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Abstract—Light Detection And Ranging (LiDAR) has been
widely used in autonomous vehicles for perception and local-
ization. However, the cost of a high-resolution LiDAR is still
prohibitively expensive, while its low-resolution counterpart is
much more affordable. Therefore, using low-resolution LiDAR
for autonomous driving is an economically viable solution, but
the point cloud sparsity makes it extremely challenging. In
this paper, we propose a two-stage neural network framework
that enables 3D object detection using a low-resolution LiDAR.
Taking input from a low-resolution LiDAR point cloud and
a monocular camera image, a depth completion network is
employed to produce dense point cloud that is subsequently
processed by a voxel-based network for 3D object detection.
Evaluated with KITTI dataset for 3D object detection in Bird-
Eye View (BEV), the experimental result shows that the proposed
approach performs significantly better than directly applying the
16-line LiDAR point cloud for object detection. For both easy and
moderate cases, our 3D vehicle detection results are close to those
using 64-line high-resolution LiDARs.

Index Terms—Low-resolution LiDAR, Camera, 3D Vehicle
Detection.

I. INTRODUCTION

In recent years, much research has been focused on au-
tonomous driving technology. LiDAR is one of the most
important sensors for perception tasks such as drivable region
segmentation, object detection and vehicle tracking. Different
from images captured by cameras, point cloud generated by
LiDARs supplies 3D spatial information of the objects in the
form of (X, Y, Z) coordinates and intensity. This alleviates the
barrier of distance estimation and makes 3D object detection
or tracking much more accurate. However, the price of high-
resolution LiDARs is much higher than their low-resolution
counterparts. The specifications of the most popular Velodyne
64-line LiDAR HDL-64E and 16-line LiDAR VLP-16 are
compared in Table I. As we can see, the cost of a low-
resolution LiDAR is only about 1/18 of the high-resolution
ones. Therefore, it is more economical to consider low-
resolution LiDARs in order to build low-cost autonomous
driving systems. However, it is a major challenge to perform
object detection from the point cloud produced by a low-
resolution LiDAR since it is too sparse to even show the shapes
of objects. As illustrated in Fig. 1, we can barely find objects
from the depth map captured from a 16-line LiDAR, while in
the 64-line LiDAR objects are more visible.
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TABLE I: A comparison of VLP-16 and HDL-64E LiDARs

LiDAR type VLP-16 HDL-64E
Channel number 16 64
Res.(vertical / horizontal) 2°/ 0.2° 0.4°/ 0.1728°
Power (Watts) 8 60
Price (USD) $4’000 $75’000

II. RELATED WORKS
A. Low-Resolution LiDAR and Depth Completion

Some research works focused on segmentation using low-
resolution LiDARs. [1] introduced the local normal vector for
the LiDAR’s spherical coordinates as an input channel. Based
on the existing LoDNN architectures [2], its road segmentation
performance using low-resolution LiDAR was close to that
from high-resolution LiDAR within a reasonable degradation.
A supervised domain adaptation was utilized by [3] to predict
the low-resolution point cloud into high-resolution point cloud
in spherical coordinate and further evaluated the results in 3D
semantic segmentation task. Low-resolution LiDARs had been
also employed for object tracking tasks. In [4], a LiDAR-based
system was proposed for estimation of actual positions and
velocities of the detected vehicles. Some other works utilized
depth completion for 2D object detection, such as [5] and [6].
In [5], a weighted depth filling algorithm was proposed to
make the high-resolution (HDL-64E) LiDAR depth map even
denser. Subsequently, this dense depth map was concatenated
with the corresponding RGB image as the input of YOLOv3
[7] network for 2D object detection. Similarly, the authors of
[6] introduced a self-supervised depth completion network to
fill the high-resolution depth map before detection 2D objects.

B. High Resolution LiDAR for BEV Object Detection

Nearly all state-of-the-art object detectors utilize high-
resolution LiDAR. In [8], it first transformed the point cloud
into Bird-Eye View (BEV) map, and then extracted the
ground and proposed the objects in two branches separately.
Finally, the objects were predicted by a post-processing block.
[9] further refined the previous version into an end-to-end
model and achieved better performance. Single-stage detector,
PIXOR, was proposed in [10] by using 2D convolution on the
voxelized BEV map. Without any anchor, it achieved real-time
processing speed.

As mentioned earlier, due to the extreme sparsity, low-
resolution LiDAR depth map does not supply enough shape
information of the objects, but some sub-samples of the precise
depth information. Meanwhile, the RGB image supplies rich
context information. Thus, we argue that when fusing sparse
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(a) image scenario 1 (b) image scenario 2 (c) image scenario 3

(d) dense depth map scenario 1 (e) dense depth map scenario 2 (f) dense depth map scenario 3

(g) sparse depth map scenario 1 (h) sparse depth map scenario 2 (i) sparse depth map scenario 3

Fig. 1: Comparison of depth map from 16-line LiDAR (bottom) and 64-line LiDAR (middle) to their RGB image (top), on
which red boxes represent the short-range vehicles, orange boxes show the medium range vehicles and the far vehicles are
marked by blue boxes. Green boxes illustrate the occluded vehicles.

depth map and RGB image together, 3D object detection
becomes possible.

III. PROPOSED 3D OBJECT DETECTION
FRAMEWORK

In this paper, we investigate the possibility of low-resolution
LiDAR usage in BEV object detection task. In Fig. 1, red
box, orange box and blue box represent the vehicle in short
range, medium range and long range respectively. For short
range vehicles, their shapes are clearly visible from dense
depth maps. In sparse depth maps, the shapes are very blurry
but still recognizable since the number of points hitting on
the vehicles is still large enough. Concerning the medium
and long range vehicles (in orange and blue boxes), we can
only get a small number of points even using 64-line LiDAR.
While in the sparse depth map from 16-line LiDAR, the
number of hit points is few to none. Taking the medium
range vehicles in orange boxes in Fig. 1 (h) for example, it
is easy to recognize them as obstacles due to sharp distance
distinction but difficult to recognize them as vehicles. This
also applies to vehicles with occlusion (green boxes in Fig. 1
(c), (f) and (i)). The long range vehicles in blue box (in
both Fig. 1 (e) and (h)) get too few points to be correctly
localized and classified. According to the analysis above, we
found that unlike the depth map from 64-line LiDAR, 16-line
LiDAR depth map does not show reliable context information
but accurate distance information. This implies that 16-line
LiDAR depth map is more useful for depth estimation rather
than context information extraction. Therefore, to better use
the information from 16-line depth map, we put a depth
completion network prior to the object detector to generate
a dense depth map with context information. After the dense
depth map is generated, it is sent to 3D object detector, as
demonstrated in Fig. 2.

A. Depth Completion Network

The depth completion network aims to fill the sparse depth
map from 16-line LiDAR point cloud with the help of RGB
image. The state-of-the-art depth completion network [11] is
adopted here with some modifications. It requires two inputs,

Fig. 2: The proposed framework for 3D object detection using
low-resolution point cloud and RGB image

RGB image and low-resolution sparse depth map. The RGB
image supplies the context information in detail, while the
sparse depth map supplies the precise depth information for
some pixels on the image. The sensor fusion strategy adopted
here is also referred as early fusion. To make the network
more compact, we first replace the ResNet-34 backbone with
ResNet-18. For performance improvement, global attention
modules and an Atrous Spatial Pyramid Pooling (ASPP) [13]
module are placed to bridge the encoder and decoder.

As shown in Fig. 3, the global attention module is used
to extract global context information of the feature map by
global pooling layer, and then fuse the global information back
to guide the feature learning. Through adding this module,
the global information is merged into features without up-
sampling layer. This helps the decoder part to achieve better
performance. Besides, an ASPP module is placed between
encoder and decoder, with each convolution dilated rate 2,
4, 8 and 16. The ASPP module concatenates feature maps
with different fields of perception, so that decoder has a better
understanding of the context information.

Fig. 3: Structure of global attention module

The loss function of depth completion network is the Mean
Square Error (MSE) between the predicted depth map and the
ground truth.
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B. Object Detection Network

The object detection network used in this framework is
PIXOR [10]. Its main idea is to take advantage of 2D convolu-
tion and anchor-free network to realize super-fast point cloud
object detection in BEV. PIXOR consists of two steps. The
first step is to reform the representation of input point cloud.
It reduces 3 degrees of freedom to 2 in BEV, and extracts
the 3rd freedom (z or height) as another input feature map
channel. So that 2D convolution instead of 3D convolution
is necessary to greatly decrease the computation complexity.
The second step is to feed the reformed input feature map
into an anchor-free one-stage object detector network. For
the highly efficient computation on dense predictions, a fully
convolutional architecture is utilized to build the backbone
and header of PIXOR. Without any pre-defined anchors and
proposals, PIXOR outputs the predicted class and orientation
from header in a single network.

Concerning the loss function, the total loss of object detec-
tion consists of the classification loss and the regression loss
(Eq. 1), where λcls and λreg are the corresponding coefficients.
The classification loss Lcls targets to correctly predict the
object (cars in our case) and the regression loss Lreg aims
to refine the size, center and the orientation of the predicted
bounding boxes.

Ldetect = λclsLcls + λregLreg (1)

C. Implementation Details

The depth completion network is first trained on KITTI
Depth Completion dataset. The depth completion network is
trained with batch size of 4, and learning rate starts at 1e-4
which decreases every 5 epochs. The total number of training
epoch is 10. After training the depth completion network and
keeping as it is, we move on to train the object detector from
scratch. The KITTI Object Detection dataset has been split into
training and validation parts according to [12]. The optimizer
is Adam, with batch size 8. The learning rate starts at 1e-3
and reduces by a factor of 2 when the validation loss does
not decrease. Finally, we fine-tune the entire framework with
both depth completion network and object detection network
together, with 16-line point cloud and images as input and
vehicles in BEV as output.

IV. EXPERIMENT RESULTS
A. Evaluation Dataset

Training and evaluation of the whole framework both
employ KITTI dataset (both Depth Completion and Object
Detection). Before feeding into the framework mentioned
above, the point clouds are down-sampled to emulate the VLP-
16 low-resolution LiDAR. KITTI depth completion dataset
contains 85,898 training data and 1,000 selected validation
data. Its ground truth is produced by aggregating consecutive
LiDAR scan frames into a semi-dense depth map, about 30%
annotated pixels. KITTI object detection dataset has 7,481
training data and 7,518 testing data. Evaluation is categorized
into three regimes: easy, moderate and hard, representing
objects at different occlusion and truncation levels.

B. Depth Completion Performance Evaluation

As described in Sec. III-A, in order to enhance the depth
completion performance, multiple GAM modules have been
added to bridge the encoder and the decoder of depth com-
pletion network. The performance comparison on validation
dataset is illustrated in Tab. II. Adding GAM modules results
in the performance improvement of about 3.6% and 7.0%
measured by Root Mean Square Root (RMSE) and Mean
Average Error (MAE) respectively.

TABLE II: Depth completion performance comparison with
and without GAM modules

with GAMs RMSE (1/mm) MAE (1/mm)
Yes 1592.74 537.81
No 1651.68 578.14

Fig. 4 (b) and (c) demonstrate the predicted depth maps of
depth completion networks with and without GAM modules
respectively. And the bottom figure shows the ground truth.
In this example, the depth map from depth completion net-
work with GAM module gives objects slightly better shape
representation.

(a) Image

(b) Depth ground truth

(c) Depth map without GAM

(d) Depth map with GAM

Fig. 4: Comparison of depth map from 16-line LiDAR with
and without GAM module to their RGB image and ground
truth

C. Object Detection Performance Evaluation

The performance of our framework on KITTI object detec-
tion validation dataset is illustrated in Tab. III and Fig. 5. The
results are shown in two circumstances IoU=0.5 and IoU=0.7
respectively. When IoU=0.5, our framework achieves 89.0%,
75.8% and 68.1% detection accuracy for easy, moderate and
hard cases respectively. While in case of IoU=0.7, the pre-
diction accuracy is decreased to 75.4%, 61.2% and 55.2%
respectively. Compared to feeding 16-line point cloud directly
into PIXOR, our framework pulls up the detection accuracy
significantly in all cases. If compared to PIXOR with 64-line
point cloud as input, the performance of our framework is
relatively comparable in easy and moderate cases. But in hard
case, the prediction accuracy drops around 20% in both IoU
criteria. The precision-recall curve is demonstrated in Fig. 6.

In regard to the computations, when running on RTX
2080Ti, the inference time of proposed network is 25.4ms
or 39.8 frames per second (fps). Besides, as the network is
aiming for embedded systems, we also tested it on DRIVE
PX2 that contains two discrete Pascal GPUs. The inference
latency for each point cloud frame is 581.7ms. If two GPUs
run as two threads, the throughput increases to 3.4fps.
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TABLE III: BEV performance comparison on KITTI object detection validation dataset. This table shows APBEV (in
%) of the car category, corresponding to average precision of the bird’s-eye view.

Detection Networks Input IoU=0.5 IoU=0.7
Easy Moderate Hard Easy Moderate Hard

PIXOR[10] LiDAR only (64-line) 94.2 86.7 86.1 85.2 81.2 76.1
PIXOR LiDAR only (16-line) 60.7 51.2 46.8 53.8 47.1 39.1
Ours LiDAR (16-line) + Camera 89.0 75.8 68.1 75.4 61.2 55.2

Fig. 5: Visualization of object detection from the proposed
framework, where the green boxes are ground truth and the
blue boxes represent the predicted results

Fig. 6: Precision-Recall curve of the proposed framework on
KITTI val dataset.

V. CONCLUSION

This paper presents a framework that enables 3D object
detection using a low-resolution LiDAR. By cascading a depth
completion network with an object detector, it first converts the
sparse point cloud into a denser depth map that is subsequently
processed for 3D object detection. It demonstrates 3D object
detection with only a 16-line LiDAR and a camera. When
evaluated on KITTI dataset, the proposed solution achieves
high accuracy in object detection for both easy and moderate
cases, comparable to the benchmarks using 64-line LiDARs.
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