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Abstract— The GPU as a digital signal processing 

accelerator for cloud RAN is investigated.  A new design for 
a 5G NR low density parity check code decoder running on 
a GPU is presented.  The algorithm is flexibly adaptable to 
GPU architecture to achieve high resource utilization as 
well as low latency.  It improves over an existing layered 
design that processes additional codewords in parallel to 
increase utilization.  In comparison to a decoder 
implemented on a FPGA (757K gate), the new GPU (24 
core) decoder has 3 higher throughput.  The GPU decoder 
exhibits 3 to 5 lower decoding power efficiency, as typical 
of a general-purpose processor.  Thus, GPUs may find 
application as cloud accelerators where rapid deployment 
and flexibility are prioritized over decoding power 
efficiency.   
 

Index Terms— forward error correction, LDPC, 5G wireless, 
graphics processors  

I. INTRODUCTION 

loud radio access networks (RAN) facilitate the rapid 
development and deployment of new features while 
reducing the overall cost of ownership [1][2].  This is 

enabled by network virtualization, resource pooling, and lower 
cost development due to common-off-the-shelf hardware.  
Graphical processing units (GPUs) are typical in cloud 
computing and are used as accelerators for many applications.  
GPUs are characterized by high floating-point computation rate 
and high memory bandwidth to feed those execution cores.  
Field programmable gate arrays (FPGAs) are also candidates 
for programmable cloud acceleration.   A comparative study [3] 
found that certain algorithms run faster and more cost 
effectively on the GPU.   

The upper layers of the RAN stack are currently implemented 
on general purpose processors.  An open issue is the 
effectiveness of cloud computing with GPU acceleration for the 
lower layers.  One of the salient requirements of 5G is low 
latency.  This puts stringent demands on algorithm design as 
hardware resources are limited and predefined.   In this study 
we focus on the acceleration of 5G NR forward error correction 
low density parity check code (LDPC) [4] as this function 
consumes nearly half of the total uplink processing cycles.   

Clearly GPUs excel at graphics acceleration and machine 
learning, but their application to digital signal processing isn’t 
firmly established.  Digital signal processing is often performed 
in fixed point to minimize cost and power and on smaller word 
sizes, e.g. 8 bits vs. typical 32 bits.  On Nvidia GPUs small word 
sizes are supported by specialized single-instruction-multiple-

 
 

data (SIMD) “video” instructions that operate on packed 32-bit 
word, processing up to four 8-bit instructions in parallel.  These 
video instructions were utilized by researchers to develop a high 
throughput decoder [5].  Recent GPU architecture has changed 
such that these instructions are now emulated by up to 10 
instructions, and in fact some key primitives required by the 
decoder are not provided.  An interesting tradeoff is support for 
vector processing of two packed 16-bit floating point quantities.   

Another challenge is related to the threads needed to hide 
pipeline latency.  For example, 256 threads on the Pascal 
architecture and 128 threads on Volta/Tesla/Ampere 
architecture are necessary to hide basic arithmetic latency in a 
single streaming-multiprocessor (SM) core.  This minimum 
level of parallelism must be expressible in the algorithm 
otherwise there will be resource underutilization.  

A related challenge is to fit an algorithm’s working set into 
local memory. Coarse grained parallelization of independent 
jobs increases memory and bandwidth requirements.  The L1 
and L2 caches in the GPU are small and access to main memory 
is on order of hundreds of cycles.  Depending on the shared 
memory requirements, algorithms may need be re-worked to 
obtain additional parallelism, applying more threads to the same 
set of data, rather than simply increasing independent workload. 

In this letter we describe techniques needed to reduce the 
latency of the forward error correction decoder for a 5G NR 
cloud base station.  We flexibly exploit additional parallelism 
to improve the standard layered decoder.  Fixed-point SIMD 
primitives to improve accelerator performance are described.  
Latency, throughput, power, and power efficiency are 
investigated and compared to an FPGA design [6]. 
 The remainder of this letter is organized as follows:  In 
Section II we provide the context of this study: a 5G system 
model for cloud RAN and the uplink processing chain.  In 
Section III, we review belief propagation decoding and its 
implementations.  In Section IV we describe our innovations to 
GPU LDPC decoding.  In Section V performance 
measurements are presented and discussed.  The summary and 
final remarks are found in the Conclusion.   

II. 5G SYSTEM MODEL 

Figure 1 illustrates the architecture of a typical cloud RAN 
deployment [7].  The gNB is split into two components the CU 
and DU.  The CU contains the upper SDAP and PDCP layers, 
while the DU contains the lower RLC, MAC, and PHY layers.  
A second low split point in the DU has been defined [8].  ORAN 
has specified a 7.2 split while a 7.3 split with its lower front-
haul requirements is also prevalent. 

Timing requirements for uplink processing in 4G are 
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determined by the hybrid-automatic-repeat-request (HARQ) 
process. An ACK/NACK from an FDD uplink reception must 
be send 4 ms later.  This leaves 2 ms for uplink processing.  
Whereas for 5G preferably decoding should be completed 
within one slot, which may take values between 250 μS to 1 ms 
according to the parameter μ. 

 
Figure 1  Cloud RAN architecture & placement. 

3GPP has defined quasi-cyclic irregular LDPC codes for data 
channels.  Two base graphs are specified, that is BG1 and BG2.  
Various length codewords are achieved through the lifting 
factor Z, which defines the submatrix size in the parity check 
matrix HBG [9].  The number of code word information bits is 
K=ZKb, where Kb is the number of information base graph 
columns.  The code rate, defined as the ratio of information bits 
to the total number of code bits is R=K/Nc.  R controls the error 
correcting capability, and different rates are achieved by 
specifying a certain number of basegraph rows.  For a base 
graph with Mbg rows, then the total number of coded bits 
Nc=Z(Kb+Mbg).  To improve performance the first two 
information columns are punctured, i.e. not transmitted, and are 
fully recovered by decoding [4].  Rows within the submatrix Zm 
are independent and can be performed in parallel.   

III. BELIEF PROPAGATION DECODING 

 LDPC codes may be efficiently decoded by a soft-decision 
belief propagation algorithm.  The Tanner graph is a useful 
representation where an edge from the variable node to check 
node corresponds to a “1” in the parity check matrix H, as 
shown in Figure 2.  The number of edges from a variable node 
corresponds to the column weight wc, i.e. number of 1s in a 
column.  Whereas the number of edges entering a check node 
corresponding to the row weight wr, i.e. the number of 1s in a 
row.  The Tanner graph also illustrates the decoding processes 
as the “messages” from variable-to-check nodes and check-to-
variable nodes may be interpreted as probabilities.  The check 
node equation produces the belief of a variable node given all 
the other input variable nodes.  Let i take values from 1 to wr(r) 
to index the set of columns involved in row r. Processing each 
at the check nodes is given by 

𝐿 → = ⊞ 𝐿 →  ∀𝑗 ≠ 𝑖 

                     =2tanh ∏ tanh →  . 

where ⊞ denotes the xor operation.  The min-sum 
approximation [10] simplifies the xor sum to 

𝐿 → ≈ 𝛽min 𝐿 → sgn 𝐿 →    ∀𝑗 ≠ 𝑖 

where β is a correction factor.  Let index k index a set of rows 
involved in the column v.  The variable node log-likelihood-
ratio (LLR) is: 

𝐿 = 𝐿 + 𝐿 →

( )

  

where Lb is the bit LLR obtained from the symbol-to-bit de-
mapper. The next iterations’ variable-to-check messages are 
found by: 

𝐿 → = 𝐿 − 𝐿 →  . 
Iterations continue until a valid codeword is found or the 
maximum number of iterations is reached.  After decoding the 
CRC check verifies the message correctness. 

The flooding belief propagation decoder evaluates all parity 
check equations in parallel despite their dependencies.  
Alternatively, the horizontal layered decoder processes parity 
check equations one row at a time, feeding results from one 
dependent row to the next.  As compared to the flooding 
decoder, memory requirements are reduced, and the number of 
iterations is approximately halved.   

The parallelism in the flooding and that provided by the GPU 
appeared to be a natural fit [11].  Despite the apparent lack of 
parallelism, the layered decoder was found to be much faster 
than the flooding decoder on a GPU [5], probably due to the 
reduced memory required.  Applying this result, we focus our 
investigation on the implementation a layered decoder for 5G 
cloud RAN. 

  
Figure 2. Tanner graph decoder structure for a LDPC code with 
parity check matrix H. 

IV. GPU IMPLEMENTATION STRATEGIES 

The primary source of parallelism in the 5G NR LDPC is 
specified by the lifting factor Z.  From Section III, it may be 
observed that the layered processing executes on one row at a 
time, with amount of work proportional to wr(r).  It appears that 
the algorithm is sequential so that “exploitation of intraframe 
computation parallelism is quite impossible” [5].  Accordingly, 
this design now assigns one row per thread, and each thread 
works on wr(r) columns.  However, by SIMD instructions the 
GPU can process 16-bit floating point, or 8-bit fixed point 
yielding ρ=2 or ρ=4 rows in parallel respectively.  The high-
throughput strategy thus engages 

Nthread= ρ -1Z 
threads.  Assuming a single codeword is processed per SM, 
ρ=4, then 1Nthread 96. which is clearly much less than optimal 
(at best 75% of the minimum on Turing architecture). 

The storage size of Lv may be calculated as Sv= εNc (bytes) 
where ε is the number of bytes per LLR.  For 8-bit LLRs and 
BG1 Sv

MAX is 26 kB per codeword.  For 16-bit LLRs Sv
MAX is 

52 kB bytes.  Storage for 𝐿 →  may be calculated as 

𝑆 → =ε𝑍 ∑ 𝑤 (𝑟) (bytes).  𝑆 →  is 121 kB for 8-bit LLRs, 
and 242 kB for 16-bit LLRs.  For the larger code words both Lv 
and 𝐿 →  cannot fit in shared memory (64 kbytes Turing).   One 
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strategy is to keep Lv in shared memory while placing 𝐿 →  in 
main memory.  The messages are needed less frequently and 
can be preloaded.  

Attempting to improve utilization by processing an 
additional codeword doubles shared memory usage.  Lv might 
fit into shared memory but now reading and writing the 
messages 𝐿 →  to main memory, i.e. memory bandwidth, 
becomes the limiting factor.  Due to either the shared memory 
size and/or memory bandwidth, the high-throughput strategy 
cannot be used to increase utilization.  This motivates us to 
search for additional avenues for parallelism. 

We observe that that column processing is fully independent 
except for finding the min, and submin, and sign across all 
columns.  These non-parallelizable steps can be performed 
partially in parallel by a technique called parallel reduce, which 
performs an n step algorithm in log2(n) steps.  The GPU has a 
programming paradigm called cooperative groups and special 
instructions to efficiently shuffle data between the threads 
within a warp.  For BG1 the available parallelization varies 
between 3 and 19, but the number of threads α in a cooperative 
group but must be factor of 2 for full efficiency.  This means 
that α threads processes up to ⌈𝑤r(𝑟)/α⌉ columns.  Each thread 
processes ρ rows at a time, and the number of columns per 
thread may not be uniform.  Therefore, a low-latency strategy 
engages a total of   

Nthread = (α/ρ)Z 
threads.  α can be adjusted according to Z, to keep utilization 
high.   This strategy flexibly breaks up work over a cooperative 
thread group to reduce the latency of a single codeword.  In 
contrast the high-throughput strategy only decodes additional 
codewords with additional threads.  The high-throughput 
strategy yields fixed latency regardless of code size Z.  Whereas 
latency increases with Z for the low-latency strategy.  This may 
be especially helpful in decoding short packets for 5G ultra-low 
latency applications.  

In more detail, first, up to ⌈𝑤r(𝑟)/α⌉ elements of the LLRs 
Lv and previous Lcv are loaded from memory.  𝐿 →  is 
computed.  Four intermediate quantities:  min, sub-min, 
message sign, and variable sign, are computed.  These are 
defined as: 

𝑚 = min 𝐿 →    ∀𝑖 

𝑚 = min 𝐿 →    ∀𝑖 ≠ argmin( 𝐿 → )  

𝑠 → = ∏sign(𝐿 → )   ∀𝑖 

𝑠 = ∏ sign(𝐿 )     ∀𝑖 

where i take values from 1 to wr(r) to index the set of columns 
C involved in row r.  They are computed first per thread, and 
then across threads by parallel reduce in log2(α) steps.  Figure 3 
illustrates for block of α=4 cooperating threads, which start with 
intermediate values, and to return the same final value to all 
threads.       

 

Figure 3. Parallel reduce and m1 m2 calculation block. 

During the reduce phase, inside the operations block of Figure 
3, m1 and m2 are computed by two ordering and a single 
selection operation.  An ordering intrinsic was devised to 
minimize cycle count.   For 8-bit LLRs packed into 32-bit word, 
the pseudo “C” code is: 

[min, max ] = ordVec8(uint32_t a, uint32_t b)   

uint32_t mask = __vcmpltu4( a, b) 
min = ( mask & a) | (~mask & b) 
max = (~mask & a) | ( mask & b)  

where vcmplte4u is a CUDA intrinsic that does vector 
comparison using 4 assembly instructions.  The last two lines 
are translated into single LOP3 assembly instruction each.  
Thus ordVec8 takes 6 assembly instructions.  For half precision 
16-bit LLRs packed into a 32-bit word the pseudo “C” code is: 

[min, max ] = ordVec16(uint32_t a, uint32_t b)    

uint32_t  ans 
asm( "{set.le.f16x2.f16x2 %0,%1,%2;\n}"  

: "=r" (ans) : "r" (a) , "r" (b) ); 
 ans = ans << 2 

asm ("prmt.b32 %0,%1,0,0xbb99;" :  
"=r" (mask) : "r" (ans)) 

 min = (mask & a) | (~mask & b) 
max = (~mask & a) | (mask & b) 

where set.le.f16x2.f16x2 performs the vectorized comparison 
and prmt.b32 generates a mask from the upper word bits.  
ordVec16 consists of 1 floating point instruction and 4 integer 
instructions.  Thus, ten instructions, i.e. +67%, are needed to 
produce the same number of results as ordVec8. 

V. PERFORMANCE RESULTS 

The performance of the low-latency (LL) GPU decoder with 
α is set to 4 is compared to a FPGA decoder [6] given metrics 
of latency, throughput, power and decoding power efficiency.  
The FPGA decoder was built on a moderate sized FPGA with 
747K logic cells, consuming ½ the area.  The layered GPU 
decoder was tested on a consumer grade mid-sized GTX1660 
with TU116-400 chip with an observed a boost clock speed of 
1995 MHz and a total of 24 SMs.    

A. Latency and Throughput 

 The latency of the GPU and FPGA decoders are compared in 
Table 1, along with a flooding GPU decoder [6].  All GPU 
decoders exhibit much higher latency.  The GPU while a vector 
processor, still incus excess latency that is typical of general-
purpose processors due to the need to move intermediate data 
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between registers vs. the customized pipeline of the FPGA.  As 
shown in Section IV, the principal operation in finding m1 and 
m2, is a SIMD ordering function that requires multiple assembly 
instructions.  Nonetheless the low-latency decoders meet our 
eMBB decoding target of 500 μS at 10 iterations.  The fact that 
the flooding GPU decoder has 30 latency of LL-INT 
highlights both the importance and difficulties in tailoring an 
algorithm to the GPU’s architecture. 
 Throughput is given in Table 2, and the situation changes 
dramatically where the LL-INT GPU decoder is about 3 the 
throughput of the FPGA.  To obtain the FPGA throughput, we 
assume full utilization of logic area and 20 iterations.  On the 
GPU all SMs were engaged running the integer decoder 
whereas only half of the SMs could be engaged running the 
float decoder.  This is because the messages need to be loaded 
from external memory, and at exactly ½ the number of SMs the 
chip runs out of bandwidth.  Attempting further loading of SMs 
increases latency substantially.  The processing rate is about the 
same for other code rates such as R=1/3. 
 

 FPGA 
Flooding 

GPU  
Flooding 

GPU  
LL-INT 

GPU  
LL-FP 

BG1 
R=1/3 

8.5 μS* 1040* 
μS 

35 μS 40 μS 

BG2 
R=1/5  

6.2 μS* 660 μS* 27 μS 30 μS 

Table 1. Maximum latency for different decoders per iteration 
(* per two iterations). 
 

 FPGA GPU  
LL-INT 

GPU  
LL-FP 

BG1 R=1/2  0.6 Gcbs 1.8 Gcbps .9 Gcbs 
Table 2. Throughput in giga-coded-bps per chip. 

B. Power Efficiency 

GPU power measurements were taken using the nvidia-smi 
utility.  There is high base power of about 40 watts, and much 
smaller incremental power per SM.  Interestingly when LL-INT 
decoder runs completely in shared memory, per SM power is 
70% lower.  Combining the power measurements with the 
throughput to obtain power efficiency yields 80 Mcb/J for 
FPGA, and 27 to 15 Mcb/J for GPU.  Thus, the FPGA is 3 to 
5 more power efficient than the GPU. 

 
 FPGA 

(W/instance) 
GPU 

(W/SM) 
Z=384 R=1/3 7.5 3.5 + 1.6 base 
Z=128 R=1/3 - 1.2 + 1.6 base 

Table 3:  Measured power for FPGA and GPU decoders. 

VI. CONCLUSION 

A new low latency design strategy has been presented that 
exploits additional parallelism in the decoding process.  Our 
design solves the problem of underutilization of resources while 
maintaining the same memory working set.  Overall throughput 
is quite good as compared to an FPGA implementation.  We 
note that GPU architecture is continuously being improved.  

Instruction set changes as well as increases in cache and 
memory bandwidth will continue to improve throughput and 
power efficiency.  Yet, programmable and fixed accelerators 
will retain their power efficiency.  Most likely the cloud RAN 
will contain a mixture of accelerators, as economics and 
deployment flexibility dictate.     
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