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Abstract

This paper presents a novel approach to event-based power modelling
for embedded platforms that do not have a Performance Monitoring Unit
(PMU). The method involves complementing the target hardware plat-
form, where the physical power data is measured, with another platform
on which the CPU performance data, that is needed for model generation,
can be collected. The methodology is used to generate accurate fine-grain
power models for the Gaisler GR712RC dual-core LEON3 fault-tolerant
SPARC processor with on-board power sensors and no PMU. A Kintex
UltraScale FPGA is used as the support platform to obtain the required
CPU performance data, by running a soft-core representation of the dual-
core LEON3 as on the GR712RC but with a PMU implementation. Both
platforms execute the same benchmark set and data collection is synchro-
nised using per-sample timestamps so that the power sensor data from
the GR712RC board can be matched to the PMU data from the FPGA.
The synchronised samples are then processed by the Robust Energy and
Power Predictor Selection (REPPS) software in order to generate power
models. The models achieve less than 2% power estimation error when
validated on an industrial use-case and can follow program phases, which
makes them suitable for runtime power profiling during development.

1 Introduction

Power analysis enables hardware designers and software developers to optimise
the energy consumption of embedded systems. Robust and accurate power
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models are fundamental in this context, with hardware event-based power mod-
elling being a widely used technique both for CPU as well as full system mod-
elling [RAKK13,NYL13|RPBA"14;WDH " 17/SSEM21|. Rodrigues et al. [RAKK13|
present a systematic review of common Performance Monitoring Unit (PMU)
events, also termed Performance Monitoring Counters (PMCs), in modern mi-
croprocessors and show their effectiveness in characterising and modelling dy-
namic power consumption. The challenge is how to develop accurate power
models for systems without an on-chip PMU. This paper introduces an innova-
tive, dual-platform approach for power modelling of such platforms, and includes
full model validation against physical power measurements.

In the space industry, devices that operate under tight resource constraints
often remain deployed for years, relying only on remote maintenance. Con-
tinuous development over the life-cycle of such systems can be achieved via
dynamic over-the-air software and firmware updates |JS14,LML19]. In the case
of satellite communications, energy efficiency is a critical requirement, with
development focusing on processors such as the LEON3 microprocessor. Our
dual-platform methodology was used to characterise the power consumption
of the LEON3 on the GR712RC development platform |[GR7], which does not
have an on-chip PMU. The omission of the PMU is typical of deeply embedded
devices, where any hardware that represents a power or area overhead during
deployment is removed before fabrication. The models were deployed during
remote software development to enable early power analysis and optimisation,
with the aim to ensure that any over-the-air updates meet the energy and power
constraints before they are applied and without the need for direct access to the
platform. The techniques described in this paper can be applied to other open
embedded hardware platforms with no PMU.

Existing research towards energy models for the LEON3 processor include
instruction-level energy models for a custom LEON3 design [PBH09|. The
program execution and energy consumption data is generated using an RTL
gate-level simulator targeting a 90nm implementation at 400Mhz CPU core
frequency. The models are validated using a cycle accurate instruction set
simulator, achieving a worst-case estimation error of £12% when compared
to the gate-level design simulation. Another power estimation approach for
the LEON3 |[CBD™| achieved an average error between 1.5% and 2.1%. The
authors used FPGA emulation for a custom design at 25Mhz operating fre-
quency to obtain hardware counter measurements and use an external gate-
level analysis tool for power estimates. Both approaches achieve low model er-
rors compared to simulation-based power estimation, but lack validation against
hardware measurements, which is essential to gain full confidence in the accu-
racy of the models. A similar dual-platform approach based on real hardware
measurements together with event data collected from a cycle-accurate instruc-
tion set emulator has been used to generate PMC-based energy models for the
Arm Cortex-MO processor [GCNE21]. However, these models use samples with
coarser granularity to inform static energy consumption analysis and compile-
time optimisations; they are not suitable for runtime power profiling during
development.



This paper offers the following scientific contributions:

1. A dual-platform approach to collect PMCs from an FPGA soft-core imple-
mentation and to synchronize these with direct power measurements from
a physical board using per-sample timestamps to enable fine-grain PMC-
based power modelling for hardware platforms with no on-chip PMU.

2. A detailed power model for the LEON3 processor that has undergone
comprehensive validation against hardware power measurements.

3. Portable, modular and open-source model generation software, named Ro-
bust Energy and Power Predictor Selection (REPPS) |Nik|, that imple-
ments several search algorithms along with k-fold cross validation in order
to identify the optimal selection of PMCs for the model.

2 Power Modelling Methodology

A. Data Collection and Synchronisation
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Figure 1: Power modelling methodology stages.

The power modelling methodology is comprised of two stages: A. Data Col-
lection and Synchronisation and B. Model Generation and Validation as shown
in more detail in Figure

2.1 Data Collection and Synchronisation
2.1.1 Platform Configuration

First, both the ASIC and FPGA hardware platforms need to be set up to be
used in tandem to collect the data for model generation. The target ASIC
is the GR712RC evaluation board, used predominantly in the space industry.
The specific platform is ideal for evaluating the model generation methodology,



since the on-chip LEON3 CPU RTL design is available under the GNU GPL
license, allowing free and unlimited use for research and education. The LEON3
CPU on the platform features a custom dual-core implementation of the 32-bit
SPARC V8 ISA [Cobl8] , equipped with fault and radiation resistant technolo-
gies, making it suitable for outer space operations. This processor implemen-
tation does not include a PMU, but the ASIC offers on-board power sensors.
The PMU IP available for the LEON3 processors is the LEON3 Statistics Unit,
L3STAT [Coba] , which offers a configurable number of (up to 64) 32-bit coun-
ters that can count events in the processor core or the AHB bus of the LEON3.
This processor design is synthesised together with the L3STAT unit on a Kintex
UltraScale KU060 FPGA [Xil19] for the collection of the event counts, while
power measurements are obtained from the GR712RC development board.

For this dual-platform approach to work, it is critical to ensure that the syn-
thesised processor matches the behaviour of the hardware implementation on
the GR712RC that is to be modelled. The main features of the LEON3 on both
platforms are a 16KiB (4x4kB) multi-way instruction cache, 16KiB (4x4kB)
multi-way data cache and a 80MHz frequency clock. There are two signifi-
cant differences between the processor on the development board and its FPGA
synthesised version. The LEON3 on the GR712RC has a high-performance
double-precision IEEE-754 floating-point unit, which is not open source, i.e.
not included in the RTL distribution. To be able to run the exact program
compilation on both platforms, the hardware FPU is disabled through compi-
lation options and a software library is used instead to compute floating point
operations. Also, the memory read and write timing is different, which does not
allow the FPGA to run at the same speed as the development board, 80MHz.
Thus, it is necessary to extend the timing of memory operations to five clock
cycles from the regular two clock cycles on the GR712RC board. The FPGA
implementation requires three wait states to be able to run programs at 80MHz
and execution time is the same as on the ASIC platform, with a negligible delta
of a few microseconds. The GRMON [Coba] debugger was used to control and
monitor the LEON3 CPUs in both setups.

2.1.2 PMU Counter List

The modelling methodology requires a list of supported counters that can be
collected using the soft-core CPU implementation on the supporting FPGA
platform. The L3STAT unit for the LEON3 is used to monitor the 17 CPU-
specific PMCs shown in Table [T} which is the complete list of available non-zero
counters during workload execution. Cj is used to synchronize the PMC data
to the power sensor data and C; — C14 are used in model generation.

2.1.3 Precompiled Workloads

In order to obtain the necessary data for successful platform power modelling,
the workloads used to exercise the target CPU need to be carefully selected.
BEEBS |[BBC™| is an open-source benchmark suite designed for performance



| # | Counter || # | Counter || # | Counter |

Cy | TIME Cs | AINST C12 | CALL
C; | ICMISS Cy | IINST Ci3 | TYPE2
Cs | ICHOLD Cs | BPMISS C14 | LDST

Cs | DCMISS Co | AHBUTIL Ci15 | LOAD
Cy | DCHOLD || Cyp | AHBTUTIL || Ci6 | STORE
Cs | WBHOLD || C1; | BRANCH

Table 1: PMCs available for the LEON3 power model.

and energy consumption analysis of embedded architectures. It includes several
subsets of workloads, representing a wide variety of embedded applications.
This diversity makes BEEBS an excellent training set, ensuring that the model
is robust, flexible and not over-fitted to a specific application type. The set of
benchmarks used for training consists of the 50 distinct workloads from BEEBS,
that were successfully compiled using the Gaisler RTEMS compiler [Cobb| and
executed on the two platforms. The benchmarks were executed four times each
in order to obtain statistically robust measurements. The training data has over
288000 sample points. The average execution time variation between the four
runs was 0.34% for both CPU and FPGA implementations.

The models were evaluated on a proprietary computer vision algorithm used
in space satellite imaging. There are four different compiled versions of this
algorithm, obtained using two different compilers and levels of optimisation.
The four binaries are executed three times each resulting in a test set of over
23000 sample points. A detailed list of the train and test benchmark sets,
as well as individual workload execution times is available in the project code
repository |Nik].

2.1.4 Data Synchronisation

The most critical part of the dual-platform setup is to ensure that the power
sensor data from the ASIC corresponds to the correct PMC data from the
FPGA. The cross-platform synchronisation methodology for the target platform
consists of the following steps:

1. Configure the FPGA with the LEON3 and L3STAT.

2. Initialise the processor on the FPGA with three wait states on the memory
access using GRMON.

3. Set up the L3STAT for polling the available PMCs as fast as possible,
collecting around 95 samples per second.

4. Load and run the benchmarks on the FPGA and store the PMC data.



5. Program the GR712RC power sensor using the CPU cycle (TIME counter)
data from the FPGA so that power can be sampled on the ASIC at the
exact same times.

6. Initialise the processor on the GR712RC with three wait states on the
memory access using GRMON.

7. Run the benchmark on the ASIC and store the power measurements.

8. For the same value of the TIMFE counter, associate the sensor data with
the corresponding PMC data.

2.2 Model Generation and Validation

The second stage of the methodology uses the data generated by the first stage.
The model generation software is an extension of [NNY20], adapted to the data
from the dual-platform setup. All code is open-source and available online [Nik].

2.2.1 Optimisation Criteria and Search Algorithms

The methodology uses two search algorithms to find the optimal power model
from the collected PMC data. The metric to optimise is the Mean Absolute
Percentage Error (MAPE). The first algorithm uses a bottom-up strategy. It
traverses the list of available PMCs and adds the best PMC, according to the
chosen optimisation criteria (minimising the MAPE), to the model after every
completed iteration of the list. The methodology provides the ability to choose
an initial set of events to start from, as well as the maximum number of events to
include in the computed model. The second algorithm is a top-down approach,
with starts from a user-selected list of PMCs and removes, at each iteration,
the PMC which reduces the model MAPE the most.

Both search algorithms perform k-fold-cross-validation [Fusll]| on the train-
ing set each time a new candidate PMC is analysed for inclusion into or removal
from the model. At each search step, the average model MAPE across all the
folds is used as the performance metric to optimise. The final set of model
coefficients is calculated on the full set of training samples.

2.2.2 Data Analysis

Ordinary Least Squares (OLS) [KNNLO5| linear regression is used to generate a
power model expressed by P = a+ (1 x Cy +. ..+ 8, x C,, where the regressor
weights (3,,) are obtained for each activity (C), i.e. PMC, and the residual («)
represents the idle power consumption. The estimated power dissipation (P)
can then be calculated based on the PMC values for a given program and its
inputs.



2.2.3 Model Validation

The accuracy of the model is validated using PMU data from the test set.
The measured power values for the test set are then compared to the power
estimations obtained from the model. The prediction accuracy of the power
models can then be assessed using the MAPE.

3 Experimental Results

Both bottom-up and top-down search algorithms are used for model PMC selec-
tion. The resulting models are compared to an ASIC only model, which solely
uses frequency information from the GR712RC on-board sensors to obtain a
prediction of the average power consumption. The PMC selection is done using
50-fold cross-validation, which is the maximum number of folds available for the
BEEBS training set. Table [2| contains the model equations as well as the model
performance results for the train and test sets. Figure [2]is a visual representa-
tion of the predicted power values of the models against the actual measured
data for the first run of the train set and the use_case_opt compiled version of
the test set using the Gaisler RTEMS compiler with the -03 optimisation flag.

‘ . MAPE [%]
Model Name || Power Model Equation Train Tost
(BEEBS) | (use_case)

Power [W] 1l b _ 000445617 + 0.0356494 x Freq.[MH?] 2.56 6.73
ASIC Data ’ ’ : ’ ’
gzzvtfn%]p P = 2.59799 + 4.58765¢-06 x C1g 1.52 1.45

P = 2.61526 — 6.64855¢-05 x O}

+2.10177e-06 x C — 2.30418e-07 x Cj
Power [W] +1.7569¢-07 x C5 — 9.78606e-07 x Cj
Top-Dow +8.83961e-07 x Cr + 1.0862¢-06 x Cs 1.14 1.72

+3.73317e-07 x C1o — 5.25209e-07 x C1

+1.37306-06 x Cio + 1.519026-06 x Cy4

—1.15743e-06 x 015

Table 2: LEONS3 power models obtained from different model generation meth-
ods with validation results.

Both bottom-up and top-down searches have identified a different set of
PMCs for the respective power models. The model from the bottom-up search
uses a single PMC, whereas the top-down model uses 12 PMCs. This highlights
the need to use different search algorithms to identify the set of PMCs in order
to identify local optima.

Figure [2a) shows that the PMC-based models match the average power con-
sumption of the individual BEEBS benchmarks during execution, including the
direction of the dynamic power peaks. The predictions from the PMC-based
models follow the program phases as power varies over time, with the baseline



provided by the sensor data. These models are suitable for predictive power
profiling, whereas the ASIC only model is not. Regarding the test set, the
PMC-based models are able to predict the average power consumption and
power draw spikes of the program as illustrated in Figure 2D] However, the
models underestimate the peak power at the power draw spike points. This is
caused both by the limitation in regression-based models, which cannot handle
large fluctuations in the modelled data, as well as the limited selection of PMCs
used. Nevertheless, the models still recognise the points of power variation,
which is why the prediction error is so low.

4 Conclusion

This paper proposes and demonstrates a novel dual-platform approach to gener-
ating accurate fine-grain PMC-based power models for target platforms with no
on-chip PMU, but for which the RTL design is available. In this approach, the
physical power data is obtained from the target hardware platform, and these
measurements are then synchronised on a per-sample basis with the perfor-
mance data collected from a soft-core FPGA implementation instrumented with
a PMU. The synchronised samples are then processed by the Robust Energy
and Power Predictor Selection (REPPS) software in order to generate power
models. REPPS uses automatic search methods to select the set of PMC events
that produce the model with highest estimation accuracy.

This dual-platform approach has been used to generate accurate fine-grain
power models for the the Gaisler GR712RC dual-core LEON3 fault-tolerant
SPARC processor with on-board power sensors and no PMU. The power models
for the LEON3 achieve less than 2% Mean Absolute Percentage Error (MAPE)
when validated on an industry-representative image processing algorithm, used
in space communications. The methodology can be used to characterise similar
platforms. It is limited by the availability of a soft-core version with PMU and
the number as well as types of PMCs available.
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Figure 2: Power model per-sample prediction on the LEON3 platform for the
first run of the test and train sets.
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