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DAS: Dynamic Adaptive Scheduling for
Energy-Efficient Heterogeneous SoCs

A. Alper Goksoy, Anish Krishnakumar, Md Sahil Hassan, Allen J. Farcas,
Ali Akoglu, Radu Marculescu, and Umit Y. Ogras

Abstract—Domain-specific systems-on-chip (DSSoCs) aim at
bridging the gap between application-specific integrated circuits
(ASICs) and general-purpose processors. Traditional operating
system (OS) schedulers can undermine the potential of DSSoCs
since their execution times can be orders of magnitude larger
than the execution time of the task itself. To address this problem,
we propose a dynamic adaptive scheduling (DAS) framework that
combines the benefits of a fast (low-overhead) scheduler and a
slow (sophisticated, high-performance but high-overhead) scheduler.
Experiments with five real-world streaming applications show that
DAS consistently outperforms both the fast and slow schedulers.
For 40 different workloads, DAS achieves on average 1.29× speedup
and 45% lower EDP compared to the sophisticated scheduler at
low data rates and 1.28× speedup and 37% lower EDP than the
fast scheduler when the workload complexity increases.

Index Terms—Domain-specific SoC (DSSoC), machine learning,
scheduling, runtime classification, policy switching.

I. INTRODUCTION

Heterogeneous systems-on-chip (SoCs), such as Samsung
Exynos and Nvidia® Xavier™, combine the flexibility benefits of
general-purpose cores with the energy efficiency and performance
of custom designs. An emerging example is domain-specific
SoCs, which integrate hardware accelerators targeting the
commonly encountered tasks (i.e., computational kernels) in the
target domain [1].

DSSoCs present a new challenge to the classical scheduling
problem due to their specialized pipelines that run domain-specific
tasks in the order of nanoseconds, i.e., orders of magnitude
faster than general-purpose cores [1]. Hence, achieving high
performance with DSSoCs requires task scheduling algorithms
that can execute in the order of nanoseconds. Fast and
low-overhead scheduling is an effective way to minimizing
performance and energy consumption overheads. However, while
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enabling fast decision-making, simple schedulers can make poor
scheduling decisions, especially under heavy workloads.

At low data rates, a low-overhead (fast) scheduler outperforms
a more sophisticated scheduler due to the simplicity of the
scheduling problem. The number of concurrent tasks and the
complexity of scheduling decisions grow with the data rate (heavy
workload). Consequently, the overhead of making better decisions
pays off, i.e., the sophisticated scheduler starts outperforming the
simple one. Hence, there is an opportunity to exploit the tradeoff
between the scheduling overhead and decision quality.

We propose a dynamic adaptive scheduling (DAS) framework
that combines the benefits of both worlds, i.e., a simple scheduler
with fast decision making and a sophisticated scheduler with
high-quality scheduling decisions through an integrated decision
support mechanism. Making a scheduling decision at the scale of
nanoseconds is highly challenging since it requires a scheduler
to load the relevant feature data and execute possibly complex
decision criteria at the scale of nanoseconds. The following
key observations enable us to design the DAS framework that
outperforms both types of schedulers taken separately: First,
the scheduling is not an ordinary process that may be called
in the future with some probability. Instead, it will be called
with 100% certainty and use a subset of available performance
counters, i.e., features used for scheduling. Hence, a background
process prefetches the relevant features and writes them to a pre-
allocated local memory location. Second, the same process can
also determine whether a simple or a sophisticated scheduler with
a higher overhead would perform better. If the lookup table (LUT)
is preferred as the simple scheduler, the only extra delay on the
critical path is the time it takes to access the LUT, which is 6 ns
measured on Arm Cortex-A53. We run the sophisticated scheduler
only if a complex decision is required at runtime.

The major contributions of this work are as follows:

• DAS framework that dynamically combines two schedulers
and outperforms each of them taken separately;

• Low scheduling overhead: 4.2 nJ energy and 6 ns runtime
for low to medium loads; 27.2 nJ energy and 65 ns runtime
for heavy workloads;

• Experimental results with five streaming applications and
profiling of scheduling overheads on a Xilinx Zynq ZCU102.

II. RELATED WORK

A variety of task scheduling algorithms, both static [2] and
dynamic [3], [4] have been proposed in the literature. While the
approaches in [2], [5] optimize the makespan of applications,
completely fair scheduler (CFS) widely used in Linux-based OS
aims to provide resource fairness to all processes [3]. Although
this model works well for the client and small-server systems,
DSSoCs demand a novel suite of efficient schedulers that execute
with nanosecond-scale overheads. The scheduler complexity and
overhead are discussed in [6], [7], [8]. Chronaki et al. [6] propose
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two dynamic schedulers, named CATS and CPATH, that detect
the longest and critical paths in the application, respectively [6].
The benefits of the CPATH algorithm are rendered ineffective
because of its higher scheduling overhead.

Scheduling algorithms proposed in [9] combine the benefits of
using multiple schedulers. They dynamically switch between three
schedulers to adapt to varying job characteristics. However, the
overheads of switching between policies are not considered when
measuring scheduling overhead. A performance discussion of a
round-robin scheduler (simple, low complexity) and the earliest
deadline first (high complexity) schedulers and their applicability
under different system load scenarios are discussed in [7]. In
contrast, we combine the low scheduling overhead of a simple
scheduler and the decision quality of a sophisticated scheduler
based on the system workload. To the best of our knowledge,
this is the first approach that uses a novel runtime preselection
classifier to choose between simple and sophisticated schedulers
at runtime and thus enable nanosecond-scale overhead.

III. DYNAMIC ADAPTIVE SCHEDULING FRAMEWORK

A. Overview and Preliminaries

This work considers streaming applications that can be
modeled by a data flow graph (DFG). Consecutive data frames
are pipelined through the tasks in the graph. Unlike the current
practice, which is limited to a single scheduler, DAS allows the
OS to choose one scheduling policy π ∈ ΠS = {F, S}, where
F and S refer to the fast and slow (or sophisticated) schedulers,
respectively. Once the predecessors of a task are completed, the
OS can call either a fast (π = F ) or a slow scheduler (π = S)
as a function of the system state and workload. The OS collects
a set of performance counters during the workload execution to
enable two aspects for the DAS framework: (1) precise assessment
of the system state, (2) desirable features for the classifier to
dynamically switch between the fast and slow schedulers.

Table I presents the performance counters collected by DAS.
For a DSSoC with 19 PEs, it uses 62 performance counters.
The goal of the fast scheduler F is to approach the theoretically
minimum (i.e., zero) scheduling overhead by making decisions in
a few cycles with a minimum number of operations. In contrast,
the slow scheduler S aims to handle more complex scenarios
when the task wait times dominate the execution times. The goal
of DAS is to outperform the optimization metrics (execution time
and EDP) of both underlying schedulers by dynamically switching
between them as a function of system state and workload.

B. Zero-Delay DAS Preselection Classifier

The first step of DAS is selecting the fast or slow scheduler.
Since this decision is on the critical path of the fast scheduler,
we must optimize it to approach our zero overhead goal. One
of the novel contributions of DAS is recognizing this selection
as a deterministic task that will eventually be executed with
probability one. Hence, we prefetch the relevant features required
for this decision to a pre-allocated local register. To minimize the

TABLE I: Type of performance counters used by DAS framework

Type Features

Task
Task ID, Execution time, Power consumption,

Depth of task in DFG, Application ID,
Predecessor task ID and cluster IDs, Application type

Processing
Element

(PE)

Earliest time when PE is ready to execute,
Earliest availability time of each cluster,

PE utilization, Communication cost

System Input data rate

overhead, we re-use a subset of the performance counters shown
in Table I to make this decision, discussed in Section IV-B.

The OS periodically refreshes the performance counters to
reflect the current system state. Each time the features are
refreshed, DAS runs a lightweight classifier that determines if the
fast or slow scheduler should be used for the next ready task. This
decision will always be up to date since it is refreshed with the
features that reflect the most recent system state. This way, DAS
determines which scheduler should be called even before a task is
ready for scheduling. Hence, the preselection classifier introduces
zero latency and minimal energy overhead, as described next.
Offline Classifier Design: The first step to design the preselection
classifier is generating the training data based on the domain
applications known at design time. Each scenario in the training
data consists of concurrent applications and their respective data
rates (e.g., a combination of WiFi transmitter and receiver chains,
at a specific upload and download speed). To this end, we run each
scenario twice, as described in Figure 1.
First Execution: The instrumentation enables us to run both fast
and slow schedulers each time a task scheduling decision is made.
If the decisions of the fast (DF ) and slow (DS) schedulers for
a task Ti are identical, then we label task Ti with F (i.e., the
fast scheduler) and store a snapshot of the performance counters.
If the schedulers return different decisions, then the label is left
as pending, and the execution continues by following the fast
scheduler’s decision, as illustrated in Figure 1. At the end of the
first execution, the training data contains a mixture of both labeled
(F ) and pending decisions.
Second Execution: The same scenario is executed, this time by
always following the slow scheduler’s decisions. At the end of
the execution, we analyze the target metric, such as the average
execution time and energy-delay product. If the slow scheduler
achieves a better result, the pending labels are replaced with S
to indicate that the slow scheduler is preferred despite its larger
overhead. Otherwise, we conclude that the fast scheduler’s lower
overhead pays off and replace the pending labels with F . An
alternative to replacing all pending labels at once is evaluating
each decision individually. However, this approach will not be
scalable since the scheduling decision at time tk affects not only
the immediate action but also all the remaining execution flow.

The training data is generated using 40 different workloads.
Each workload is a mix of multiple instances of five applications,
consisting of approximately 140,000 tasks in total and executed at
14 different data rates (Section IV-A). A higher data rate presents
a larger number of concurrent applications contending for the
same SoC resources. Then, we design a low-overhead classifier
using machine learning techniques and feature selection methods,
as described in Section IV-B and shown in Figure 1.
Online Use of the Classifier: At runtime, a background process

DF = F (Ti)
DS = S (Ti)

DS == DF

Label Ti
with F

Leave label for 
Ti Pending

N
ext ready 
task, T

i

True

End of simulation
Final metric MF

False

Pending ß F

Execution 1 Execution 2
Always use the
Slow Scheduler

Final Metric MS (e.g
energy, performance)

Pending ß S
True False
MF better than MS

Feature 
Selection
(Offline)

DAS 
Preselection 

Classifier

Training
(Offline)

Oracle Generation (Offline)

Deploy at 
runtime
(Online)

More tasks?

Proceed 
w

ith D
F

True
False

Fig. 1: Flowchart describing the flow of the DAS framework: Oracle
generation, feature selection, and training a model for the classifier.
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Algorithm 1: ETF Scheduler
1 while ready queue T is not empty do
2 for task Ti ∈ T do
3 for PE pj ∈ P /* P = set of PEs */
4 do
5 FTTi,pj = Compute the finish time of Ti on pj
6 end
7 end
8 (T ′, p′) = Find the task & PE pair that has the minimum FT
9 Assign task T ′ to PE p′

10 end

periodically updates a pre-allocated local memory with a small
subset of performance counters required by the classifier. After
each update, the classifier determines whether the fast F or slow
S scheduler should be used for the next available task. When a
new ready task becomes available, the features are already loaded,
and we know which scheduler is a better choice. Therefore, DAS
does not incur any extra delay on the critical path. Moreover, it
has a negligible energy overhead, as demonstrated in Section IV.

C. Fast & Slow (Sophisticated) (F&S) Schedulers

The DAS framework can work with any choice of fast and slow
scheduling algorithms. This work uses a LUT implementation
as the fast scheduler since the goal of the fast scheduler is to
achieve almost zero overhead. The LUT stores the most energy-
efficient processor in the target system for each known task
in the target domain. Unknown tasks are mapped to the next
available CPU core. Hence, the only extra delay on the critical
path and overhead is the LUT access. To profile the scheduling
overhead, we developed an optimized C implementation with
inline assembly code. Experiments show that our fast scheduler
takes ∼7.2 cycles (6 ns on Arm Cortex-A53 at 1.2 GHz) on
average and incurs negligible (2.3 nJ) energy overhead.

The DAS framework uses a commonly used heuristic, earliest
task first (ETF), as the slow scheduler [10]. ETF is chosen since
it performs a comprehensive search to make a decision when the
SoC is loaded with many tasks. It recursively iterates over the
ready tasks and processors to find the schedule with the fastest
finish time, as shown in Algorithm 1. Hence, its computational
complexity is quadratic on the number of ready tasks.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Domain Applications: The DAS framework is evaluated using
five real-world streaming applications: range detection, temporal
mitigation, WiFi-transmitter, WiFi-receiver applications, and a
proprietary industrial application (App-1) [10], [11]. We construct
40 different workloads by mixing applications in different ratios
for our evaluations. More information is provided in our github
release for reproducibility [10].
Emulation Environment: One of our key goals in this study is
to conduct a realistic energy and runtime overhead analysis. For
this purpose, we leverage an open-source Linux-based emulation
framework [11]. For our analysis, we incorporate LUT and ETF
schedulers into this emulation environment. We generate a wide
range of workloads – ranging from all application instances
belonging to a single application to a uniform distribution from
all five applications. We measure the trend between the number
of tasks ready to be scheduled and the scheduling overhead of
ETF on the Xilinx Zynq ZCU102. Based on these measurements,
we generate a quadratic equation to formulate the ETF scheduling
overhead. Later, we utilize this equation to evaluate the average
execution time and the EDP of the DAS scheduler.

Simulation Environment: We use DS3 [10], an open-source
domain-specific system-on-chip simulation framework, for the
detailed evaluation of DAS. DS3 includes built-in scheduling
algorithms, models for PEs, interconnect, and memory systems.
The framework has been validated with Xilinx Zynq ZCU102 and
Odroid-XU3 platforms.
DSSoC Configuration: We construct a DSSoC configuration
that comprises clusters of general-purpose cores and hardware
accelerators. The application domains used in this study are
wireless communications and radar systems. The DSSoC used
in our experiments uses the Arm big.LITTLE architecture with 4
cores each. We also include dedicated accelerators for fast Fourier
transform (FFT), forward error correction (FEC), finite impulse
response (FIR), and a systolic array processor (SAP). We include
4 cores each for the FFT and FIR accelerators, one core for
the FEC, and two cores of the SAP. The FEC accelerates the
execution of encoder and decoder operations. In total, the DSSoC
integrates 19 PEs with a mesh-based network-on-chip to enable
efficient on-chip data movement.

B. Exploration of Machine Learning Techniques and Feature
Space for DAS

Machine Learning Technique Exploration: We explore
different classifiers to co-optimize the classification accuracy
and model size towards our minimal overhead goal. Specifically,
we investigated support vector classifiers, decision tree (DT),
multi-layer perceptron (MLP), and logistic regression (LR). The
training process with support vector classifiers with simple kernels
exceeded 24 hours, rendering it infeasible. The latency and
storage requirements of the MLP (one hidden layer and 16
neurons) did not fit the budgets of low-overhead requirements.
Therefore, these two techniques are excluded from the rest of
the analysis. Table II summarizes the classification accuracy
and storage overheads for the LR and DT classifiers as a
function of the number of features. DTs achieve similar or
higher accuracies compared to LR classifiers with lower storage
overheads. While a DT with depth 16 that uses all features
achieves the best classification accuracy, there is a significant
impact on the storage overhead, which in turn influences the
latency and energy consumption of the classifier. In comparison,
DTs with depth 2 and 4 have negligible storage overheads with
competitive accuracies (>85%). Hence, for the DAS framework,
we adopt the DT classifier with depth 2.
Feature Space Exploration: We collect 62 performance counters
in our training data. A systematic feature space exploration
is performed using feature selection and importance methods.
Among the top six features, growing the feature list from a single
feature (input data rate) to two features with the addition of the
earliest availability time of the Arm big cluster increases the
accuracy from 63.66% to 85.48%. The data rate is tracked at
runtime by an 8-entry×16-bit shift register. Therefore, we utilize
only two most important features to design a DT of depth 2 for
the DAS classifier model; this takes 13 ns to execute on Arm
TABLE II: Classification accuracies and storage overhead of DAS
models with different machine learning classifiers and features

Classifier Tree Depth Number of
Features

Classification
Accuracy (%)

Storage
(KB)

LR - 2 79.23 0.01
LR - 62 83.1 0.24
DT 2 1 63.66 0.01
DT 2 2 85.48 0.01
DT 4 6 85.51 0.03
DT 16 62 91.65 256
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Fig. 2: Comparison of average execution time (a–c) and EDP (d–f) between DAS, LUT, ETF, and ETF-ideal for three different workloads.

Cortex-A53 cores running at 1.2 GHz.

C. Performance and Scheduling Overhead Analysis

This section compares the DAS framework with LUT (fast),
ETF (slow), and ETF-ideal schedulers. ETF-ideal is a version
of the ETF scheduler which ignores the scheduling overhead. It
helps us establish the theoretical limit of achievable execution
time and EDP. Out of the 40 workloads described in Section III-B,
we choose three representative workloads for a detailed analysis
of execution time and EDP trends. These workloads present
different data rates, which are a function of the applications
in the workload. Workload-1 (Figures 2a,d) presents low data
rate, workload-2 (Figures 2b,e) presents moderate data rates, and
workload-3 (Figures 2c,f) represents a high data rate workload.

Figures 2a–c (Figures 2d–f) compare the execution times (EDP)
of DAS, LUT, ETF, and ETF-ideal. For workloads 1 and 2, the
SoC is not congested at low data rates. Hence, DAS performs
similar to LUT. As data rates increase, DAS aptly chooses
between LUT and ETF at runtime. Its execution time and EDP
is 14% and 15% lower than LUT, and 15% and 42% lower than
ETF. For workload-3, the execution time and EDP of ETF are
significantly higher than LUT. DAS chooses LUT for >99% of
the decisions and closely follows its execution time and EDP.

This study is extended to all 40 workloads. At low data rates,
DAS achieves 1.29× speedup and 45% lower EDP compared to
ETF, and 1.28× speedup and 37% lower EDP than LUT, when
the workload complexity increases. In summary, DAS consistently
performs better than either one of the underlying schedulers,
successfully adapts to the workloads at runtime, and aptly chooses
between LUT and ETF to achieve low execution time and EDP.

The left axis of Figure 3 plots the decision distribution of DAS.
It uses LUT for all decisions at the lowest data rate and ETF for
95% of decisions at the highest data rate. At a moderate workload
of 1352 Mbps, DAS still uses LUT for 96% of the decisions. The
secondary axis of Figure 3 shows the energy overhead of using
different schedulers. As DAS uses LUT and ETF based on the
system load, its energy consumption varies from that of LUT
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Fig. 3: Decisions taken by the DAS framework as bar plots and total
scheduling energy overheads of LUT, ETF, and DAS as line plots.

to ETF. The average scheduling latency overhead of DAS under
heavy workloads is 65 ns, and the energy overhead is 27.2 nJ.

We also compared DAS against a heuristic that chooses the
fast scheduler when the data rate is less than a predetermined
threshold and uses the slow scheduler otherwise. The threshold is
chosen judiciously by analyzing the training data used for DAS.
Simulation results show that the heuristic closely follows LUT
(fast) and ETF (slow) schedulers below and above the data rate
threshold, respectively. In contrast, DAS consistently outperforms
both schedulers and achieves on average 13% lower execution
time than the heuristic across all data rates.

V. CONCLUSION

In this paper, we presented a dynamic adaptive scheduling
framework that combines the benefits of fast and sophisticated
schedulers for heterogeneous SoCs. DAS achieves an overhead
that is as low as 6 ns (4.2 nJ) for a wide range of workload
scenarios and on average, 65 ns (27.2 nJ) for heavy workloads
for wireless communication and radar system applications. Hence,
our approach paves the way for DSSoCs to leverage their
potential better to enable peak performance and energy-efficiency
of domain applications.
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