

1


Abstract— The GPU as a digital signal processing

accelerator for cloud RAN is investigated. A new design for
a 5G NR low density parity check code decoder running on
a GPU is presented. The algorithm is flexibly adaptable to
GPU architecture to achieve high resource utilization as
well as low latency. It improves over an existing layered
design that processes additional codewords in parallel to
increase utilization. In comparison to a decoder
implemented on a FPGA (757K gate), the new GPU (24
core) decoder has 3 higher throughput. The GPU decoder
exhibits 3 to 5 lower decoding power efficiency, as typical
of a general-purpose processor. Thus, GPUs may find
application as cloud accelerators where rapid deployment
and flexibility are prioritized over decoding power
efficiency.

Index Terms— forward error correction, LDPC, 5G wireless,
graphics processors

I. INTRODUCTION

loud radio access networks (RAN) facilitate the rapid
development and deployment of new features while
reducing the overall cost of ownership [1][2]. This is

enabled by network virtualization, resource pooling, and lower
cost development due to common-off-the-shelf hardware.
Graphical processing units (GPUs) are typical in cloud
computing and are used as accelerators for many applications.
GPUs are characterized by high floating-point computation rate
and high memory bandwidth to feed those execution cores.
Field programmable gate arrays (FPGAs) are also candidates
for programmable cloud acceleration. A comparative study [3]
found that certain algorithms run faster and more cost
effectively on the GPU.

The upper layers of the RAN stack are currently implemented
on general purpose processors. An open issue is the
effectiveness of cloud computing with GPU acceleration for the
lower layers. One of the salient requirements of 5G is low
latency. This puts stringent demands on algorithm design as
hardware resources are limited and predefined. In this study
we focus on the acceleration of 5G NR forward error correction
low density parity check code (LDPC) [4] as this function
consumes nearly half of the total uplink processing cycles.

Clearly GPUs excel at graphics acceleration and machine
learning, but their application to digital signal processing isn’t
firmly established. Digital signal processing is often performed
in fixed point to minimize cost and power and on smaller word
sizes, e.g. 8 bits vs. typical 32 bits. On Nvidia GPUs small word
sizes are supported by specialized single-instruction-multiple-

data (SIMD) “video” instructions that operate on packed 32-bit
word, processing up to four 8-bit instructions in parallel. These
video instructions were utilized by researchers to develop a high
throughput decoder [5]. Recent GPU architecture has changed
such that these instructions are now emulated by up to 10
instructions, and in fact some key primitives required by the
decoder are not provided. An interesting tradeoff is support for
vector processing of two packed 16-bit floating point quantities.

Another challenge is related to the threads needed to hide
pipeline latency. For example, 256 threads on the Pascal
architecture and 128 threads on Volta/Tesla/Ampere
architecture are necessary to hide basic arithmetic latency in a
single streaming-multiprocessor (SM) core. This minimum
level of parallelism must be expressible in the algorithm
otherwise there will be resource underutilization.

A related challenge is to fit an algorithm’s working set into
local memory. Coarse grained parallelization of independent
jobs increases memory and bandwidth requirements. The L1
and L2 caches in the GPU are small and access to main memory
is on order of hundreds of cycles. Depending on the shared
memory requirements, algorithms may need be re-worked to
obtain additional parallelism, applying more threads to the same
set of data, rather than simply increasing independent workload.

In this letter we describe techniques needed to reduce the
latency of the forward error correction decoder for a 5G NR
cloud base station. We flexibly exploit additional parallelism
to improve the standard layered decoder. Fixed-point SIMD
primitives to improve accelerator performance are described.
Latency, throughput, power, and power efficiency are
investigated and compared to an FPGA design [6].
 The remainder of this letter is organized as follows: In
Section II we provide the context of this study: a 5G system
model for cloud RAN and the uplink processing chain. In
Section III, we review belief propagation decoding and its
implementations. In Section IV we describe our innovations to
GPU LDPC decoding. In Section V performance
measurements are presented and discussed. The summary and
final remarks are found in the Conclusion.

II. 5G SYSTEM MODEL

Figure 1 illustrates the architecture of a typical cloud RAN
deployment [7]. The gNB is split into two components the CU
and DU. The CU contains the upper SDAP and PDCP layers,
while the DU contains the lower RLC, MAC, and PHY layers.
A second low split point in the DU has been defined [8]. ORAN
has specified a 7.2 split while a 7.3 split with its lower front-
haul requirements is also prevalent.

Timing requirements for uplink processing in 4G are

 Fast LDPC GPU Decoder for Cloud RAN

Jonathan Ling and Paul Cautereels

C

2

determined by the hybrid-automatic-repeat-request (HARQ)
process. An ACK/NACK from an FDD uplink reception must
be send 4 ms later. This leaves 2 ms for uplink processing.
Whereas for 5G preferably decoding should be completed
within one slot, which may take values between 250 μS to 1 ms
according to the parameter μ.

Figure 1 Cloud RAN architecture & placement.

3GPP has defined quasi-cyclic irregular LDPC codes for data
channels. Two base graphs are specified, that is BG1 and BG2.
Various length codewords are achieved through the lifting
factor Z, which defines the submatrix size in the parity check
matrix HBG [9]. The number of code word information bits is
K=ZKb, where Kb is the number of information base graph
columns. The code rate, defined as the ratio of information bits
to the total number of code bits is R=K/Nc. R controls the error
correcting capability, and different rates are achieved by
specifying a certain number of basegraph rows. For a base
graph with Mbg rows, then the total number of coded bits
Nc=Z(Kb+Mbg). To improve performance the first two
information columns are punctured, i.e. not transmitted, and are
fully recovered by decoding [4]. Rows within the submatrix Zm
are independent and can be performed in parallel.

III. BELIEF PROPAGATION DECODING

 LDPC codes may be efficiently decoded by a soft-decision
belief propagation algorithm. The Tanner graph is a useful
representation where an edge from the variable node to check
node corresponds to a “1” in the parity check matrix H, as
shown in Figure 2. The number of edges from a variable node
corresponds to the column weight wc, i.e. number of 1s in a
column. Whereas the number of edges entering a check node
corresponding to the row weight wr, i.e. the number of 1s in a
row. The Tanner graph also illustrates the decoding processes
as the “messages” from variable-to-check nodes and check-to-
variable nodes may be interpreted as probabilities. The check
node equation produces the belief of a variable node given all
the other input variable nodes. Let i take values from 1 to wr(r)
to index the set of columns involved in row r. Processing each
at the check nodes is given by

𝐿௖→௩
௜ = ෍⊞ 𝐿௩→௖

௝
 ∀𝑗 ≠ 𝑖

 =2tanhିଵ ൬∏ tanh ൬
௅ೡ→೎

ೕ

ଶ
൰൰ .

where ⊞ denotes the xor operation. The min-sum
approximation [10] simplifies the xor sum to

𝐿௖→௩
௜ ≈ 𝛽min൫ห𝐿௩→௖

௝
ห൯ ෑ sgn൫𝐿௩→௖

௝
൯ ∀𝑗 ≠ 𝑖

where β is a correction factor. Let index k index a set of rows
involved in the column v. The variable node log-likelihood-
ratio (LLR) is:

𝐿௩ = 𝐿௕ + ෍ 𝐿௖→௩
௞

௪೎(௩)

௞ୀଵ

where Lb is the bit LLR obtained from the symbol-to-bit de-
mapper. The next iterations’ variable-to-check messages are
found by:

𝐿௩→௖
௜ = 𝐿௩

௜ − 𝐿௖→௩
௜ .

Iterations continue until a valid codeword is found or the
maximum number of iterations is reached. After decoding the
CRC check verifies the message correctness.

The flooding belief propagation decoder evaluates all parity
check equations in parallel despite their dependencies.
Alternatively, the horizontal layered decoder processes parity
check equations one row at a time, feeding results from one
dependent row to the next. As compared to the flooding
decoder, memory requirements are reduced, and the number of
iterations is approximately halved.

The parallelism in the flooding and that provided by the GPU
appeared to be a natural fit [11]. Despite the apparent lack of
parallelism, the layered decoder was found to be much faster
than the flooding decoder on a GPU [5], probably due to the
reduced memory required. Applying this result, we focus our
investigation on the implementation a layered decoder for 5G
cloud RAN.

Figure 2. Tanner graph decoder structure for a LDPC code with
parity check matrix H.

IV. GPU IMPLEMENTATION STRATEGIES

The primary source of parallelism in the 5G NR LDPC is
specified by the lifting factor Z. From Section III, it may be
observed that the layered processing executes on one row at a
time, with amount of work proportional to wr(r). It appears that
the algorithm is sequential so that “exploitation of intraframe
computation parallelism is quite impossible” [5]. Accordingly,
this design now assigns one row per thread, and each thread
works on wr(r) columns. However, by SIMD instructions the
GPU can process 16-bit floating point, or 8-bit fixed point
yielding ρ=2 or ρ=4 rows in parallel respectively. The high-
throughput strategy thus engages

Nthread= ρ -1Z
threads. Assuming a single codeword is processed per SM,
ρ=4, then 1Nthread 96. which is clearly much less than optimal
(at best 75% of the minimum on Turing architecture).

The storage size of Lv may be calculated as Sv= εNc (bytes)
where ε is the number of bytes per LLR. For 8-bit LLRs and
BG1 Sv

MAX is 26 kB per codeword. For 16-bit LLRs Sv
MAX is

52 kB bytes. Storage for 𝐿௖→௩ may be calculated as

𝑆௖→௩=ε𝑍 ∑ 𝑤௖(𝑟)
ெౘౝ

௥ୀଵ (bytes). 𝑆௖→௩
ெ஺௑ is 121 kB for 8-bit LLRs,

and 242 kB for 16-bit LLRs. For the larger code words both Lv
and 𝐿௖→௩ cannot fit in shared memory (64 kbytes Turing). One

3

strategy is to keep Lv in shared memory while placing 𝐿௖→௩ in
main memory. The messages are needed less frequently and
can be preloaded.

Attempting to improve utilization by processing an
additional codeword doubles shared memory usage. Lv might
fit into shared memory but now reading and writing the
messages 𝐿௖→௩ to main memory, i.e. memory bandwidth,
becomes the limiting factor. Due to either the shared memory
size and/or memory bandwidth, the high-throughput strategy
cannot be used to increase utilization. This motivates us to
search for additional avenues for parallelism.

We observe that that column processing is fully independent
except for finding the min, and submin, and sign across all
columns. These non-parallelizable steps can be performed
partially in parallel by a technique called parallel reduce, which
performs an n step algorithm in log2(n) steps. The GPU has a
programming paradigm called cooperative groups and special
instructions to efficiently shuffle data between the threads
within a warp. For BG1 the available parallelization varies
between 3 and 19, but the number of threads α in a cooperative
group but must be factor of 2 for full efficiency. This means
that α threads processes up to ⌈𝑤r(𝑟)/α⌉ columns. Each thread
processes ρ rows at a time, and the number of columns per
thread may not be uniform. Therefore, a low-latency strategy
engages a total of

Nthread = (α/ρ)Z
threads. α can be adjusted according to Z, to keep utilization
high. This strategy flexibly breaks up work over a cooperative
thread group to reduce the latency of a single codeword. In
contrast the high-throughput strategy only decodes additional
codewords with additional threads. The high-throughput
strategy yields fixed latency regardless of code size Z. Whereas
latency increases with Z for the low-latency strategy. This may
be especially helpful in decoding short packets for 5G ultra-low
latency applications.

In more detail, first, up to ⌈𝑤r(𝑟)/α⌉ elements of the LLRs
Lv and previous Lcv are loaded from memory. 𝐿௩→௖ is
computed. Four intermediate quantities: min, sub-min,
message sign, and variable sign, are computed. These are
defined as:

𝑚ଵ = min൫ห𝐿௩→௖
௜ ห൯ ∀𝑖

𝑚ଶ = min൫ห𝐿௩→௖
௜ ห൯ ∀𝑖 ≠ argmin(ห𝐿௩→௖ห)

𝑠௩→௖ = ∏sign(𝐿௩→௖
௜) ∀𝑖

𝑠௩ = ∏ sign(𝐿௩
௜) ∀𝑖

where i take values from 1 to wr(r) to index the set of columns
C involved in row r. They are computed first per thread, and
then across threads by parallel reduce in log2(α) steps. Figure 3
illustrates for block of α=4 cooperating threads, which start with
intermediate values, and to return the same final value to all
threads.

Figure 3. Parallel reduce and m1 m2 calculation block.

During the reduce phase, inside the operations block of Figure
3, m1 and m2 are computed by two ordering and a single
selection operation. An ordering intrinsic was devised to
minimize cycle count. For 8-bit LLRs packed into 32-bit word,
the pseudo “C” code is:

[min, max] = ordVec8(uint32_t a, uint32_t b)

uint32_t mask = __vcmpltu4(a, b)
min = (mask & a) | (~mask & b)
max = (~mask & a) | (mask & b)

where vcmplte4u is a CUDA intrinsic that does vector
comparison using 4 assembly instructions. The last two lines
are translated into single LOP3 assembly instruction each.
Thus ordVec8 takes 6 assembly instructions. For half precision
16-bit LLRs packed into a 32-bit word the pseudo “C” code is:

[min, max] = ordVec16(uint32_t a, uint32_t b)

uint32_t ans
asm("{set.le.f16x2.f16x2 %0,%1,%2;\n}"

: "=r" (ans) : "r" (a) , "r" (b));
 ans = ans << 2

asm ("prmt.b32 %0,%1,0,0xbb99;" :
"=r" (mask) : "r" (ans))

 min = (mask & a) | (~mask & b)
max = (~mask & a) | (mask & b)

where set.le.f16x2.f16x2 performs the vectorized comparison
and prmt.b32 generates a mask from the upper word bits.
ordVec16 consists of 1 floating point instruction and 4 integer
instructions. Thus, ten instructions, i.e. +67%, are needed to
produce the same number of results as ordVec8.

V. PERFORMANCE RESULTS

The performance of the low-latency (LL) GPU decoder with
α is set to 4 is compared to a FPGA decoder [6] given metrics
of latency, throughput, power and decoding power efficiency.
The FPGA decoder was built on a moderate sized FPGA with
747K logic cells, consuming ½ the area. The layered GPU
decoder was tested on a consumer grade mid-sized GTX1660
with TU116-400 chip with an observed a boost clock speed of
1995 MHz and a total of 24 SMs.

A. Latency and Throughput

 The latency of the GPU and FPGA decoders are compared in
Table 1, along with a flooding GPU decoder [6]. All GPU
decoders exhibit much higher latency. The GPU while a vector
processor, still incus excess latency that is typical of general-
purpose processors due to the need to move intermediate data

4

between registers vs. the customized pipeline of the FPGA. As
shown in Section IV, the principal operation in finding m1 and
m2, is a SIMD ordering function that requires multiple assembly
instructions. Nonetheless the low-latency decoders meet our
eMBB decoding target of 500 μS at 10 iterations. The fact that
the flooding GPU decoder has 30 latency of LL-INT
highlights both the importance and difficulties in tailoring an
algorithm to the GPU’s architecture.
 Throughput is given in Table 2, and the situation changes
dramatically where the LL-INT GPU decoder is about 3 the
throughput of the FPGA. To obtain the FPGA throughput, we
assume full utilization of logic area and 20 iterations. On the
GPU all SMs were engaged running the integer decoder
whereas only half of the SMs could be engaged running the
float decoder. This is because the messages need to be loaded
from external memory, and at exactly ½ the number of SMs the
chip runs out of bandwidth. Attempting further loading of SMs
increases latency substantially. The processing rate is about the
same for other code rates such as R=1/3.

 FPGA
Flooding

GPU
Flooding

GPU
LL-INT

GPU
LL-FP

BG1
R=1/3

8.5 μS* 1040*
μS

35 μS 40 μS

BG2
R=1/5

6.2 μS* 660 μS* 27 μS 30 μS

Table 1. Maximum latency for different decoders per iteration
(* per two iterations).

 FPGA GPU
LL-INT

GPU
LL-FP

BG1 R=1/2 0.6 Gcbs 1.8 Gcbps .9 Gcbs
Table 2. Throughput in giga-coded-bps per chip.

B. Power Efficiency

GPU power measurements were taken using the nvidia-smi
utility. There is high base power of about 40 watts, and much
smaller incremental power per SM. Interestingly when LL-INT
decoder runs completely in shared memory, per SM power is
70% lower. Combining the power measurements with the
throughput to obtain power efficiency yields 80 Mcb/J for
FPGA, and 27 to 15 Mcb/J for GPU. Thus, the FPGA is 3 to
5 more power efficient than the GPU.

 FPGA

(W/instance)
GPU

(W/SM)
Z=384 R=1/3 7.5 3.5 + 1.6 base
Z=128 R=1/3 - 1.2 + 1.6 base

Table 3: Measured power for FPGA and GPU decoders.

VI. CONCLUSION

A new low latency design strategy has been presented that
exploits additional parallelism in the decoding process. Our
design solves the problem of underutilization of resources while
maintaining the same memory working set. Overall throughput
is quite good as compared to an FPGA implementation. We
note that GPU architecture is continuously being improved.

Instruction set changes as well as increases in cache and
memory bandwidth will continue to improve throughput and
power efficiency. Yet, programmable and fixed accelerators
will retain their power efficiency. Most likely the cloud RAN
will contain a mixture of accelerators, as economics and
deployment flexibility dictate.

REFERENCES

1. “Suggestions on Potential Solutions to C-RAN by
NGMN Alliance,” The Next Generation Mobile
Networks Alliance, January 2013.
https://www.ngmn.org/publications/suggestions-on-
potential-solutions-to-c-ran.html

2. Haberland, B., Derakhshan, F., Grob‐Lipski, H.,
Klotsche, R., Rehm, W., Schefczik, P. and Soellner,
M. (2013), Radio Base Stations in the Cloud. Bell
Labs Tech. J., 18: 129-152. doi:10.1002/bltj.21596

3. J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu and S. Zhang,
"Understanding Performance Differences of FPGAs
and GPUs," Proc of IEEE FCCM, 2018, pp. 93-96.

4. T. Richardon, and S. Kudekar, “Design of low-density
parity check codes for 5G new radio,” IEEE
Communications Magazine, March 2018.

5. B. Le Gal, C. Jego, and J. Crenne, “A High
Throughput Efficient Approach for Decoding LDPC
Codes onto GPU Devices”, IEEE Embedded Systems
Letters, Vol 6, No. 2, June 2014.

6. A. Aronov, L. Kazakevich, J. Mack, F. Schreider and
S. Newton, "5G NR LDPC Decoding Performance
Comparison between GPU & FPGA Platforms," Proc.
of IEEE LISAT, Farmingdale, NY, USA, 2019

7. NG-RAN: Architecture Description (Release 15),
V15.0.0, 3GPP Standard TS.38.401, Dec. 2017.

8. “Study on new radio access technology: Radio access
architecture and interfaces, V14.0.0 (2017–03),”
3GPP, Sophia Antipolis, France, Rep. TR 38.801,
2017

9. 3GPP TS 38.212 “Multiplexing and channel coding”
10. Jinghu Chen and M. P. C. Fossorier, "Near optimum

universal belief propagation based decoding of low-
density parity check codes," in IEEE Trans. on
Communications, March 2002.

11. G. Falcao, L. Sousa, and V. Silva, “Massively LDPC
decoding on multicore architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 2, pp. 309–322,
2011.

