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Synthesis of All Known Analytical Permittivity
Reconstruction Techniques of Nonmagnetic Materials

From Reflection and Transmission Measurements
Ainhoa G. Gorriti and Evert C. Slob

Abstract—This letter shows that all published analytical re-
construction formulas for the permittivity of a nonmagnetic
material from the measured total reflection and transmission
responses—the Nicolson–Ross, Weir, and Stuchly–Matuszewsky
equations—are equal to either the impedance or propagation
methods. We also show that the measured total reflection and
transmission are independent measurements and hence allow for
simultaneous and unique reconstruction of the complex electric
permittivity, including conductivity, and the complex magnetic
permeability.

Index Terms—Microwave measurements, permittivity, permit-
tivity reconstruction techniques, reflection and transmission.

I. INTRODUCTION

MEASURING permittivity is a very broad field of re-
search. Here we focus on broadband measurements

from the megahertz region up to the gigahertz region of the
spectrum. These are commonly done through analytical recon-
struction from the measured total reflection and transmission
of a transmission line where the material is placed, e.g., see
[1]–[7], among others. The coaxial line theory assumes a
transverse electromagnetic (TEM) propagation mode only. To
ensure it, the line has to be operated below the cutoff frequency
of the transverse magnetic (TM) mode (the only one that can be
generated in a coaxial geometry [8]). This limits the range of
applications for a given sample holder size and material under
test.

The reflection and transmission measurements have to be
compensated (moved from the measuring planes to the interface
of the material), in one way or an other [2], [5]–[7], [9], and then
different reconstruction formulas can be used to reconstruct
the permittivity: the Nicolson–Ross, Weir, and Stuchly–Ma-
tuszewsky equations [1], [3], [4]. When a calibrated model
of the line is available, it can be computed directly from the
measured S-parameters with the propagation matrices method
[10].

As reported in the literature, all these reconstruction tech-
niques suffer from inaccuracies and instability for low-loss ma-
terials at resonant frequencies, and further, mathematical algo-
rithms are used to reduce them [11]. As we show in this letter,
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this is understandable since all published analytical reconstruc-
tion formulas are in fact equal to one of the two fundamental
and independent solutions. One is related to the impedance and
the other to the propagation constant of the sample under test.
The existence of two independent solutions is solely due to the
assumption that the material is nonmagnetic. When this assump-
tion is not made, then both solutions are needed to simulta-
neously reconstruct both the complex electric permittivity, in-
cluding conductivity, and the magnetic permeability. They are
as follows:

complex permittivity;
real part of the permittivity, or dielectric
constant;
imaginary part of the permittivity, or dielec-
tric loss, and the term accounts
for dielectric and conductive losses;
is the complex permeability,

The simultaneous reconstruction of both and requires
both the reflection and transmission responses. This shows, that
for nonshorted lines, these responses are independent of each
other, as we prove in this letter.

II. PROPAGATION MATRICES: REPRESENTATION AND INVERSION

In [10], we introduced the propagation matrices method as
a representation of transmission lines and inverted for both the
electric permittivity and the magnetic permeability .
In this letter, we show this schematically and only for .

The total reflection and transmission response of a
multisectional transmission line (see Fig. 1) can be expressed
as

(1)

where represents the propagation through the sample holder,
whereas and represent the propagation at the left and right
of the sample holder for arbitrary extensions. The propagation
of TEM waves through the sections of the line is determined
by products involving the following two matrices, each corre-
sponding to a single section:

(2)
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Fig. 1. Representation of a multisectional transmission line, and its simplified
three-section model.

where and are the propagation constant and impedance
of section , while is its length, for to sections. We
assume here an time dependence. For a nonresistive
line and nonmagnetic materials they read

(3)

(4)

where , is the angular frequency, is the speed of
light in free space, and is the charac-
teristic impedance for a coaxial line of outer radius and inner
radius . Then, the propagation matrices through the three dif-
ferent groups of sections are

(5)

where stands for the sampe holder, and

(6)

(7)

With the restriction of nonmagnetic materials, it is now pos-
sible to obtain two solutions for . Equation (1) can be rewritten
into a more convenient form as

(8)

where

(9)

Substituting into (8) and eliminating the exponential terms,
we obtain a solution for the impedance of the sample under
test as

(10)

If, instead, the impedance terms are eliminated, a solution in
terms of the exponentials is found

(11)

We hence obtain an expression for the propagation factor as

(12)

For strictly passive media, and and choosing
the positive branch of the square roots leads to the physical con-
straints , ; hence the sign for the acosh
function is determined.

The electric permittivity of the sample is related to the
impedance and propagation factor via (3) and (4). As men-
tioned earlier, we then obtain two solutions for

the impedance method (13)

the propagation method (14)

with and defined in (10) and (12), respectively.
One can now reconstruct the permittivity [(13) and (14)] di-

rectly from the measurements at the reference planes of the
tool, not at the end levels of the sample holder. Previous tech-
niques required the measurements to be moved from the refer-
ence planes to the end levels of the sample holder, removing the
contribution of transition sections [1], [3]–[6], [12]. In the re-
viewed literature, there are at least six reported analytical equa-
tions to reconstruct the permittivity from measurements of the
total reflection and transmission responses. They appear to be
different solutions; however, it can be proven that these solu-
tions are equal to either the impedance method of (13) or the
propagation method of (14). To prove it, it is instructive to first
consider the propagation of TEM waves along an ideal line of a
sample in free space.

III. PERMITTIVITY RECONSTRUCTION FROM AN IDEAL LINE

Let us consider the simplest configuration possible, where the
material of study is placed at the sample holder of the coaxial
transmission line, and the transition sections between the refer-
ence planes and the interfaces of the sample holder have been
eliminated. Then, the measurement planes are at the interfaces
of the material under study. This is the configuration that most of
the published methods consider [3], [4], [13]. The input on ref-
erence plane 1 is equal to the product of three propagation ma-
trices: first to go from reference plane 1 into the sample holder,
then the propagation in the sample holder itself, after that, from
the sample holder into the reference plane 2, and finally, the
output at reference plane 2. As the reference planes coincide
with the sample holder interfaces, and have no exponential
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terms but only free-space impedances. For such a configuration,
we can write the extended form of (1) as

(15)

Taking into consideration that is the
local reflection coefficient, and introducing we can
rewrite (15) as

(16)

Now, we obtain the more common format for the reflection and
transmission from (16)

(17)

From (17), it is clear that for low-loss materials ,
resonant frequencies are likely to occur in the frequency range of
interest. This happens when , , and .

Using the method of solution of Section II, (9) for an ideal
line is given by

(18)

So that

impedance method (19)

propagation method

(20)

These are the two fundamental and independent reconstruction
methods for a nonmagnetic material filling an ideal line. In Sec-
tion IV, we show how other published analytical solutions are
equivalent to either of these two methods.

IV. ANALYTICAL SOLUTIONS FOR THE IDEAL CASE

As mentioned before, in the reviewed literature, there are at
least six reported analytical equations to reconstruct the permit-
tivity from measurements of the total reflection and transmis-
sion responses. They appear to be different solutions however;
in this section, we prove that these solutions are equal to ei-
ther the impedance method of (19) or the propagation method
of (20).

The impedance and the propagation reconstruction methods
for an ideal line, (19) and (20), are already equivalent to those
derived by Stuchly and Matuszewsky [4]. They claimed that the
propagation equation is ambiguous for certain sample lengths.
As a matter of fact, the of a complex number is defined
as

(21)

and physical constraints determine the sign for the complex log-
arithm, as expressed for (11). However, the imaginary part of
the logarithm of a complex number is equal to the angle of the
complex value plus , with being an integer, and hence the

would have infinite number of roots. Weir [3] presents
a thorough explanation of this ambiguity and resolves it with the
use of automatic measurements, where discrete frequency steps,
small enough so that the phase of changes less than 360 from
one measurement frequency to the next.

From (21), it is interesting to note that for (resonance)
the logarithm is zero, and the permittivity will not be accurately
determined. This occurs with low-loss materials so that almost
no reflection, and therefore, total transmission occur at resonant
frequencies.

Palaith and Chang [12] present a comparison of three
methods; their method is the first equation presented in
Stuchly and Matuszewsky [4] and therefore the impedance
method. The second is their so-called method that they
claim to be new, while it is equal to the second equation from
Stuchly and Matuszewsky [4] and the same as the propagation
method, since they write

(22)

To find we would take the natural logarithm of the right-
hand side. This can be written as a in virtue of (21).
Then, it is the same expression for as (20). As a third solu-
tion, Palaith and Chang [12] analyze the Nicolson–Ross–Weir
method, published by Nicolson and Ross [1] and by Weir [3]
for both magnetic permeability and electrical permittivity. We
restrict ourselves to the solution for the permittivity. Their equa-
tion is as follows:

(23)

where is the local reflection coefficient, and is expressed
in terms of and by (22). Again we obtain the propaga-
tion method. Note that the expression of (23) is somewhat mis-
leading because the local reflection coefficient in the right-hand
side contains the unknown complex permittivity of the sample
under test: , so that, in fact, it is not
another equation but the same as the square root of (20). These
methods are obviously the same, and they naturally all suffer
from the same problems. They are not well behaved for low-
loss materials, especially at frequencies corresponding to in-
teger multiples of one-half wavelength in the sample; see [4],
or in other words at resonant frequencies. Ligthart [13] and
Baker-Javis et al. [11] have tried to bypass this ill behavior
in two different ways but using the same equations. Ligthart
[13] presented a method for shorted line measurements where
the scattering equations for the permittivity were solved over
a calculated uncertainty region and the results were then av-
eraged, but he could not avoid the low-loss problem. Finally,
Baker-Javis et al. [11] minimized the instability by an iterative
procedure.
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From the fact there are two independent methods to solve
for the complex electric permittivity, including conductivity, for
nonmagnetic materials, from single reflection and transmission
response measurements, it can be assumed that the reflections
and transmission responses are independent for a general, non-
shorted, transmission line. This will be shown in Section V.

V. INDEPENDENCE OF THE REFLECTION

AND TRANSMISSION RESPONSES

To prove that and are independent measurements, we
make use of basic linear algebra. A system of two linear equa-
tions, such as (1), has a unique solution only when the determi-
nant is not zero. Rewriting in its extended form

(24)

and taking into consideration that

(25)

it is then clear that

(26)

Therefore and are independent, and two solutions (per-
mittivity and permeability) can be found from (1).

VI. CONCLUSION

Writing the propagation of TEM waves along an ideal trans-
mission line (which is used to measure the permittivity of a
certain material) in terms of propagation matrices has proven
very useful. It has enabled us to show how the seemingly
different published analytical reconstruction formulas for the
permittivity of nonmagnetic materials: the Nicolson–Ross,
Weir, Stuchly–Matuszewsky, and Palaith–Chang equations are
the same as the solutions derived here, based on either the
impedance or propagation methods. In the future, researchers

will not need to investigate the performance of the different
equations for their experiments. The range of choices has been
reduced to only the two fundamental methods.

We have also demonstrated that the measured total reflec-
tion and transmission responses are independent measurements.
This shows the possibility to uniquely determine two parame-
ters, the complex electric permittivity, including conductivity,
and the complex magnetic permeability for a single frequency
from these measurements assuming that the sample under test
can be regarded homogeneous.
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