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Abstract
The system of isovector fields of the Biot's equations for one-dimensional linear poroelasticity is
calculated in this paper by using exterior calculus. Similarity solutions for some special cases are also
presented in this paper.

1 Introduction

A poroelastic material consists of an elastic skeleton and pores filled with fluid. Porous seabed, saturated
rock and bone are examples of this type of material. Acoustic wave propagation in poroelastic materials
is described by the Biot’s equations of poroelasticity [4], [3]:

0 0?2
Vo5 — b(m)a (us —w) = o) (p11(x)us + pr2(z)uy),
8 2
Vo + b(l’)a (Us —uy) = 92 (plQ(x)us + Pm(fﬁ)uz)-

Hereu, is the displacement in the solid patt, the displacement in the fluid pa#;, o are the stress
applied to the solid part and the fluid part, respectively. The physical parameters, i,j = 1,2 are
the mass coupling of the fluid part and the solid part whebéagsis the energy dissipation term of the
system. Following Biot [4], we assume there is a strain energy funétion, e, ¢) such that the bulk
stressr and the pore fluid pressupecan be written as

_ow oW
T 9e. T Toc

T

, Wheree, is the symmetric strain tensor of the solid pdrt,= faﬁ (us — ;) the increment of fluid
xr

content andf the porosity. In order to put the equations into divergence form, we asgumée a
constant. The relation between the bulk stress andp is:

T=0s+0, 0=—fp.

Note that in the 1D case which we consider hete= 6513 . Define a new variable(z, t) := us(z,t) —

w(z,t). Then the divergence form of the governing equations is:

o (OW AW\ 8 Ous oul
- - <3€S i @ua> + o {—b(w)u — (pu(x) + p12(x)) ot + Plzat} =0,

9 oW o Oug ou| _

o < aum) + o [%«")u = (Pr2(2) + p22()) 5~ + ””@GJ -
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This paper is organized as follows. In Section 2, we will adapt Suhubi’s notation in [2] to solve for the
isovector fields of the balance ideal which is determined by the governing equations. This will involve
solving an over-determined system of partial differential equations. We will then solve for the similarity
solutions generated by the isovector fields for some special cases. This involves solving a system of first
order quasilinear partial differential equations.

We list the definition of some terminology which will be used in this paper.

Definition 1.1 (Kinematic spaceK). Given a system of second order partial differential equations
with N dependent variables, ... uy, andn independent variables,, ... z,, the kinematic space
K := G x R, with the global coordinate cove[rxi,uj,u;i}, i=1~mn,j=1~ N. Hereg is the
graph space of the solution arfdl, i is annN-fold Cartesian product of the real number lifie.

Definition 1.2 (Exterior algebra A(E,,)). Let{z', 22, ...,2™} be a coordinate cover of the vector space
E,.. The exterior algebra\(E,,) is defined as the direct sum:

AE,) :=A(E,) & A (E,) & ... 0 A" (E,),

whereA’(E,) is the vector space of all real-valuge™ functions onf,, andA*(E,), 1 < k < nisthe
vector space of all exterior forms of degreever A°(E,,) with the natural basigdz® A dz® A ... A
dx'™ i1 <ig < ... < ix}. HereA is the operation of exterior multiplication.

Definition 1.3 (Solution Map). A map®: B,, — K is a solution map of a given system®} of n-form
on K iff @ is a regular map fromB,, to K such that the induced pullback ma satisfies

P*w*=0,a=1,...,N.

2 Isovector Field

Following the notations in [2], we rewrite (PE) as

oxlt  gxl2
= — =0,
Ozt ox?
8221 8222
+ =0.
Ozt Ox?
We also define new variables:
ul = Usg; u? = U, zl = T, z? = t,
i ou’
YT i
nil . 87W 87W
Coov v’
212 = —b(z)u® — (p1(z') + pr2(2)) vg + pra(zt)v3,
ow
»l.= 2
o3’

522 = bz u® = (p12(2') + poz(a)) vy + poa(a)3.

There are two independent variables and two dependent variables in this system, 3and N = 2
and the kinematic space I$ = R? x R? x R*. The two contact 1-forms of the exterior algebrék)
are

C'i=du' —vida', i, j=1,2, (1)
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and two balance forms are

o ox 82”
du® A p dul/\uj,z i=12 (2)

i gyid o
w'i=d¥" Ap; = 8xju+8 8’“

wherep; := 0;]p andp := dzq A dxg, i.€. uy = dxg andus = —dz;. HereA is the exterior product
and{u1, uz2} is the natural top-down basis of the 1-forms in the exterior algalofe?).

The idea of solving partial differential equations with a geometric approach is due to Cartan: a
solution to (PE) can be regarded as a regular dapR? — K which solves in parametric form the
system of exterior equations’ = 0, = 1, 2. In other words, a solution to (PE) is a mép R? — K
which solves the balance ideal

B :=I{C*, C? dC*', dC?, w', w?},

and®*u # 0. By addingdC! anddC? into the ideal generator, we “close” the ideal with respect to
exterior differentiation without changing its isovector fields. The advantage of doing this is that we can
have a representation formula for the elements of the ideal.

Recall that an isovector field of an ideall is a vector field in the tangent spa€¢K’) such that
Lyl Cl,

where £y is the Lie derivative operator with respectito We denote the unknowwi € T'(K) by

a+via

V:V&Ei 0 Jui

+V, 1, j=1~2. 3

, 0
a 1 9 ?
We only consider materials whose energy density function has the following positive definite quadratic
form:

W = wiviv] — 2wavivi + wavivy,

wherew; > 0, wy > 0, w3 > 0 andwyws — w3 > 0. We will excludethe case of special coupling

between the elastic and dynamic constant suchwbat pa2tis  _ pazth . We will call
o4 p2o pi1+2pi2 + pao
this Assump 1 The goal in this section is to find all tﬁés such thatfy B C B.
The isovector field (3) in general depends on all the eight variablés tout for a system with more
then one equation, i.8Y > 1, it can be shown that [2]

Vi= Vi(:vl, 22, ul, u2), 4)

i.e. V* andV} are independent of/. Because of the closedness of the balance ileahd the com-
mutability of the two operator£y, andd, we have

£vB C Biff £,C' € Band£yw' € B.

These two equivalent conditions will be used to calculate the isovector fields of B. The first condition
£y C" € Bimplies there existd’, € A°(K) = C>(K) such that

£yCh = )\;'Cj. (6)
Combining this with the well-known formula

£ya=V]da+d(V]a), Ya € A(K), (7



leads to the following set of equations:

oV ov?

koo 0o _ k&

A= w i ud ®)
oV ov? OV oV

ko 0o .k i 0ok

e S e (S-S ) ©

Equations (8) and (9) show thaf andV;’ can be calculated frod* andV(, i, j = 1 ~ 2. Similarly,
the condition£yw’ € B implies there existsi®, A3, A3, ASY, A57" € A°(K) such that
Lywt =A%+ Ag’yduﬁ A iy + Agijduﬁ AduY A g + Agijdyjﬁ A pi + Agfyjkdvf A du A pj;. (10)

Applying the definition of the balance forms (2) to the left-hand side of (10) leads to the following
relations between these coefficient functions and the isov&ttor

oV <xo >  9ugvi gxei gV

A% = : . — — , , 11
Oz’ + Oxt Oz’ OxJ Oxt’ (11)
e AV < B > 4 ox* gV _ XY 9V
s ouP Ozt OuP Ozt OuPf
X gV 9N gV
- — . 12
- + ou’ Or'  Ouf Ox ’ (12)
A5y - Ay Aty
_L(ORTOVI gxeovi 9ned oV oxei oV a3
4\ ouP owr ouP Oy Ouw duP OuY oub )’
. OV < 3% > 9gu* gvi 9 gyt
Agk = _ — — 14
g 81/,? - 81/,? zJ 8V,§ Oxd’ (14)
i " 1 (0> Vi 9gxe gvi
aijk  __ pajik I _ _
Agy” = Ay 2 ( au{j ouY 81/5 8u7> ’ (15)
whereV < - > is a linear functional o\’ (K), i.e.
V< g>=1 g—ygi, forV =1'0; € T(K), g € A°(K), where{y;} is a coordinate cover ok .

On the other hand, the balance forais i = 1,2 in (2) can be decomposed into two parts such that one
part contains the contact forms while the other part doesn', i.e.

; ox oxv OXY ox
Wt o= aukck/\uj—i—{(axj —le?auk>u+ aylkdulk/\,uj}
ox »
= S CF A pj +w.

Therefore, we havé{C', C?, dC*, dC?, w!, w?} = I{C*, C?, dC*, dC?, w', w?}. Replacing the
balance form in (10) with this decomposition and considering (6), followed by collecting terms, we
obtain these equations:

5 (o 1) = (a5 2507 (19
a oy 0¥ _ qaij aji aikj ajki\ v
05 (2 O a2 (g ) an

The above system contains 18 equations for the 8 unkn®#n¥; and\j. These equations are ana-
lyzed in the following section.



3 Analysis of equations (16) and (17)

The equation ofa, 4,7, 8) = (1,2,1,2) in (17) is

! ov? v av: , vt vt ,

ov X
2912w+4(u}3—w2)%+2(w3 )8 1V1 + 2(ws >8 2V1 -1-,0125u1 Vy +p12WV2

Because of (5) and the fact that [5], < 0, the coefficients of gives

oVt oVt
oul =0 Ou? =0

Applying the above conclusion to the equation(afi, j, 3) = (2,2,1,2) in (17) leads to:

ov! ov? ov? | A
2[)22 02 — 4w 3a 1 ngﬁyl 271)36 5 :0

Similarly, w3 > 0 leads to the conclusion that

ov? ov?
oul 0, ou? 0
Applying the above results to the equations{@fz J3,08)=1(2,2,1,2) and(a, 4,5, 08) = (1,1,2,2), w
1 2
get the following system of equations f%L and 8V :
oVt 1, OV?
P2y~ 2ws(x )% =0,
oVt ov?

/)12W +2 (’LU3(.’L‘1> — wz(xl)) ﬁ = 0.

UnderAssump 1, we have
oVt ov?

Ox? =0 Ox! =0



Thatis,V! = Vi(z!) andV? = V2(2?). Applying these conclusions, (17) reduces to the following 8
equations

(2,2,2,1)  (p11 + p12) A+ (p12 + pa2) A3 — (pr2 + pa2) VYV = V1 (pl + pl)

— (p12 + p22) <?9‘£ - V2> + 022?37‘;22 =0, (18)
(2,2,2,2)  p12A + p22d3 — p22V! = PV + (p11 + p22) 887‘:%1 — p22 (g‘g - VQ) = ((19)
(1,2,2,2)  praAl + pa2dd — pr2V' = V2, + (o1 + Plﬂ%‘g - PM% - V?) =0, (20)
(1,2,2,1) (p11 + p12) A% + (p12 + p22) )\% — (p11 + p12) vy - (P11 + Ph2) V!

—(p11 + p12) (?ﬁ - V2> + Pu%ff =0, (21)

. vy A
(27 1,1, 2) (w3 — w2)>\% — w3>\% + w3V2 + Vlwé - ’LUQTU(; + w3 <3ug - Vll) =0, (22)

(2,1,1,1) (w1 — wa) A2 + wod} — wy V2 — V5w

—wsy (g‘ﬁ - V1’> +wgg—‘ﬁ =0, (23)
(LL,1,1)  (wp —w2) A + wady — (w1 — wa) VZ = V' (w] — wh)
— <g‘£ — Vll) (w1 — ws) + (wg — wg)g—:ff =0, (24)
(1L1,1,2)  (ws — w2)A —wshg — (ws — w2)VZ =V (wh — wh) + %‘g(wz —wr)
(s w2 v =0, 25)

The two equations in (16) are
)\1< oW o*wW )_ . OPW
Y\ovlozt " 9v2oxt 201201
—AN = AP — AR — AR =0, (26)
/\2< o*w o*wW )_ , O°W
Y\oviogt ' 0v2oxt 20v20x!

CAZVL ARl A2 A2 ), @7)

+ (A3 = A} b(zh)vs — A

T (2= M) bt — A2

Note that equations (18)-(21) imply th¥f, i, j = 1, 2 are not functions of’, i, j = 1,2 becausé’* and
Vg are not. Now we will extract from (26) and (27) some informatiorVgf Collecting the(v3)? terms
in these two equations and setting them equal to zero, combined with the fak;l tha not functions
of u; we get the following system of equations:
52%1 82%2
(p11 + p12) Dl oul + P12m =0,
82%1 82%2

(p12 + p22) Duloul + pzzm =
Because\ := p11p22 — pi, > 0 [5], we conclude from these two equations that

82 Vol 82 V02
— =0. 28
Ou20u? 0, Ou2ou? 0 (28)
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Similarly, by examining the coefficients of v and those of4)? in (26) and (27), it can be shown
that

82‘/01 82%2
- = 2
OulOu? 0, OulOu? 0 (29)
and
32‘/01 82‘/02
Ouloul 0, Oulou! 0 (30)

. . . VY
Notice that these conditions imply th%tu% depends om! andz? only. ThereforeV and Vi must
have the following forms:
gi (@t a?)ut + gy (at, 2®)u® + g3 (2t 2%), (31)
%2(:1’.17 x27 u17 uz) = g%(m17 SCQ)ul + g%(’r17 .'I;Q)UQ + g§($17 :'UZ)’ (32)

whereg! are arbitrary functions of' andz?. The condition that the; term in both (26) and (27) must
vanish result in the following system of equations:

0*Vy d*v? O*V§
<8u180x? - szsz) (Pn (961) + P12 (%)) -2 (6‘u180x?) P12 (iﬂl)

oVZ 0*Vy

’ (aﬁ) blat)+ (3u180;n2) (P (21) + p1a (1)) =0, (33)
0?2V d*v? 0?V2

<8ula(;2 - dx2dac2> (P12 (') + paz (1)) — 2 (8u183c?> paz (=)
Vg P2V

() 2@+ (s o ) 4 o) =0 @)

ReplacingV; andV;? in the above equations with (31) and (32), we get the following system of PDEs
for g1 (x!, 2?) andg? (x!, 22):

0 0 ..
2 (pr1(a") + pra(ah)) 87:;2 - 2,012(331)87?2 +b(z)g; = (p11(z') + pra(z)) V2,
1 1 879%_ 1 379% 1N 2 1 1) 172
2 (pr2(z') + poa(at)) D 2pa2(z )axg (z')g7 = (pr2(z') + paa(a)) V2,

where the dot denotes the derivative with respectit The general solution to this system is:

Gzt a?) = fi(at)e T, (35)
Lipl 22y — 1'2 ol b(z!) fi(z!) o~ Flal)a®
) = 37+ e+ 550 [ e

+f2(931)- (36)

b(a') [2p12(z!) + pra(z!) + pao(at)]
2/

Hereafter, for simplicity of notations, we will omit the' in the material parameteps; (z!) andb(z').

Following Biot’s notation [5], new material variables, p» andp are defined in the following:

HereF(z!) := , Whereasf; andf- are arbitrary functions of'.

p1 = p11 + p12,
p2 = p12 + P22,
p = p11+ 2 p12 + p22



Similarly, the requirement that the term must vanish in both (26) and (27) leads to a system of PDEs
for g5 and g3 after replacing the\’ terms in the coefficients of; with expressions solved from the
system of (18) to (21). The general solution to this system of PDEs is:

1

g a®) = JVE-F@H)V? -GV (")

_ P12 _; P22 fl(xl)e—F(zl)m2 + f3(.7;1), (37)
gh(at2?) = Ci(ah) V3(a?) + Co(ah) Viat) 2? + Cs(at) Vi(ah)

+Ou(ah) fi(e) e FED" 4 O5(ah) (f3(ah) — falah))

+fa(2t) eF D (38)

Here f; and 4 are arbitrary functions aof' and new material parameter functions are denoted by upper
case Latin letters:

G(x') = F,

C5(I1) — (P12 +P22)’
p
2 P12 F + b

Ciz)) = — P20 po,

1) 2 (p11 + p12) °
CQ(.%‘l) = —05 G,
Ca(@!) = —(p12 + p22) P11 + (P11 —2P22) Pra+ (pr2+ p11) pay ct,

p

Cy(zh) = —(C5)?,

where the primé denotes derivatives with respect to variable
At this point, (26) and (27) reduced to

C121 Vf + c111 V11 +c1 =0, (39)

Coo1 Vi + co11 vy + 2 =0, (40)



where the coefficients are:

. o2V
. A%(w;,w@A;wg(wgw;)vz?( 0 ><w1w2>

BV()l / ’ a 1/ 8V02 62%2
<8ug> (w) —wy) Dl Vv +87ug (w3 — wa) D210 (w3 — ws)

_Vl(ws - w2) v (ws —wh),
crnn = Ap(wh — wh) + Agwh — [Vi (w) — wh)]

0 oV .
—% |:<—V1 + 6u01> (w1 — 'U)Q):| — (w’1 — ’LUIQ) V2

82‘/01 82V02 8%2 / !
82VO 82V02 82‘/0 p12
C1 = 3:17 a2 (wl - ’U}Q) - (81'12) (’LU3 - UIQ) (6352 ) 7
82‘/0 —pP11 — P12 8V01 / ’ b 8VO aVO2 / /
_<ax22> 9 _<8x1>(w1_w2)+ (3%2)_<3$1>(w3_w2)’
0%V, /
C921 = )\% (wé ) /\21113 (3{E 8(')&2) + [Vl wé}
2%V, oV, 0 r OV .
_ow 0 o 0 9 [ 51 0 1172
<8x1 au2) ) (% ) v [( v e ) w] IAE
c ':)\Qw’—|—)\2(w’—w’)—i —V1/—|—V—O1 w —[Vlw’]/
211 1= AWsa 1wy 2) 7 5 ul 2 2
. 82‘/1 2 82‘/2
—w V2 — 0 270 0
wp V% = w2 (&vlaul) < > <8$c18u1 > ’
2t [PV 9 5V0
B 2 8.’1?22 s
2\ 0(x?)? x?
The system of equations (18) to (25) and the 6 equations= 0, ¢111 = 0, 21 = 0, ¢211 = 0,¢1 =0,
c2 = 0 contains equations which must be satisfied simultaneousht by., A%, A2, f2, f3, V1, V2, wy,

wa, W3, P11, P12, P22 andb.

Substitute (31) and (32), together with the solutiongafgs, g7 andg3 in (36)-(37) intoc; = 0
andc, = 0. The fact that the:;-term in each these two equations must vanisKiteads to a set two
equations. We then eliminate &P (x?) terms to get the following equation:

li

[(012 + p22)?
p

+ [ @A F + ) f ()2 + (As(ah) fL -+ Ag(ah) fo) FY| e P02
A5z )e 7 4 Ag(ah) =0,

wn = 2p1s + paa)uws + pws} (e ()] 22

where4;, i = 1 ~ 6 are functions of:! only and none of them contain terms withor derivatives off.

2
From the(z2)2-term of the above equation, we conclude thdt:')(F’)? = 0 provided %wl —
2(p12 + pa2)wa + pws # 0. We will consider non-constant case first



3.1 F'(z')#0

For this case, we must haye = 0. Noticing the similarity between (22) and;; = 0, we may use the
former to simplify the latter and then suf. = 0 into the result to get

fé’wg =0.

Sincewsy > 0, we must have, = 0, ie. fo = fa. for some constanf... Applying this information to
theu'-terminc, = 0 andc,=0, we conclude that

V2 —o.

Let V2 := ay (2%)% + a1 2% + ag, with constantsiz, a; andag. Sub. this and f1 = 0, f2 = fa.} into
theu?-term incy = 0, the (z2)2-term gives

ao (Ci’wg + Flw;g)/ + f4(F’)2wQeF‘”2 =0.

Therefore, forF” # 0, it must be thatfy = 0. Note that (18) and (19) constitute a system of linear
equations for\? and \2 with non-zero Jacobian\. We solve this system fox? and \3 and substitute
the results into (22). After replacing, andV with (31) and (32) and applyingf; = 0, f4 = 0}, we
obtain the following equations:

: ~1
(2112) 2w3V? — 2ws V' + { (pA) [(p12 + paz)(—p2owa + (p12 + p22)ws)pliy

+ ((,022[)11 — prap11 — 2pio)we + (p11 + ,012)211)3) Do
+2(p11 + p12)(p22ws — (p12 + paz)ws)pia] + wh} V' =0.

Note that in this equation, only2 is a function ofz2. Therefore,2 must be a constant. This implies
thatas, = 0,i.e. V2 = a122 + ag. Consequently, the system of = 0 andc, = 0 reduces to the
following equations:

{ |:(’U.)2 —w3) (GVY) + alF')T + [(w1 — w2)(a1C] + (C2V'Y] } u?z?

+ {[(w1 —ws)(agCy + C3V 4 Cs f3 — fooC5)']’

o = f3)(ws = ws)] + (@ F + GV)b/2} u?

d%g3 9%93 pr2 ((0%g3
+ {(Un — wz) 912 — (w2 — w3) (8x12> + I3 (5‘x22>
_(p11+ p12) (9g3 995\ (1 Jg3
2 83022 + 8.’E1 (wl w2) + 61'2
Og?
~w i) (52)} =0, @)

{ |:’LU3 ((GVl)’ + alF’)/}/ + [wa(a1 O] + (Cng)']/} u?a?

+ {[wg(aOC1 + O3V + Csfs — focCs)')

—[(aoF" — fws) — (a1 F + GV?Y) b/2}u
3293 0%g 022 g3 (P12 + paz) [ 0%g}
A (50 (6 2) )
% b 993
e (3) 3 (39) - (2 -

10

(42)




After using (22), (23), (24) and (25) to simplifgs; = 0, c211 = 0, 111 = 0 andc;2; = 0, respectively,
and substituting if f1 = 0, fo = fae, f1 =0, V2 = a12% +ag}, ca11 = 0 andey1; = 0 become) = 0
whereas;s; = 0 andciy; = 0 become:

{[alF' + (GVl)’]wd + [alC{ + (CQVl)/]wQ} ZC2
+{laoF" — f3lws + [agCy1 + C3V"' + Cs f3 — foeCs)'wa} =0, (43)

{[alF' =+ (le)/] (UJQ — wg) + [alO{ + (CQVI)/} (w1 — ’LUQ)} 1‘2
+{laoF" — f3] (w2 — w3)
+ [a0Cy + C3V' + Cs f3 — f2(:05}/ (wy — w2)} , (44)

Noting that by the independence condition of the coordinatds,dhe above four equations i give a

system of ten equations. The two equations resulting from the constant term in (41) and (42) constitute a
system of second-order PDEs fdrandg?. We will refer to this system of equations as theequations

and analyze the other eight equations first.

Because of the assumptianw; — w3 > 0, thez? terms in (44) and (43) imply the following two
equations:

aF' +(GVY) =0, (45)
a1Cy + (CLVYY =0,. (46)

Similarly, the constant terms in (44) and (43) give

aoF’ — fé =0, (47)
(agCh + O3V + Cs f3 — f2.C5)" = 0. (48)

Applying (45)-(48) to (41) and (42), it can be easily seen that the two equations given @utheerms
are satisfied automatically whereas the two equations given hy’tterm reduce to

(e F+GVYHb=0.
Since the dissipation functidi{z') # 0, we must have
aF+GV =0, (49)

and this equation in turns imply (45) and (46) because of the relatighs') = —F(x!)C5(z') and
Co(z!) = —F'(2')C5(xt). Therefore, the ten equations from (41), (42), (43) and (44) reduce to the
gs-equations and the equations of (47), (48) and (49).

In the system of equations (18) to (25), note that (18) and (19) constitute a system of linear equations
for A7 and\3 whereas (20) and (21)fori and\; with non-zero Jacobiaf.. We solve this system fox;
and substitute the results into (22)-(25). RepladiffgandVZ with (31) and (32), followed by applying

11



{fi=0,f2= foc: f3 = a0F + fse, f1 = 0,V? = a12? + ao } to these equations, (22)-(25) become

av' c :
(2112) . 72103% + |:’UJ§ + (A3p> (p2w3 — p22’w2) —+ (%) (p12w2 — plwg)
, .
+ <PA12> (paw3 — paows)| V' + 2a3ws = 0, (50)
avt o[ Csp :
(2111) : 2w2@ + _—w’2 + ( X)Q) R, + <p£2> (p1w2 — p12w1)
pll ] Ry
+ <A2> (p2owi — pows) | V! — 2aqwy + ( P ) (foe = f3c) =0, (51)
dVl r C X / /
(1111) : 2w1ﬁ + _—wll - <A3p> (Rw) + (%) (p2wz — paowi) + (pg) [(p22 — p11)w2
/
+ (p12 — pzz)’wﬂ + (%) (P12'LU1 - P1w2):| V- 2a1wy = 0, (52)
av?t C
(1112) : (2ws — 2w2)ﬁ + {wé — wy + (A?’) (—Awy — ppraws + pprws)
P P
+ <i1> (p2w3 — pa2w2) + (f) (p12w2 — P1w3)] V!t 2a; (wo — ws)
R?U
+ 0 (f2c - f3c) = 07 (53)

whereR,, := paw; — pws, Which is non-zero because Aésump 1 The correspondiny; andV are:

Vol = (a1Cy(z") + C’g(:vl)Vl)u2:z:2 + (% + fgc> ut
+ [aoC’1($1) + C3(z)VE + Cs(a) (ag Fb(x) + fae — fgc)] u? + gé (zt, 2?),
Vi = [FaiF(z") = Ga" )V uPa® + (%) 24 g2 (zt, %),

wheregi andg? satisfies thegs-equations, which is the same as the equations in (PE){i$.92}

is any solution to (PE). Therefore, tigé terms inV¢ arise from the fact that the equations in (PE) are
linear and hence satisfies the superposition principle (ie. the translation of any solution by a solution
gives a solution). The isovector field for this case solves the system which consistegfdleations

and equations (48)-(53).

3.2 F(2)) =0

In this case, we havE(z!) = F, for some constanf, andG(z') = Co(z!) = 0. Adding (23) into the
equationcas; = 0, followed by substituting into it (31), (32) andF' (z!) = F., G(z!) = Ca(zt) = 0},
equationcyo; = 0 becomes

[(f1C5) wa + flws] e” L. fawa = 0. (54)
Becauser,, wy # 0, (54) implies

(f1C5) wa + flws =0,
fQ(xl) = f2m

for some constanf,.. Similarly, adding (24) ta:;;; = 0 and considerings = f>. result in another
equations forf;:

(w1 — w2) (f1C5) w2 + fi(ws — ws) = 0. (55)
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Equations (55) and (54) imply that (') = fi. for some constanf;. becausev;ws — w3 # 0.
Furthermore, subtractinty/2 times the derivative of the equatien;; = 0 from theu! term incy = 0,
together with{ f; (1) = fic, fo(z') = fac}, We get
freF (Fupa(ah)Cs(a") + bla') = Fupsz) =7 + 2V2 0. (56)
Similarly, from theu! term inc; = 0 and the equation;;; = 0, we obtain
FEb(E e P — p (V2 = 0. (57)

Eliminating thel’2 term in the above two equations resultin

flcp(:cl)%(a:l)e_ L x?

=0.
A
This impliesfi. = 0. Consequently, we have? = 0, ie.
V2(2?) = az(2?)? 4 a12” + ap, for some constants,, a; andag. (58)

Substituting{ f1 = 0, fo = fae, VZ(2?) = az(2?)? + a12% + ap} into the four equations;;; = 0,
c121 = 0, co11 = 0andcegs; = 0, bothej;; = 0 andegy;; = 0 are satisfied automatically whereas
c121 = 0 c221 = 0 reduce to the following equations:

(c121=0): [ag(wy — w2)C] (22)? = [a1C) (wy — ws)] 2% — falxt) (wy — wQ)BFM2
—{aaC} + [Cs(f(@") = foo)) + (CaV) | (wi = wa) + f(ws = ws) = 0459)
(221 =0) 1 [aowaCi] (%)% + [a1 Cluws] @ + (fala!) wp)e™ ™
+ {aoC{ + [C5(f3(=") — f2c)]/ + (Cng)’} wy — fhws = 0., (60)

From (59) and (60), it can be shown that

f4 = f4ca f3 = f3Ca

for some constanfy. and f3..

Substituting into (22) the? and\3 solved from the system of (18) and (19) and (31), (32), followed
by {F = F,,G =0,Cy =0, f1 =0, fa = foc, f3 = fac: fa = [1c, V? = a2(2?)* + a12® + ao}, the
coefficient ofz? in (22) is 16wsas. Therefore, we must have, = 0. Consequently, equations (41) and

13



(42) become:
(c1=0): —2[ay (w1 — wy)CY] ula?

. !

+ {f4cF3pleF*”” -2 {(w1 —w2) [C5(fze = fae) + C3V' + aOCl]/} - alF*b} v
9%g g3\ | p2 (0°93

— 2{(w1—w2)(%12—(w2_w3) <6$12>+2<ax2 >

_(p11+p12) %93 % T, 893
2 83322 + 81’1 (w1 ’LU2)+ 8.’172

dg?
(-t (55} =o. 6
(CQ = 0) . -2 [alwgC'] 2 2
!
+ {f4cF*202€F*z -2 {w2 [C5(fsc — fac) + CsV' + aoC1]l} + a1F*b} u’
5 g3 5293% p2 (0°g3 (P12 + p22) (D793
— U)2 — + —
0112 2 \ Oxy2 2 Oxo2
, (993 g3 993\ _
+wy (8 > <8x2 D, =0. (62)
From (61) and (62), it can be seen that
f4c = 0, a)p = 0.
Therefore, the system of (39) and (40) reduce to the systegg-efjuations and the following equation:
[—C5(aoFs + fae — fae) + C5V']" =0, (63)

and the equations (18)-(25) are equivalent with the following four equations:

1 /

dv C
(2112) . 7211)3@ —+ {wg =+ <2p) (p2w3 — p22w2) =+ (pAﬂ) (p12w2 — plwg)
, }
+ (%) (p2ws — paowa) | VI =0, (64)
av! Cap
(2111) : ngﬁ + |:wé + < ZD > R, + (pi > (p1w2 — plgwl)
P ] Ry,
+ (X) (paowy — pows) | V! + (p) (aoFy + fac — f3c) =0, (65)
av' _ C '
(1111) . 2(11)1 - U)Q)ﬁ + l:(wlg - w’l) + ( Xﬁ) (Rw) + (%) (pgwg — pgzwl)
P Ry,
+ (E) (prwa — prawr) +] V- (p) (aoFs + faec — f3.) = 0, (66)
dv?t C
(1112) : (2ws — QwQ)ﬁ + {w’g —wh + (5) (—w1 N — ppraws + pprws)

/

/
+ (21) (p2ws — paows) + (IOAH) (pr2ws — ,01w3)} V!

Jr%(aoF* + fac — f3c) = 0. (67)

whereR,, := pow; — pws, Which is non-zero because Assump 1 The isovector field for this case
solves the system which consists of hgequations, and equations (63)-(67).
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4  Similarity solutions of special cases

Definition 4.1 (Similarity Solution). A map®: B,, — K is a similarity solution generated by an isovec-
tor field V' of the balance ideal iff®> is a solution map of the balance ideal that satisfies the first-order
differential constraints

o (V|CY)=0,a=1,...,N.

A similarity solution generated bl satisfies
P*B=0, 0 u#0,0(V|C¥)=0,a=1,...,N.

Note that in terms of this representation of the isovector field (3), the conditiofis|C*) = 0,
a =1, 2,in the above definition give the following system of quasi-linear first-order PDEs:

out out
¥ V27 — V1
Vige TV = Vo

ou? ou?

The above equations were used to derive the system of differential equations in terms of the similarity
variable¢ which is found by solving the system gf = V' and ¢ = V2.

4.1 Special cases of constamnt;(z)
4.1.1 Nonconstanb(x)

Here, we consider the case when the inertia coupling funciiens:), p12(z) andpss () are constant
functions. In this case, we hav& = 0 andF(z') = F.b(z') for some constank,. This corresponds

to the case of”’(x) # 0 in the previous section. It can be deduced from (50) to (53) that fs. and
consequently equation (48) is satisfied identically. Therefore, the projection of the isovector field onto
the graph space is:

V(z)V = —aib(x), (68)
V?= ait + ag, (69)
Vi = [a1C1(z) + Ca(z)V'] tu® + (% + f2c> u' + agChy (x)u® + g3 (z,t), (70)
V2 = (% — aoFub(x) + f3c) w? + @2 (,b), (71)

and the equations (50)-(53) reduce to the following three equations:

2wz (VY — wh V! — 2a1ws3 = 0, (72)
2wo (V1) — wh V! — 2a1ws = 0, (73)
2wy (V1) — wi V! — 24w, = 0. (74)

It can be derived from these three equations that

(W)/vl _ <w1>/v1 - <M>/v1 ~0.

w3 wa ws

Therefore,V'! is non-zero only ifw; (z) = kyws(x) andws(z) = kows(x) for some positive constants
k1 andk,. We will discuss these two cases in the following.
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e For arbitraryw;(z), i = 1,2, 3.
For this case, from (68) with the assumption that) # 0 for anyz, we conclude thai;=0. Thus
the following isovector field:

vi=o, (75)
V? = aq, (76)
Vo = facu' + gz(,1), (77)
V02 = f36u2 + g%(m, t). (78)

For non-trivial symmetry, we must have, # 0. Lettinggi = 0 andg? = 0, the similarity
solutions have the following form:

ut(z,t) = U(:z:)e{’?oct, (79)
w2z, 1) = V(z)e st (80)

whereU (z) andV (z) satisfy the following set of ODEs:

2(wy — w2)U" + 2(wg — wa) V" + 2(w) — why)U’ + 2(wh — wh)V’

 Jacb(z) ff?c(Pn;- p12) n f?’QC'ngV _o,
ag a? a3

b 5, 2
2wl — 2wV + 2whU" — 2wV’ + f‘”’ca )y f3°(p122+ p2)yy f3;’2’22 V=0
0 0 0

o Forwi(z) = kyws(z) andws(x) = kows(x).
In this case, we are left with only two equations:
V(z)V! +arb(x) =0, (81)
2wz (VY — wh V' — 2a,ws3 = 0. (82)

The general solution to (82) is

d¢ + k|, (83)

Vi(z) = ws(z) l

x a1
/o Vws(C)
for some constant. If w;(x), i = 1,2, 3, are constant functions, it can be seen #i{a) must
have the form

C*

aix+co

Vi=az+ co,
V2= ait + ag,

a
Vv()1 = (51 + f2¢:> ul +g§7
a
Vi = (?1 + f20> u? + g3.
The similarity variable is:

a1 + cg
alt + ap ’

&=
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and the corresponding ODEs are:
B 2 2 4 _ [ 3
[—2w2€* + 2w3&? + p12€?] Vee + [(2611 +4f3c)(ws —wz)€ + alf +2p128° | Ve

+ [2wsz — 2ws] [% + f30i| [% + f3e — 1} V4 2w € = 2wa? — (p11 + p12)€*] Uee

+ [(2a1 4+ 4 f3e) (w1 — w2)€ — 2(p11 + p12)€°] Ue + [2w1 — 2wo] [% + f3c] [% + fae — 1} U=0,
[—2w3&” + p2oé?] Vee + {—(2611 + 4 f3c)ws€ — 2%52 + 2p22§3} Ve

—2w3 [% + f30:| [% + fae — 1} V + [2w26? — (p12 + p22)€*] Uee

+Kmn+4ﬁawg—2@u+pmﬁﬂ0@+m@[%e+ﬁ4F§+f@—1h7:a

4.1.2 Constantb(z)

In this case, we hav€'s = 0 andb(z) = b. for some constarif.. From (64), (65) and (67), it can be
seen that we must as well have
aoF* + f2c - fSC =0.

The equations (63) to (67) reduce to the following three equations:
2wy (V) —wiV! =0,
2o (V) —wh V! =0,
2wz (VY —wiV*t = 0.

These three equations imply

(wl)/vl - (w3>/v1 - (wl>,v1 —0.
w2 w2 w3
o w;(x),i=1,2,3, are arbitrary.

In this case, we have

vi=o,
V? = ay,
Vo = facu' + g3,
Vi = foct® + 3.
Letting g3 = 0 andg? = 0, we obtain similarity solutions of the following form:

f2<'.t

ut(z,t) = U(z)e *, (84)
u?(z,t) = V(w)e%t, (85)

whereU (z) andV (z) satisfy the following ODE’s.

2(wy — wo)U" + 2(wg — wa) V" + 2(w) — wh)U’ + 2(wh — wh)V’
N (p12f220 - aofzcbc) v |:f22c(p11 + 012)] U=o.

2 2
g ag

2 b 2
P22 f3. +2a0f2c c) V4 [f20(0122+ p22)} U=o,

—2woU" + 2wsV" — 2wiU" + 2wi V' — (
a4y @y
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o wi(z) = kyws(x), we(x) = kews(x) for some constants, andks,.
For this case, we have

V(x) = bo\/ws(x), for some constarit.

For the case ofonstantws, we have

V%= b, (86)
V? = ay, (87)
Vo = facu' + g3, (88)
Vi = facu® + g5 (89)

Letting g3 = 0, g5 = 0 and fora, # 0, we have the following similarity solutions:

W€ 1) = U, (90)
aA(,1) = V(g W, (91)
with the similarity variable being
= —_— bjt,
ao

andU (£) andV (¢) satisfying the following set of ODEs:

b2 bcb 2p12bo fac be fac 7
P122 0 bebo  2p12 2ofz } Vi + [_ fo n Pnfzc} v
a

Vet |
0 } ¢ @0 o ao ap

W—zpn)b%} UE£ + |:2(P11 + p212)b0f20:| Ug _ |:W§12)fézc:| U = 07
)

—2’[1)2 + 2'[05 =+

+ [—2w2 + 2wy —
g
b3 bebo  2p22bo fac be fac 5
Cows + 02220} Vee + [_ 0 2p22 2ofz } Ve + { f2 n P22;fzc} v
ay agp Qg agp ag

(p12 + p22)b3 2(p12 + p22)bo fac (p12 + p22) f3.
TO UEE"‘ U& _ 722

0

—+ [ng —

2
ap

}U:Q
ap

Lettinggs = 0, g5 = 0 and foray = 0, the similarity solutions take the following form:

fac

Ut)e®o ™, (92)
V(e ©3)

ut(z,t)

u?(z,t)

whereU (t) andV (¢) satisfy the following set of ODE’s:

by (p11 + p12)U — bp12V + b3beV + 23 (wo — w1)U + 2f3.(we — w3)V =0,
bg(pu + pQQ)U — bgpng — bgch — 2f220w2U + 2f220’LU3V =0.
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