assumption simplifies analytical models, it fails to
capture the bursty behavior of real applications [2]. Indeed,
our evaluations show that the geometric distribution assump-
tion leads up to 60% error in latency estimation unless the
bursty nature of applications is explicitly modeled. Therefore,
there is a strong need for NoC performance analysis techniques
that consider both priority arbitration and bursty traffic.

This work proposes a novel performance modeling tech-
nique for priority-aware NoCs that takes bursty traffic into
account. It first models the input traffic as a generalized geo-
metric (GGeo) discrete-time distribution that includes a param-
eter for burstiness. We achieve high scalability by employing
the principle of maximum entropy (ME) to transform the given
queuing network into a near equivalent set of individual queue
nodes of multiple-classes with revised characteristics (e.g.,
modifying service process). Furthermore, our solution involves
transformations to handle priority arbitration of the routers
across a network of queues. Finally, we construct analytical
models of the transformed queue nodes to obtain end-to-
end latency. The proposed performance analysis technique
is evaluated with SYSmark® 2014 SE [7], applications from
SPEC CPU® 2006 [8] and SPEC CPU® 2017 [9] benchmark
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suites, as well as synthetic traffic. The proposed technique has
less than 10% modeling error with respect to an industrial
cycle-accurate NoC simulator. The major contributions of this
work are as follows:
• Accurate and scalable high-level performance modeling

of priority-based NoCs considering burstiness,
• Dynamic approximation of realistic bursty traffic via

GGeo distribution,
• Thorough evaluations on industrial priority-based NoCs

with synthetic traffic and real applications.

II. RELATED WORK

NoC analytical performance analysis techniques primarily
target fast design space exploration and accelerating full-
system simulations. Most of the existing techniques consider
NoC routers with fair arbitration [4, 10], but this assumption
does not hold for NoCs that employ priority arbitration [1, 5].
Several performance analysis techniques target priority-aware
NoCs [3, 6]. The technique presented in [3] assumes that
each class of traffic in the NoC occupies different queues.
This assumption is not practical since most of the industrial
NoCs share queues between multiple traffic classes. Analytical
model for industrial NoCs, which estimates average end-to-end
latency is proposed in [6]. However, these models assume that
the input traffic follows geometric distribution, which is not
applicable for workloads with bursty traffic.

Analytical modeling of priority-based queuing networks
has also been studied outside of the realm of the on-chip
interconnect [11, 12]. Analytical models constructed in [11]
considers a queuing network in the continuous-time domain.
This assumption is not valid for NoCs, as events happen in
discrete clock cycles. In [12], performance analysis models
are constructed in the discrete-time domain. Since the number
of random variables required in this technique is equal to
the number of classes (exponential on the number of routers)
present in the NoC, this approach does not scale. In contrast,
the analytical models presented in this paper use the discrete-
time domain and scale to thousands of traffic classes.

III. BACKGROUND AND OVERVIEW

The goal of this work is to construct accurate performance
models for industrial NoCs under priority-arbitration and
bursty traffic. We mainly target manycore processors used in
servers, HPC, and high-end client CPUs [1, 5]. The proposed
technique takes burstiness and injection rate of the traffic as
input and then provides end-to-end latency of each traffic class.
Input traffic model assumptions: Applications usually pro-
duce bursty NoC traffic with varying inter-arrival times [2, 4].
We approximate the input traffic using the GGeo discrete-
time distribution model, which takes both burstiness and
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Fig. 1. GGeo traffic model
discrete-time feature of NoCs into account [4, 13]. GGeo
model includes Geometric and null (no delay) branches, as
shown in Figure 1. Selection between branches conforms to
the Bernoulli trial, where the null (upper) and Geo (lower)
branches are selected with probability pb and 1− pb, respec-
tively. The Geo branch leads to geometrically distributed inter-
arrival time, while the null branch issues additional flit in
the current time slot leading to a burst. Both the number
of flits in a time slot and the inter-arrival rate depend on
pb [13]. Hence, we use pb as a parameter of burstiness. GGeo
distribution has two important properties [13]. First, it is
pseudo-memoryless, i.e. the remaining inter-arrival time is
geometrically distributed. Second, it can be described by its
first two moments (λ, Ca), where C2

a = 2/(1 − pb) − λ − 1.
We exploit these properties to construct analytical models.
IV. SYSTEMATIC GENERATION OF ANALYTICAL MODELS

In industrial NoCs, flits already in the network have higher
priority than new injections to achieve predictable latency [1].
This leads to nontrivial timing dependencies between the
multi-class flits in the network. Hence, we propose a system-
atic approach for accurate and scalable performance analysis.
We note that the proposed technique can be extended to NoCs
with fair arbitration if we assume that all classes have the same
priority. However, we do not focus on non-priority NoCs since
this domain has been studied in the past [10].

A. Maximum entropy for queuing networks
We apply the principle of ME to queuing systems to find

the probability distribution of desired metrics (e.g., queue
occupancy) [13]. According to this principle, the selected
distribution should be the least biased among all feasible
distributions satisfying the prior information in the form of
mean values. The optimal distribution is found by maximizing
the corresponding entropy function: we formulate a nonlinear
programming problem and solve it analytically via the La-
grange method of undetermined multipliers as discussed next.

B. Decomposition of basic priority queuing
In a non-preemptive priority queuing system, the router does

not preempt a higher priority flit while processing a lower
priority flit. An example system with two queues and a shared
server is shown in Figure 2(a). There are two flows arriving at
a priority-based arbiter and a shared server. The shaded circle
corresponds to high priority input (class 1) to the arbiter. We

TABLE I
SUMMARY OF THE NOTATIONS USED IN THIS PAPER

λ, λm Mean arrival rate of total traffic and class m
pb Probability of burstiness
Tm, T̂m Original and modified mean service time of class m flits
R,Rmk Total residual time and residual time of class m while class k is served
ρm Mean server utilization of class m flits (=λmTm)
Ca, Cam Coeff. of variation of interarrival time of total traffic and class m flits
Csm , Ĉsm Coeff. of variation of original and modified service time of class m flits
Cd, Cdm Coeff. of variation of interdeparture time of total traffic and class m flits
Wm Mean waiting time of class m flits
nm, nm Mean and current occupancy of class m flits in a queue-node
βm Mean number of bursty arrivals of class m
nmk Mean queue-node occupancy of class m with serving class k
n State vector, n = (n1, n2, ..., nM ) of priority queue-nodes
p(n) Probability that a queue-node is in state n
pm(0) Marginal probability of zero flits of class m in a queue-node.
αm(n) αm(n) = 1 if class m in service and 0 otherwise
M Number of classes that share same server
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Fig. 2. Decomposition of a basic priority queuing
denote this structure as basic priority queuing. Our goal is
to decompose this system into individual queue-nodes with
modified servers, as shown in Figure 2(b). The combination
of a queue and its corresponding server is referred to as a
queue-node. The effective expected service time of class 2
flits, T̂2, is larger than the original mean service time T2, since
class 2 flits wait for the higher priority (class 1) flits in the
original system. We calculate the effective service time in the
transformed network using Little’s Law as:

T̂m =
1− pm(0)

λm
(1)

where pm(0) is the marginal probability of having no flits of
class m in the queue-node, as listed in Table I.

Computing pm(0) using ME: We find pm(0) using the ME
principle by maximizing the entropy function H(p(n)) given
in (2) subject to the constraints listed in (3):

maximize
p

H(p(n)) = −
∑
n

p(n) log(p(n) (2)

subject to
∞∑

n=0

p(n) = 1,

∞∑
n=0
except
nm=1

αm(n)p(n) = ρm, m = 1, . . . ,M (3)

∞∑
n=0
except

nm=nk=1

nmαk(n)p(n) = n̄mk,m, k = 1, ..,M

The notation ∞ means a state vector n with all elements
set to ∞, and (n = 0 except nm = 1) refers to a vector
n with the mth element set to 1 and other elements set to
0. The constraints in (3) comprise three types: normalization,
mean server utilization and mean occupancy. We introduced
an extended set of mean occupancy constraints compared
to [13] to provide further information about the underlying
system. When a flit of a certain class arrives at the system,
it may find the server busy with its own class or other
classes since the server is a shared resource, as shown in
Figure 2(a). Therefore, the mean occupancy of each class
can be partitioned according to the contribution of each class
occupying the server. We exploit this inherent partitioning to
generate M additional occupancy constraints. The occupancy
related constraints depend on three components, βm, Rmk and
Wm (defined in Table I) derived in [6, 13].

We solve the nonlinear programming problem in (2, 3) to
find p(n) which we use to determine the probability of having
zero flits of class m, pm(0). The convergence of this solution
is guaranteed when the queuing system is in a stable region.
We derived the general expression for M queues in a priority
structure with a single class per queue as:

pm(0) = 1− ρm −
M∑

k=1,k 6=m

ρk
nmk

ρk + nmk
(4)
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Fig. 3. Decomposition of flow contention at low priority
Plugging the expression of pm(0) from (4) into (1), we obtain
the first moment of the service process.
Computing second moment of the service time: Since we
also need the second moment to characterize the GGeo traffic,
we calculate the modified squared coefficient of variation of
the service time for class m (Ĉ2

sm ). We utilize the queuing
occupancy formulation of GGeo/G/1 [13] and the modified
server utilization ρ̂m = λmT̂m to obtain the following expres-
sion for Ĉ2

sm :

Ĉ2
sm =

(1− ρ̂m)(2nm − ρ̂m)− ρ̂mC2
am

ρ̂2m
(5)

C. Decomposition of priority queuing with partial contention
Priority-aware NoCs involve complex queuing structures

that cannot be modeled accurately using only the models for
basic priority queuing. The complexity is primarily attributed
to the partial priority contention across queues. We identified
two basic structures with partial priority dependency that
constitute the building blocks of practical priority-aware NoCs.

The first basic structure is shown in Figure 3(a) where
high priority class 1 is in contention with a portion of the
traffic in q2 (class 2) through server SA. Class 2 and 3 flits
have the same priority and share q2 before entering the traffic
splitter that assigns class 2 and 3 flits to server SA and SB
respectively, following a notation similar to the one adopted
in [14]. We denote this structure as contention at low priority.
To decompose q1 and q2, we need to calculate the first two
moments of the modified service process of class 1 and 2. The
decomposed structure is shown in Figure 3(b). First, we set
λ3 to zero which leads to a basic priority structure. Then, we
apply the decomposition method discussed in Section IV-B to
obtain (T̂1, Ĉs1 ) and (T̂2, Ĉs2 ). We derived mean queuing time
(Wm) of individual classes of q2 in the decomposed form as:

Wm =
R+

∑M
k=1 ρ̂kT̂kβk

1−
∑M
k=1 ρ̂k

+ T̂m(βm + 1)− Tm (6)

where R =
∑M
k=1

1
2 ρ̂k(T̂k− 1 + T̂kĈ

2
sk

) and βm = 1
2 (C2

Am
+

λm − 1).
The other basic structure, contention at high priority, is

shown in Figure 4(a). In this scenario, only a fraction of the
classes in q1 (class 2) has higher priority than class 3 since
class 1 in q1 is served by SA. Determining T̂3 is challenging
due to class 1 that influences the inter-departure time of
class 2. To incorporate this effect, we calculate the squared
coefficient of variation of inter-departure time, C2

d2
, of class

2 using the split process formulation of GGeo streams given
in [13]. We introduce a virtual queue, qv and feed it with
the flits of class 2. Therefore, qv and q2 form a basic priority
structure, as shown in Figure 4(b). Subsequently, we apply the
decomposition method described in Section IV-B to calculate
(T̂3, Ĉs3 ) as well as (T̂2, Ĉs2 ). The decomposed structure is
shown in Figure 4(c).
D. Iterative decomposition algorithm

Algorithm 1 shows a step-by-step procedure to obtain
the analytical model using our approach described in Sec-
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Fig. 4. Decomposition of flow contention at high priority

tion IV-C. The inputs to the algorithm are NoC topology,
routing algorithm and server process. The analytical models
presented for the canonical queuing system are independent
of the NoC topology. Therefore, the analytical models are
valid for any NoC, including irregular topologies. First, we
identify priority dependencies between different classes in the
network. Next, we apply decomposition for contention at high
and low priority, as shown in line 7 – 8 of Algorithm 1.
Subsequently, we calculate the modified service process (T̂ ,
Ĉ2
s ) using (1, 4) and (5). Then, we compute the waiting time

per class following (6). Finally, we obtain the average waiting
time in each queue (Wq), as shown in line 12.

V. EXPERIMENTAL EVALUATION

The proposed technique is implemented in C++ to facilitate
integration with system-level simulators. Analysis takes 2.7 ms
for a 6×6 NoC and the worst-case complexity is O(n3), where
n is the number of nodes. In all experiments, 200K cycles of
warm-up period is considered. The accuracy of the models is
evaluated against an industrial cycle-accurate simulator [15]
under both real applications and synthetic traffic that models
uniformly distributed core to last-level cache traffic with 100%
hit rate.

A. Evaluation on Architectures with Ring NoCs
This section analyzes the accuracy of the proposed analyti-

cal models using uniform traffic on a priority-based 6×1 and
8×1 ring NoCs, similar to those used in high-end client CPUs
with integrated GPU and memory controller. Table II shows
that the average errors between our technique and simulation
are 6%, 4% and 6% for burst probability of 0.2, 0.4 and
0.6, respectively. These errors hardly reach 14% even at the
highest injection, which is hard to model. Table II also shows
that priority-based analytical models which do not consider

Algorithm 1: Iterative Decomposition Algorithm
1 Input: NoC topology, routing algorithm, server process, (λ) and (pb)

for each class as parameters
2 Output: Average waiting time for each queue (Wq)
3 N = number of queues in the network
4 Sq = set of classes in queue q
5 for q = 1:N do
6 for m = 1:|Sq | do
7 Apply decomp. for contention at high priority (if found)
8 Apply decomp. for contention at low priority (if found)
9 Compute T̂ , Ĉ2

s using (1, 4) and (5)
10 Compute queuing time (Wq,m) using (6)
11 end

12 Wq =
∑|Sq|

i=1 λq,mWq,m∑|Sq|
i=1 λq,m

13 end
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TABLE II

COMPARISONS AGAINST EXISTING ALTERNATIVES (REFERENCE [3] AND REFERENCE [6]). H DENOTES ERRORS OVER 100%.
Topology 6×1 Ring 8×1 Ring 4×4 Mesh 6×6 Mesh
pb 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
λ 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.3 0.6

E
rr

(%
) Prop. 0.2 5.6 12 0.8 0.6 12 0.2 4.3 14 0.5 3.7 7.3 0.9 5.1 12 0.5 3.1 12 2.3 5.0 11 2.9 7.5 13 2.0 9.1 12 4.7 0.6 11 4.3 8.2 10 6.1 7.9 12

Ref[3] 17 H H 30 H H 54 H H 66 H H H H H H H H 30 H H 10 H H 12 H H 28 H H 54 H H 78 H H
Ref[6] 8.5 12 18 20 30 55 36 47 79 7.5 8.8 11 18 24 39 33 42 85 10 21 40 21 38 82 37 56 88 7.2 13 45 14 34 64 28 48 76

burstiness [6] significantly underestimate the latency by 33%
on average (highlighted with the shaded row). In contrast,
the work without the proposed decomposition technique [3]
leads to over 100% overestimation even at low traffic loads
(highlighted with text in italics). In this case, GGeo models
can not handle partial contention, since it assumes all packets
in the high-priority queue have higher priority than each packet
in the low priority queue. These results demonstrate that
the proposed priority-aware NoC performance models have
significantly higher accuracy than the existing alternatives.

B. Evaluation on Architectures with Mesh NoCs
Table II compares the analytical model and simulation

results for a priority-based 4×4 and 6×6 mesh NoC, similar
to those used in high-end servers [1]. Our technique incurs
on average 6%, 7% and 10% error for burst probability of
0.2, 0.4 and 0.6, respectively. Priority-based analytical models
which neglect burstiness [6] underestimate the latency by 60%
on average similar to the results on the ring architectures.
Likewise, GGeo models without the proposed decomposition
technique lead to overestimation. We also provide detailed
comparison of proposed analytical models on 6×6 and 8×8
NoC for burst probability of 0.2 and 0.6 in Figure 5(a) and
Figure 5(b), respectively. The proposed models significantly
outperform the other alternatives and lead to less than 10%
error on average.
C. Evaluation with Real Applications

This section validates the proposed analytical models using
SYSmark® 2014 SE [7], and applications from SPEC CPU®

2006 [8] and SPEC CPU® 2017 [9] benchmark suites. These
applications are chosen since they show different levels of
burstiness. First, we run these applications on gem5 [16] and
collect traces with timestamps for each packet injection. Then,
we use the traces to compute the injection rate (λ) and pb.
Computing pb: For each source, we feed traffic arrivals with
timestamps over a 200K clock cycle window into a virtual
queue with the same service rate as the NoC to determine

Fig. 5. Comparison of a proposed analytical model with cycle-accurate
simulation for 8×8 and 6×6 mesh for (a) pb = 0.2 and (b) pb = 0.6.

the queue occupancy. At the end of the window, we compute
the average occupancy. Then, we employ the model described
in [13] to find the occupancy and then pb of each class.

The proposed analytical models are used to estimate the
latency using the injection rate and burst parameters, as well as
the NoC architecture and routing algorithm. The applications
show burstiness in the range of 0.2 – 0.5. As shown in
Table III, the proposed technique has on average 2% and 4%
error compared to cycle-accurate simulations for 6×6 mesh
and 8×8 mesh, respectively. In contrast, the analytical models
presented in [3] and [6] incur significant modeling error.

TABLE III
MODELING ERROR (%) WITH REAL APPLICATIONS

xalan-
cbmk mcf gcc bwaves Gems

FDTD
omnet-
pp

perl-
bench

SYSmark
14se

Prop 2.17 4.97 0.92 0.15 0.38 5.10 3.63 0.73
Ref [3] 14.62 11.99 7.69 12.29 5.18 13.64 11.46 7.256×6

Mesh Ref [6] 17.36 23.29 7.71 22.02 6.99 14.11 12.95 11.13
Prop 3.59 4.08 3.81 4.87 0.44 7.48 3.67 1.10

Ref [3] 10.33 12.73 12.07 22.90 19.17 9.93 5.99 19.048×8
Mesh Ref [6] 12.15 29.99 10.00 19.65 5.44 10.78 14.74 7.94

VI. CONCLUSION

We presented analytical models for priority-aware NoCs
under bursty traffic. We model bursty traffic as generalized ge-
ometric distribution and applied the maximum entropy method
to construct analytical models. Experimental evaluations show
that the proposed technique has less 10% modeling error with
respect to cycle-accurate NoC simulation for real applications.

APPENDIX A

Usage of the proposed analytical models: In this work,
we aim to replace the cycle accurate NoC simulators with
analytical performance models. The full-system simulation
environment keeps track of the traffic injected from processing
cores (e.g. CPU, GPU, caches, memory etc.) to the NoC,
as shown in Figure 6. The proposed technique obtains the
traffic information of processing cores over a time window,
which is in the order of 100-200K cycles in our experiments.
The duration can be decreased if the workload characteristics
change considerably within a window or increased if the
workload is steady. Our simulator estimates the burstiness
of the input and calculates the injection rate of each traffic
class using this information (first two steps in Figure 6).
Then, it applies the proposed analytical models to obtain end-
to-end latency of each traffic class. Whenever a processing
core issues a new transaction, the communication latency
is computed using these models instead of cycle-accurate
simulations. These steps are repeated for each time window.

APPENDIX B

Generalization of the proposed analytical models: We
incorporate Y-X routing algorithm in the experimental eval-
uations presented following the actual reference commercial
hardware design [1]. However, we note that the proposed
approach is independent of the routing algorithm. In fact, the
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Fig. 6. An overview of the proposed approach

TABLE IV
PROBABILITY OF BURSTINESS (pb) FOR DIFFERENT APPLICATIONS.

Apps xalan-
cbmk mcf gcc bwaves Gems-

FDTD
omnet-

pp
perl-
bench

SYSmark-
14se

pb 0.37 0.43 0.26 0.53 0.26 0.18 0.26 0.27

routing algorithm is one of the inputs to the proposed Iterative
Decomposition Algorithm (Algorithm 1).

The analytical models are valid for any type of NoC
including irregular topologies. The analytical models presented
for the canonical queuing system are independent of the
NoC topology. The canonical model constitutes the end-to-end
latency model for a given NoC topology. In fact, NoC topology
is an input to the algorithm which computes the end-to-end
latency (Algorithm 1). Since this work targets general purpose
NoCs used in manycore processors, we evaluate our proposed
model only with Mesh and Ring NoC used in Intel Xeon
server [1], Xeon Phi [17], and quad-core i7 (with integrated
graphics) [18] processors.

APPENDIX C

Results with real application executed on 6×1 ring:
Table IV shows the probability of burstiness of different
applications used in our experiemntal evaluations. The levels
of burstiness exhibited by these applications are between 0.18
and 0.53 re-emphasizing that the chosen levels of burstiness
for evaluation with synthetic traffic in Section V-C are repre-
sentative of real applications.

Table V shows the modeling error with respect to simulation
for 6×1 ring for the proposed approach, the approach pre-
sented in [3] and [6]. The error with proposed analytical model
is always less than 10%. However, the technique presented
in [3] does not take care multiple traffic classes in single
queue resulting up to 24% error with respect to cycle-accurate
simulation. Moreover, the analytical model constructed in [6]
does not incorporate burstiness of the input traffic which
results in upto 28% modeling error.

TABLE V
MODELING ERROR (%) WITH REAL APPLICATIONS

xalan-
cbmk mcf gcc bwaves Gems

FDTD
omnet-
pp

perl-
bench

SYSmark
14se

Prop 5.38 5.48 4.57 6.94 0.31 6.58 9.91 1.20
Ref [3] 24.06 13.20 11.80 19.89 9.79 10.94 13.53 7.746×1

Ring Ref [6] 27.14 17.29 19.35 29.40 12.54 10.74 20.26 10.24
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