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Abstract
The system of isovector fields of the Biot’s equations for one-dimensional linear poroelasticity is

calculated in this paper by using exterior calculus. Similarity solutions for some special cases are also
presented in this paper.

1 Introduction

A poroelastic material consists of an elastic skeleton and pores filled with fluid. Porous seabed, saturated
rock and bone are examples of this type of material. Acoustic wave propagation in poroelastic materials
is described by the Biot’s equations of poroelasticity [4], [3]:

∇ · σs − b(x)
∂

∂t
(us − ul) =

∂2

∂t2
(ρ11(x)us + ρ12(x)ul) ,

∇σ + b(x)
∂

∂t
(us − ul) =

∂2

∂t2
(ρ12(x)us + ρ22(x)ul) .

Hereus is the displacement in the solid part,ul the displacement in the fluid part;σs, σ are the stress
applied to the solid part and the fluid part, respectively. The physical parametersρij(x), i, j = 1, 2 are
the mass coupling of the fluid part and the solid part whereasb(x) is the energy dissipation term of the
system. Following Biot [4], we assume there is a strain energy functionW (x, es, ζ) such that the bulk
stressτ and the pore fluid pressurep can be written as

τ =
∂W

∂es
, p =

∂W

∂ζ

, wherees is the symmetric strain tensor of the solid part,ζ := f
∂

∂x
(us − ul) the increment of fluid

content andf the porosity. In order to put the equations into divergence form, we assumef to be a
constant. The relation between the bulk stressτ , σ andp is:

τ = σs + σ, σ = −f p.

Note that in the 1D case which we consider here,es = ∂us

∂x
. Define a new variableu(x, t) := us(x, t)−

ul(x, t). Then the divergence form of the governing equations is:

(PE)


∂

∂x

(
∂W

∂es
+

∂W

∂ux

)
+

∂

∂t

[
−b(x)u− (ρ11(x) + ρ12(x))

∂us

∂t
+ ρ12

∂u

∂t

]
= 0,

∂

∂x

(
−∂W

∂ux

)
+

∂

∂t

[
b(x)u− (ρ12(x) + ρ22(x))

∂us

∂t
+ ρ22(x)

∂u

∂t

]
= 0.
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This paper is organized as follows. In Section 2, we will adapt Şuhubi’s notation in [2] to solve for the
isovector fields of the balance ideal which is determined by the governing equations. This will involve
solving an over-determined system of partial differential equations. We will then solve for the similarity
solutions generated by the isovector fields for some special cases. This involves solving a system of first
order quasilinear partial differential equations.
We list the definition of some terminology which will be used in this paper.

Definition 1.1 (Kinematic spaceK). Given a system of second order partial differential equations
with N dependent variablesu1, . . . uN , and n independent variablesx1, . . . xn, the kinematic space
K := G × RnN with the global coordinate cover{xi, uj , νi

j}, i = 1 ∼ n, j = 1 ∼ N . HereG is the
graph space of the solution andRnN is annN -fold Cartesian product of the real number lineR .

Definition 1.2 (Exterior algebra Λ(En)). Let{x1, x2, ..., xn} be a coordinate cover of the vector space
En. The exterior algebraΛ(En) is defined as the direct sum:

Λ(En) := Λ0(En)⊕ Λ1(En)⊕ ...⊕ Λn(En),

whereΛ0(En) is the vector space of all real-valuedC∞ functions onEn andΛk(En), 1 ≤ k ≤ n is the
vector space of all exterior forms of degreek overΛ0(En) with the natural basis{dxi1 ∧ dxi2 ∧ ... ∧
dxik , i1 < i2 < ... < ik}. Here∧ is the operation of exterior multiplication.

Definition 1.3 (Solution Map). A mapΦ:Bn → K is a solution map of a given system{ωα} of n-form
onK iff Φ is a regular map fromBn to K such that the induced pullback mapΦ∗ satisfies

Φ∗ωα = 0, α = 1, . . . , N.

2 Isovector Field

Following the notations in [2], we rewrite (PE) as
∂Σ11

∂x1
+

∂Σ12

∂x2
= 0,

∂Σ21

∂x1
+

∂Σ22

∂x2
= 0.

We also define new variables:

u1 := us; u2 := u, x1 := x, x2 := t,

νi
j :=

∂ui

∂xj
,

Σ11 :=
∂W

∂ν1
1

+
∂W

∂ν2
1

,

Σ12 := −b(x1)u2 −
(
ρ11(x1) + ρ12(x1)

)
ν1
2 + ρ12(x1)ν2

2 ,

Σ21 := −∂W

∂ν2
1

,

Σ22 := b(x1)u2 −
(
ρ12(x1) + ρ22(x1)

)
ν1
2 + ρ22(x1)ν2

2 .

There are two independent variables and two dependent variables in this system, son = 2 andN = 2
and the kinematic space isK = R2 × R2 × R4. The two contact 1-forms of the exterior algebraΛ(K)
are

Ci := dui − νi
jdxj , i, j = 1, 2, (1)
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and two balance forms are

ωi := dΣij ∧ µj =
∂Σij

∂xj
µ +

∂Σij

∂uk
duk ∧ µj +

∂Σij

∂νk
l

dνk
l ∧ µj , i, j = 1, 2, (2)

whereµj := ∂jcµ andµ := dx1 ∧ dx2, i.e. µ1 = dx2 andµ2 = −dx1. Here∧ is the exterior product
and{µ1, µ2} is the natural top-down basis of the 1-forms in the exterior algebraΛ(R2).

The idea of solving partial differential equations with a geometric approach is due to Cartan: a
solution to (PE) can be regarded as a regular mapΦ : R2 → K which solves in parametric form the
system of exterior equationsωi = 0, i = 1, 2. In other words, a solution to (PE) is a mapΦ : R2 → K
which solves the balance ideal

B := I{C1, C2, dC1, dC2, ω1, ω2},

andΦ∗µ 6= 0. By addingdC1 anddC2 into the ideal generator, we “close” the ideal with respect to
exterior differentiation without changing its isovector fields. The advantage of doing this is that we can
have a representation formula for the elements of the ideal.

Recall that an isovector fieldV of an idealI is a vector field in the tangent spaceT (K) such that

£V I ⊂ I,

where£V is the Lie derivative operator with respect toV . We denote the unknownV ∈ T (K) by

V = V i ∂

∂xi
+ V i

0

∂

∂ui
+ V i

j

∂

∂νi
j

, i, j = 1 ∼ 2. (3)

We only consider materials whose energy density function has the following positive definite quadratic
form:

W = w1ν
1
1ν1

1 − 2w2ν
1
1ν2

1 + w3ν
2
1ν2

1 ,

wherew1 > 0, w2 > 0, w3 > 0 andw1w3 − w2
2 > 0. We will excludethe case of special coupling

between the elastic and dynamic constant such thatw3 =
ρ22w2

ρ12 + ρ22
=

ρ22w1

ρ11 + 2ρ12 + ρ22
. We will call

thisAssump 1. The goal in this section is to find all theV ’s such that£V B ⊂ B.

The isovector field (3) in general depends on all the eight variables inK, but for a system with more
then one equation, i.e.N > 1, it can be shown that [2]

V i = V i(x1, x2, u1, u2), (4)

V i
0 = V i

0 (x1, x2, u1, u2), (5)

i.e. V i andV i
j are independent ofνj

i . Because of the closedness of the balance idealB and the com-
mutability of the two operators£V andd, we have

£V B ⊂ B iff £V Ci ∈ B and£V ωi ∈ B.

These two equivalent conditions will be used to calculate the isovector fields of B. The first condition
£V Ci ∈ B implies there existsλi

j ∈ Λ0(K) ≡ C∞(K) such that

£V Ci = λi
jC

j . (6)

Combining this with the well-known formula

£V α = V cdα + d(V cα), ∀α ∈ Λ(K), (7)
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leads to the following set of equations:

λk
j =

∂V k
0

∂uj
− νk

i

∂V i

∂uj
, (8)

V k
j =

∂V k
0

∂xj
− νk

i

∂V i

∂xj
+ νi

j

(
∂V k

0

∂ui
− νk

j

∂V j

∂ui

)
. (9)

Equations (8) and (9) show thatλi
j andV i

j can be calculated fromV i andV i
0 , i, j = 1 ∼ 2. Similarly,

the condition£V ωi ∈ B implies there existsAα, Aαγ
β , Aαij

βγ , Aαij
β , Aαijk

βγ ∈ Λ0(K) such that

£V ωi = Aαµ + Aαγ
β duβ ∧ µγ + Aαij

βγ duβ ∧ duγ ∧ µji + Aαij
β dνβ

j ∧ µi + Aαijk
βγ dνβ

k ∧ duγ ∧ µji. (10)

Applying the definition of the balance forms (2) to the left-hand side of (10) leads to the following
relations between these coefficient functions and the isovectorV :

Aα =
∂V < Σαi >

∂xi
+

∂Σαi

∂xi

∂V j

∂xj
− ∂Σαi

∂xj

∂V j

∂xi
, (11)

Aαγ
β =

∂V < Σαγ >

∂uβ
+

∂Σαi

∂xi

∂V γ

∂uβ
− ∂Σαγ

∂xi

∂V i

∂uβ

+
∂Σαγ

∂uβ

∂V i

∂xi
− ∂Σαi

∂uβ

∂V γ

∂xi
, (12)

Aαij
βγ = −Aαji

βγ = Aαij
γβ

=
1
4

(
∂Σαi

∂uβ

∂V j

∂uγ
− ∂Σαj

∂uβ

∂V i

∂uγ
+

∂Σαj

∂uγ

∂V i

∂uβ
− ∂Σαi

∂uγ

∂V j

∂uβ

)
, (13)

Aαik
β =

∂V < Σαi >

∂νβ
k

+
∂Σαi

∂νβ
k

∂V j

∂xj
− ∂Σαj

∂νβ
k

∂V i

∂xj
, (14)

Aαijk
βγ = −Aαjik

βγ =
1
2

(
∂Σαi

∂νβ
k

∂V j

∂uγ
− ∂Σαj

∂νβ
k

∂V i

∂uγ

)
, (15)

whereV < · > is a linear functional onΛ0(K), i.e.

V < g >:= vi ∂g

∂yi
, for V = vi∂i ∈ T (K), g ∈ Λ0(K), where{yi} is a coordinate cover ofK.

On the other hand, the balance formsωi, i = 1, 2 in (2) can be decomposed into two parts such that one
part contains the contact forms while the other part doesn’t, i.e.

ωi =
∂Σij

∂uk
Ck ∧ µj +

{(
∂Σij

∂xj
− νk

j

∂Σij

∂uk

)
µ +

∂Σij

∂νk
l

dνk
l ∧ µj

}
=:

∂Σij

∂uk
Ck ∧ µj + ωi′.

Therefore, we haveI{C1, C2, dC1, dC2, ω1, ω2} = I{C1, C2, dC1, dC2, ω1′, ω2′}. Replacing the
balance form in (10) with this decomposition and considering (6), followed by collecting terms, we
obtain these equations:

λα
β

(
∂Σβi

∂xi
+

∂Σβi

∂uγ
νγ

i

)
= Aα +

(
Aαi

β + 2Aαij
βγ νγ

j

)
νβ

i , (16)

λα
γ

(
∂Σγi

∂νβ
j

+
∂Σγj

∂νβ
i

)
= Aαij

β + Aαji
β + 2

(
Aαikj

βγ + Aαjki
βγ

)
νγ

k . (17)

The above system contains 18 equations for the 8 unknownsV i, V i
0 andλα

β . These equations are ana-
lyzed in the following section.
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3 Analysis of equations (16) and (17)

The equation of(α, i, j, β) = (1, 2, 1, 2) in (17) is

2 ρ12
∂V 1

∂x2
+ 4(w3 − w2)

∂V 2

∂x1
+ 2(w3 − w2)

∂V 2

∂u1
ν1
1 + 2(w3 − w2)

∂V 2

∂u2
ν2
1 + ρ12

∂V 1

∂u1
ν1
2 + ρ12

∂V 1

∂u2
ν2
2 = 0.

Because of (5) and the fact that [5]ρ12 < 0, the coefficients ofνi
2 gives

∂V 1

∂u1
= 0,

∂V 1

∂u2
= 0.

Applying the above conclusion to the equation of(α, i, j, β) = (2, 2, 1, 2) in (17) leads to:

2 ρ22
∂V 1

∂x2
− 4w3

∂V 2

∂x1
− 2w3

∂V 2

∂u1
ν1
1 − 2w3

∂V 2

∂u2
ν2
1 = 0.

Similarly, w3 > 0 leads to the conclusion that

∂V 2

∂u1
= 0,

∂V 2

∂u2
= 0.

Applying the above results to the equations of(α, i, j, β) = (2, 2, 1, 2) and(α, i, j, β) = (1, 1, 2, 2), we

get the following system of equations for
∂V 1

∂x2
and

∂V 2

∂x1
:

ρ22
∂V 1

∂x2
− 2w3(x1)

∂V 2

∂x1
= 0,

ρ12
∂V 1

∂x2
+ 2

(
w3(x1)− w2(x1)

) ∂V 2

∂x1
= 0.

UnderAssump 1, we have
∂V 1

∂x2
= 0,

∂V 2

∂x1
= 0.
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That is,V 1 = V 1(x1) andV 2 = V 2(x2). Applying these conclusions, (17) reduces to the following 8
equations

(2, 2, 2, 1) (ρ11 + ρ12)λ2
1 + (ρ12 + ρ22)λ2

2 − (ρ12 + ρ22) V 1′ − V 1 (ρ′12 + ρ′22)

− (ρ12 + ρ22)
(

∂V 1
0

∂u1
− V̇ 2

)
+ ρ22

∂V 2
0

∂u1
= 0, (18)

(2, 2, 2, 2) ρ12λ
2
1 + ρ22λ

2
2 − ρ22V

1′ − ρ′22V
1 + (ρ11 + ρ22)

∂V 1
0

∂u2
− ρ22

(
∂V 2

0

∂u2
− V̇ 2

)
= 0,(19)

(1, 2, 2, 2) ρ12λ
1
1 + ρ22λ

1
2 − ρ12V

1′ − V 1ρ′12 + (ρ11 + ρ12)
∂V 1

0

∂u2
− ρ12(

∂V 2
0

∂u2
− V̇ 2) = 0, (20)

(1, 2, 2, 1) (ρ11 + ρ12)λ1
1 + (ρ12 + ρ22) λ1

2 − (ρ11 + ρ12) V 1′ − (ρ′11 + ρ′12) V 1

− (ρ11 + ρ12)
(

∂V 1
0

∂u1
− V̇ 2

)
+ ρ12

∂V 2
0

∂u2
= 0, (21)

(2, 1, 1, 2) (w3 − w2)λ2
1 − w3λ

2
2 + w3V̇

2 + V 1w′
3 − w2

∂V 1
0

∂u2
+ w3

(
∂V 2

0

∂u2
− V 1′

)
= 0, (22)

(2, 1, 1, 1) (w1 − w2) λ2
1 + w2λ

2
2 − w2 V̇ 2 − V 1 w′

2

−w2

(
∂V 1

0

∂u1
− V 1′

)
+ w3

∂V 2
0

∂u1
= 0, (23)

(1, 1, 1, 1) (w1 − w2) λ1
1 + w2λ

1
2 − (w1 − w2) V̇ 2 − V 1(w′

1 − w′
2)

−
(

∂V 1
0

∂u1
− V 1′

)
(w1 − w2) + (w2 − w3)

∂V 2
0

∂u1
= 0, (24)

(1, 1, 1, 2) (w3 − w2)λ1
1 − w3λ

1
2 − (w3 − w2)V̇ 2 − V 1(w′

3 − w′
2) +

∂V 1
0

∂u2
(w2 − w1)

−(w3 − w2)(
∂V 2

0

∂u2
− V 1′) = 0. (25)

The two equations in (16) are

λ1
1

(
∂2W

∂ ν1
1∂x1

+
∂2W

∂ ν2
1∂x1

)
− λ1

2

∂2W

∂ ν2
1∂x1

+
(
λ1

2 − λ1
1

)
b(x1) ν2

2 −A1

−A11
1 ν1

1 −A12
1 ν1

2 −A11
2 ν2

1 −A12
2 ν2

2 = 0, (26)

λ2
1

(
∂2W

∂ ν1
1∂x1

+
∂2W

∂ ν2
1∂x1

)
− λ2

2

∂2W

∂ ν2
1∂x1

+
(
λ2

2 − λ2
1

)
b(x1) ν2

2 −A2

−A21
1 ν1

1 −A22
1 ν1

2 −A21
2 ν2

1 −A22
2 ν2

2 = 0. (27)

Note that equations (18)-(21) imply thatλi
j , i, j = 1, 2 are not functions ofνi

j , i, j = 1, 2 becauseV i and
V i

0 are not. Now we will extract from (26) and (27) some information ofV i
0 . Collecting the(ν2

2)2 terms
in these two equations and setting them equal to zero, combined with the fact thatλi

j are not functions
of νi

j , we get the following system of equations:

(ρ11 + ρ12)
∂2V 1

0

∂u1∂u1
+ ρ12

∂2V 2
0

∂u1∂u1
= 0,

(ρ12 + ρ22)
∂2V 1

0

∂u1∂u1
+ ρ22

∂2V 2
0

∂u1∂u1
= 0.

Because4 := ρ11ρ22 − ρ2
12 > 0 [5], we conclude from these two equations that

∂2V 1
0

∂u2∂u2
= 0,

∂2V 2
0

∂u2∂u2
= 0. (28)
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Similarly, by examining the coefficients ofν1
2 ν2

2 and those of(ν1
2)2 in (26) and (27), it can be shown

that

∂2V 1
0

∂u1∂u2
= 0,

∂2V 2
0

∂u1∂u2
= 0 (29)

and

∂2V 1
0

∂u1∂u1
= 0,

∂2V 2
0

∂u1∂u1
= 0. (30)

Notice that these conditions imply that
∂V i

0

∂uj
depends onx1 andx2 only. Therefore,V 1

0 andV 2
0 must

have the following forms:

V 1
0 (x1, x2, u1, u2) = g1

1(x1, x2)u1 + g1
2(x1, x2)u2 + g1

3(x1, x2), (31)

V 2
0 (x1, x2, u1, u2) = g2

1(x1, x2)u1 + g2
2(x1, x2)u2 + g2

3(x1, x2), (32)

wheregi
j are arbitrary functions ofx1 andx2. The condition that theν1

2 term in both (26) and (27) must
vanish result in the following system of equations:(

∂2V 1
0

∂u1∂x2
− d2V 2

dx2dx2

)(
ρ11

(
x1
)

+ ρ12 (x1)
)
− 2

(
∂2V 2

0

∂u1∂x2

)
ρ12

(
x1
)

+
(

∂V 2
0

∂u1

)
b
(
x1
)

+
(

∂2V 1
0

∂u1∂x2

)(
ρ11

(
x1
)

+ ρ12

(
x1
))

= 0, (33)(
∂2V 1

0

∂u1∂x2
− d2V 2

dx2dx2

)(
ρ12

(
x1
)

+ ρ22 (x1)
)
− 2

(
∂2V 2

0

∂u1∂x2

)
ρ22

(
x1
)

−
(

∂V 2
0

∂u1

)
b
(
x1
)

+
(

∂2V 1
0

∂u1∂x2

)(
ρ12

(
x1
)

+ ρ22

(
x1
))

= 0. (34)

ReplacingV 1
0 andV 2

0 in the above equations with (31) and (32), we get the following system of PDEs
for g1

1(x1, x2) andg2
1(x1, x2):

2
(
ρ11(x1) + ρ12(x1)

) ∂g1
1

∂x2
− 2ρ12(x1)

∂g2
1

∂x2
+ b(x1)g2

1 =
(
ρ11(x1) + ρ12(x1)

)
V̈ 2,

2
(
ρ12(x1) + ρ22(x1)

) ∂g1
1

∂x2
− 2ρ22(x1)

∂g2
1

∂x2
− b(x1)g2

1 =
(
ρ12(x1) + ρ22(x1)

)
V̈ 2,

where the dot· denotes the derivative with respect tox2. The general solution to this system is:

g2
1(x1, x2) = f1(x1) e−F (x1) x2

, (35)

g1
1(x1, x2) =

1
2

V̇ 2 +
[
ρ12(x1) +

b(x1)
2 F (x1)

] [
f1(x1)

(ρ11(x1) + ρ12(x1))

]
e−F (x1) x2

+f2(x1). (36)

HereF (x1) :=
b(x1)

[
2ρ12(x1) + ρ11(x1) + ρ22(x1)

]
24

, whereasf1 andf2 are arbitrary functions ofx1.

Hereafter, for simplicity of notations, we will omit thex1 in the material parametersρij(x1) andb(x1).
Following Biot’s notation [5], new material variablesρ1, ρ2 andρ are defined in the following:

ρ1 := ρ11 + ρ12,

ρ2 := ρ12 + ρ22,

ρ := ρ11 + 2 ρ12 + ρ22

7



Similarly, the requirement that theν2
2 term must vanish in both (26) and (27) leads to a system of PDEs

for g1
2 andg2

2 after replacing theλi
j terms in the coefficients ofν2

2 with expressions solved from the
system of (18) to (21). The general solution to this system of PDEs is:

g2
2(x1, x2) =

1
2

V̇ 2 − F (x1) V 2 −G(x1) V 1(x1)x2

−ρ12 + ρ22

ρ
f1(x1) e−F (x1) x2

+ f3(x1), (37)

g1
2(x1, x2) = C1(x1) V 2(x2) + C2(x1)V 1(x1) x2 + C3(x1) V 1(x1)

+C4(x1) f1(x1) e−F (x1) x2
+ C5(x1) (f3(x1)− f2(x1))

+f4(x1) eF (x1) x2
, (38)

Heref3 andf4 are arbitrary functions ofx1 and new material parameter functions are denoted by upper
case Latin letters:

G(x1) := F ′,

C5(x1) :=
(ρ12 + ρ22)

ρ
,

C1(x1) := − 2 ρ12 F + b

2 (ρ11 + ρ12)
= −FC5,

C2(x1) := −C5 G,

C3(x1) :=
−(ρ12 + ρ22) ρ′11 + (ρ11 − ρ22) ρ′12 + (ρ12 + ρ11) ρ′22

ρ2
= C ′

5,

C4(x1) := −(C5)2,

where the prime′ denotes derivatives with respect to variablex1.
At this point, (26) and (27) reduced to

c121 ν2
1 + c111 ν1

1 + c1 = 0, (39)

c221 ν2
1 + c211 ν1

1 + c2 = 0, (40)
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where the coefficients are:

c121 := λ1
1(w

′
3 − w′

2)− λ1
2w

′
3 − (w′

3 − w′
2)V̇2 − 2

(
∂2V 1

0

∂x1∂u2

)
(w1 − w2)

−
(

∂V 1
0

∂u2

)
(w′

1 − w′
2)−

∂

∂x1

[(
−V 1′ +

∂V 2
0

∂u2

)
(w3 − w2)

]
−
(

∂2V 2
0

∂x1∂u2

)
(w3 − w2)

−V1(w
′′

3 − w
′′

2 )− V 1′(w′
3 − w′

2),
c111 := λ1

1(w
′
1 − w′

2) + λ1
2w

′
2 − [V1 (w′

1 − w′
2)]

′

− ∂

∂x

[(
−V1

′ +
∂V 1

0

∂u1

)
(w1 − w2)

]
− (w′

1 − w′
2) V̇ 2

−
(

∂2V 1
0

∂x1∂u1

)
(w1 − w2)− 2

(
∂2V 2

0

∂x1∂u1

)
(w3 − w2)−

(
∂V 2

0

∂u1

)
(w′

3 − w′
2),

c1 := −∂2V 1
0

∂x1
2

(w1 − w2)−
(

∂2V 2
0

∂x1
2

)
(w3 − w2)−

(
∂2V 2

0

∂x2
2

)
ρ12

2

−
(

∂2V 1
0

∂x2
2

)
−ρ11 − ρ12

2
−
(

∂V 1
0

∂x1

)
(w′

1 − w′
2) +

b

2

(
∂V 2

0

∂x2

)
−
(

∂V 2
0

∂x1

)
(w′

3 − w′
2),

c221 := λ2
1 (w′

3 − w′
2)− λ2

2w
′
3 + w3

(
∂2V 2

0

∂x1∂u2

)
+
[
V 1 w′

3

]′
−2w2

(
∂2V 1

0

∂x1∂u2

)
− w′

2

(
∂V 1

0

∂u2

)
+

∂

∂x1

[(
−V 1′ +

∂V 2
0

∂u2

)
w3

]
+ w′

3V̇
2,

c211 := λ2
2w

′
2 + λ2

1 (w′
1 − w′

2)−
∂

∂x1

[(
−V 1′ +

V 1
0

u1

)
w2

]
−
[
V 1 w′

2

]′
−w′

2 V̇ 2 − w2

(
∂2V 1

0

∂x1∂u1

)
+ w′

3

(
∂V 2

0

∂u1

)
+ 2w3

(
∂2V 2

0

∂x1∂u1

)
,

c2 :=
ρ12 + ρ22

2

(
∂2V 1

0

∂x2
2

)
− ∂

∂x1

[
w2

(
∂V 1

0

∂x1

)]
+

∂

∂x1

(
∂V 2

0

∂x1
w3

)
−ρ22

2

(
∂2V 2

0

∂(x2)2

)
− b

2

(
∂V 2

0

∂x2

)
.

The system of equations (18) to (25) and the 6 equationsc121 = 0, c111 = 0, c221 = 0, c211 = 0, c1 = 0,
c2 = 0 contains equations which must be satisfied simultaneously byλ1

1, λ1
2, λ2

1, λ2
2, f2, f3, V 1, V 2, w1,

w2, w3, ρ11, ρ12, ρ22 andb.

Substitute (31) and (32), together with the solutions ofg1
1 , g1

2 , g2
1 andg2

2 in (36)-(37) intoc1 = 0
andc2 = 0. The fact that theu1-term in each these two equations must vanish inK leads to a set two
equations. We then eliminate allV 2(x2) terms to get the following equation:[

(ρ12 + ρ22)2

ρ
w1 − 2(ρ12 + ρ22)w2 + ρw3

] [
f1 e−Fx2

(F ′)2
]
(x2)2

+
[
A1(x1)f1 F

′′
+ A2(x1)f1 (F ′)2 +

(
A3(x1)f ′1 + A4(x1)f1

)
F ′
]
e−Fx2

x2

+A5(x1)e−Fx2
+ A6(x1) = 0,

whereAi, i = 1 ∼ 6 are functions ofx1 only and none of them contain terms withf1 or derivatives ofF .

From the(x2)2-term of the above equation, we conclude thatf1(x1)(F ′)2 = 0 provided (ρ12+ρ22)
2

ρ w1−
2(ρ12 + ρ22)w2 + ρw3 6= 0. We will consider non-constant case first.
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3.1 F ′(x1) 6= 0

For this case, we must havef1 = 0. Noticing the similarity between (22) andc211 = 0, we may use the
former to simplify the latter and then sub.f1 = 0 into the result to get

f ′2w2 = 0.

Sincew2 > 0, we must havef ′2 = 0, ie. f2 = f2c for some constantf2c. Applying this information to
theu1-term inc1 = 0 andc2=0, we conclude that

...
V 2 = 0.

Let V 2 := a2 (x2)2 + a1 x2 + a0, with constantsa2, a1 anda0. Sub. this and{f1 = 0, f2 = f2c} into
theu2-term inc2 = 0, the(x2)2-term gives

a2 (C ′
1w2 + F ′w3)

′ + f4(F ′)2w2e
Fx2

= 0.

Therefore, forF ′ 6= 0, it must be thatf4 = 0. Note that (18) and (19) constitute a system of linear
equations forλ2

1 andλ2
2 with non-zero Jacobian4. We solve this system forλ2

1 andλ2
2 and substitute

the results into (22). After replacingV 1
0 andV 2

0 with (31) and (32) and applying{f1 = 0, f4 = 0}, we
obtain the following equations:

(2112) 2w3V̇ 2 − 2w3V
1′ +

{(
−1
ρ∆

)
[(ρ12 + ρ22)(−ρ22w2 + (ρ12 + ρ22)w3)ρ′11

+
(
(ρ22ρ11 − ρ12ρ11 − 2ρ2

12)w2 + (ρ11 + ρ12)2w3

)
ρ′22

+2(ρ11 + ρ12)(ρ22w2 − (ρ12 + ρ22)w3)ρ′12] + w′
3}V 1 = 0.

Note that in this equation, onlyV 2 is a function ofx2. Therefore,V̇ 2 must be a constant. This implies
that a2 = 0,i.e. V 2 = a1x

2 + a0. Consequently, the system ofc1 = 0 andc2 = 0 reduces to the
following equations:{[

(w2 − w3)
(
(GV 1)′ + a1F

′)′]′ + [(w1 − w2)(a1C
′
1 + (C2V

1)′
]′}

u2x2

+
{[

(w1 − w2)(a0C1 + C3V
1 + C5f3 − f2cC5)′

]′
+ [(a0F

′ − f ′3)(w2 − w3)]
′ + (a1F + GV 1)b/2

}
u2

+
{

(w1 − w2)
∂2g1

3

∂x1
2
− (w2 − w3)

(
∂2g2

3

∂x1
2

)
+

ρ12

2

(
∂2g2

3

∂x2
2

)
− (ρ11 + ρ12)

2

(
∂2g1

3

∂x2
2

)
+
(

∂g1
3

∂x1

)
(w′

1 − w′
2) +

b

2

(
∂g2

3

∂x2

)
−(w′

2 − w′
3)
(

∂g2
3

∂x1

)}
= 0, (41){[

w3

(
(GV 1)′ + a1F

′)′]′ + [w2(a1C
′
1 + (C2V

1)′
]′}

u2x2

+
{[

w2(a0C1 + C3V
1 + C5f3 − f2cC5)′

]′
− [(a0F

′ − f ′3)w3]
′ − (a1F + GV 1)b/2

}
u2

+
{

w2
∂2g1

3

∂x1
2
− w3

(
∂2g2

3

∂x1
2

)
+

ρ22

2

(
∂2g2

3

∂x2
2

)
− (ρ12 + ρ22)

2

(
∂2g1

3

∂x2
2

)
+w′

2

(
∂g1

3

∂x1

)
+

b

2

(
∂g2

3

∂x2

)
− w′

3

(
∂g2

3

∂x1

)}
= 0. (42)
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After using (22), (23), (24) and (25) to simplifyc221 = 0, c211 = 0, c111 = 0 andc121 = 0, respectively,
and substituting in{f1 = 0, f2 = f2c, f4 = 0, V 2 = a1x

2 +a0}, c211 = 0 andc111 = 0 become0 = 0
whereasc221 = 0 andc121 = 0 become:{

[a1F
′ + (GV 1)′]w3 + [a1C

′
1 + (C2V

1)′]w2

}
x2

+
{
[a0F

′ − f ′3]w3 + [a0C1 + C3V
1 + C5f3 − f2cC5]′w2

}
= 0, (43)

{[
a1F

′ + (GV 1)′
]
(w2 − w3) +

[
a1C

′
1 + (C2V

1)′
]
(w1 − w2)

}
x2

+ {[a0F
′ − f ′3] (w2 − w3)

+
[
a0C1 + C3V

1 + C5f3 − f2cC5

]′
(w1 − w2)

}
. (44)

Noting that by the independence condition of the coordinates ofK, the above four equations inK give a
system of ten equations. The two equations resulting from the constant term in (41) and (42) constitute a
system of second-order PDEs forg1

3 andg2
3 . We will refer to this system of equations as theg3-equations

and analyze the other eight equations first.

Because of the assumptionw3w1 − w2
2 > 0, thex2 terms in (44) and (43) imply the following two

equations:

a1F
′ + (GV 1)′ = 0, (45)

a1C
′
1 + (C2V

1)′ = 0, . (46)

Similarly, the constant terms in (44) and (43) give

a0F
′ − f ′3 = 0, (47)

(a0C1 + C3V
1 + C5f3 − f2cC5)′ = 0. (48)

Applying (45)-(48) to (41) and (42), it can be easily seen that the two equations given by theu2x2 terms
are satisfied automatically whereas the two equations given by theu2 term reduce to

(a1F + GV 1)b = 0.

Since the dissipation functionb(x1) 6= 0, we must have

a1F + GV 1 = 0, (49)

and this equation in turns imply (45) and (46) because of the relationsC1(x1) = −F (x1)C5(x1) and
C2(x1) = −F ′(x1)C5(x1). Therefore, the ten equations from (41), (42), (43) and (44) reduce to the
g3-equations and the equations of (47), (48) and (49).

In the system of equations (18) to (25), note that (18) and (19) constitute a system of linear equations
for λ2

1 andλ2
2 whereas (20) and (21)forλ1

1 andλ1
2 with non-zero Jacobian4. We solve this system forλi

j

and substitute the results into (22)-(25). ReplacingV 1
0 andV 2

0 with (31) and (32), followed by applying
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{
f1 = 0, f2 = f2c, f3 = a0F + f3c, f4 = 0, V 2 = a1x

2 + a0

}
to these equations, (22)-(25) become

(2112) : −2w3
dV 1

dx1
+
[
w′

3 +
(

C3ρ

4

)
(ρ2w3 − ρ22w2) +

(
ρ′22
4

)
(ρ12w2 − ρ1w3)

+
(

ρ′12
4

)
(ρ2w3 − ρ22w2)

]
V 1 + 2a1w3 = 0, (50)

(2111) : 2w2
dV 1

dx1
+
[
−w′

2 +
(

C3ρ2

4

)
Rw +

(
ρ′22
4

)
(ρ1w2 − ρ12w1)

+
(

ρ′12
4

)
(ρ22w1 − ρ2w2)

]
V 1 − 2a1w2 +

(
Rw

ρ

)
(f2c − f3c) = 0, (51)

(1111) : 2w1
dV 1

dx1
+
[
−w′

1 −
(

C3ρ

4

)
(Rw) +

(
ρ′11
4

)
(ρ2w2 − ρ22w1) +

(
ρ′12
4

)
[(ρ22 − ρ11)w2

+ (ρ12 − ρ22)w1] +
(

ρ′22
4

)
(ρ12w1 − ρ1w2)

]
V 1 − 2a1w1 = 0, (52)

(1112) : (2w3 − 2w2)
dV 1

dx1
+
[
w′

2 − w′
3 +

(
C3

4

)
(−4w1 − ρρ12w2 + ρρ1w3)

+
(

ρ′11
4

)
(ρ2w3 − ρ22w2) +

(
ρ′12
4

)
(ρ12w2 − ρ1w3)

]
V 1 + 2a1(w2 − w3)

+
Rw

ρ
(f2c − f3c) = 0, (53)

whereRw := ρ2w1−ρw2, which is non-zero because ofAssump 1. The correspondingV 1
0 andV 2

0 are:

V 1
0 = (a1C1(x1) + C2(x1)V 1)u2x2 +

(a1

2
+ f2c

)
u1

+
[
a0C1(x1) + C3(x1)V 1 + C5(x1)(a0Fcb(x1) + f3c − f2c)

]
u2 + g1

3(x1, x2),

V 2
0 =

[
−a1F (x1)−G(x1)V 1

]
u2x2 +

(a1

2

)
u2 + g2

3(x1, x2),

whereg1
3 andg2

3 satisfies theg3-equations, which is the same as the equations in (PE), i.e.{g1
3 , g2

3}
is any solution to (PE). Therefore, thegi

3 terms inV i
0 arise from the fact that the equations in (PE) are

linear and hence satisfies the superposition principle (ie. the translation of any solution by a solution
gives a solution). The isovector field for this case solves the system which consists of theg3-equations
and equations (48)-(53).

3.2 F ′(x1) = 0

In this case, we haveF (x1) = F∗ for some constantF∗ andG(x1) = C2(x1) = 0. Adding (23) into the
equationc221 = 0, followed by substituting into it (31), (32) and{F (x1) = F∗, G(x1) = C2(x1) = 0},
equationc221 = 0 becomes[

(f1C5)
′
w2 + f ′1w3

]
e−F∗x2

− f ′2w2 = 0. (54)

BecauseF∗, w2 6= 0, (54) implies

(f1C5)
′
w2 + f ′1w3 = 0,

f2(x1) = f2c,

for some constantf2c. Similarly, adding (24) toc111 = 0 and consideringf2 = f2c result in another
equations forf1:

(w1 − w2) (f1C5)
′
w2 + f ′1(w2 − w3) = 0. (55)
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Equations (55) and (54) imply thatf1(x1) = f1c for some constantf1c becausew1w3 − w2
2 6= 0.

Furthermore, subtracting1/2 times the derivative of the equationc211 = 0 from theu1 term inc2 = 0,
together with{f1(x1) = f1c, f2(x1) = f2c}, we get

f1cF∗
(
F∗ρ2(x1)C5(x1) + b(x1)− F∗ρ22

)
e−F∗x2

+
ρ2

2

...
V 2 = 0. (56)

Similarly, from theu1 term inc1 = 0 and the equationc111 = 0, we obtain

fcF∗b(x1)e−F∗x2
− ρ1(x1)

...
V 2 = 0. (57)

Eliminating the
...
V 2 term in the above two equations result in

f1cρ(x1)2b(x1)e−F∗x2

4
= 0.

This impliesf1c = 0. Consequently, we have
...
V 2 = 0, ie.

V 2(x2) = a2(x2)2 + a1x
2 + a0, for some constantsa2, a1 anda0. (58)

Substituting{f1 = 0, f2 = f2c, V
2(x2) = a2(x2)2 + a1x

2 + a0} into the four equationsc111 = 0,
c121 = 0, c211 = 0 andc221 = 0, both c111 = 0 andc211 = 0 are satisfied automatically whereas
c121 = 0 c221 = 0 reduce to the following equations:

(c121 = 0) : [a2(w1 − w2)C ′
1] (x

2)2 − [a1C
′
1(w1 − w2)]x2 − f4(x1)′(w1 − w2)eF∗x2

−
{

a0C
′
1 +

[
C5(f3(x1)− f2c)

]′
+ (C3V

1)′
}

(w1 − w2) + f ′3(w2 − w3) = 0,(59)

(c221 = 0) : [a2w2C
′
1] (x

2)2 + [a1C
′
1w2]x2 + (f4(x1)′w2)eF∗x2

+
{

a0C
′
1 +

[
C5(f3(x1)− f2c)

]′
+ (C3V

1)′
}

w2 − f ′3w3 = 0., (60)

From (59) and (60), it can be shown that

f4 = f4c, f3 = f3c,

for some constantf4c andf3c.

Substituting into (22) theλ2
1 andλ2

2 solved from the system of (18) and (19) and (31), (32), followed
by {F = F∗, G = 0, C2 = 0, f1 = 0, f2 = f2c, f3 = f3c, f4 = f4c, V

2 = a2(x2)2 + a1x
2 + a0}, the

coefficient ofx2 in (22) is16w3a2. Therefore, we must havea2 = 0. Consequently, equations (41) and
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(42) become:

(c1 = 0) : −2 [a1(w1 − w2)C ′
1]
′
u2x2

+
{

f4cF
2
∗ ρ1e

F∗x2
− 2

{
(w1 − w2)

[
C5(f3c − f2c) + C3V

1 + a0C1

]′}′ − a1F∗b

}
u2

− 2
{

(w1 − w2)
∂2g1

3

∂x1
2
− (w2 − w3)

(
∂2g2

3

∂x1
2

)
+

ρ12

2

(
∂2g2

3

∂x2
2

)
− (ρ11 + ρ12)

2

(
∂2g1

3

∂x2
2

)
+
(

∂g1
3

∂x1

)
(w′

1 − w′
2) +

b

2

(
∂g2

3

∂x2

)
−(w′

2 − w′
3)
(

∂g2
3

∂x1

)}
= 0, (61)

(c2 = 0) : −2 [a1w2C
′
1]
′
u2x2

+
{

f4cF
2
∗ ρ2e

F∗x2
− 2

{
w2

[
C5(f3c − f2c) + C3V

1 + a0C1

]′}′
+ a1F∗b

}
u2

− 2
{

w2
∂2g1

3

∂x1
2
− w3

(
∂2g2

3

∂x1
2

)
+

ρ22

2

(
∂2g2

3

∂x2
2

)
− (ρ12 + ρ22)

2

(
∂2g1

3

∂x2
2

)
+w′

2

(
∂g1

3

∂x1

)
+

b

2

(
∂g2

3

∂x2

)
− w′

3

(
∂g2

3

∂x1

)}
= 0. (62)

From (61) and (62), it can be seen that

f4c = 0, a1 = 0.

Therefore, the system of (39) and (40) reduce to the system ofg3-equations and the following equation:[
−C5(a0F∗ + f2c − f3c) + C3V

1
]′

= 0, (63)

and the equations (18)-(25) are equivalent with the following four equations:

(2112) : −2w3
dV 1

dx1
+
[
w′

3 +
(

C3ρ

4

)
(ρ2w3 − ρ22w2) +

(
ρ′22
4

)
(ρ12w2 − ρ1w3)

+
(

ρ′12
4

)
(ρ2w3 − ρ22w2)

]
V 1 = 0, (64)

(2111) : 2w2
dV 1

dx1
+
[
−w′

2 +
(

C3ρ2

4

)
Rw +

(
ρ′22
4

)
(ρ1w2 − ρ12w1)

+
(

ρ′12
4

)
(ρ22w1 − ρ2w2)

]
V 1 +

(
Rw

ρ

)
(a0F∗ + f2c − f3c) = 0, (65)

(1111) : 2(w1 − w2)
dV 1

dx1
+
[
(w′

2 − w′
1) +

(
C3ρ1

4

)
(Rw) +

(
ρ′11
4

)
(ρ2w2 − ρ22w1)

+
(

ρ′12
4

)
(ρ1w2 − ρ12w1) +

]
V 1 −

(
Rw

ρ

)
(a0F∗ + f2c − f3c) = 0, (66)

(1112) : (2w3 − 2w2)
dV 1

dx1
+
[
w′

2 − w′
3 +

(
C3

4

)
(−w14− ρρ12w2 + ρρ1w3)

+
(

ρ′11
4

)
(ρ2w3 − ρ22w2) +

(
ρ′12
4

)
(ρ12w2 − ρ1w3)

]
V 1

+
Rw

ρ
(a0F∗ + f2c − f3c) = 0. (67)

whereRw := ρ2w1 − ρw2, which is non-zero because ofAssump 1. The isovector field for this case
solves the system which consists of theg3-equations, and equations (63)-(67).
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4 Similarity solutions of special cases

Definition 4.1 (Similarity Solution). A mapΦ:Bn → K is a similarity solution generated by an isovec-
tor field V of the balance ideal iffΦ is a solution map of the balance ideal that satisfies the first-order
differential constraints

Φ∗(V cCα) = 0, α = 1, . . . , N.

A similarity solution generated byV satisfies

Φ∗B = 0, Φ∗µ 6= 0, Φ∗(V cCα) = 0, α = 1, . . . , N.

Note that in terms of this representation of the isovector field (3), the conditionsφ∗(V cCα) = 0,
α = 1, 2, in the above definition give the following system of quasi-linear first-order PDEs:

V 1 ∂u1

∂x
+ V 2 ∂u1

∂t
= V 1

0 ,

V 1 ∂u2

∂x
+ V 2 ∂u2

∂t
= V 2

0 .

The above equations were used to derive the system of differential equations in terms of the similarity
variableξ which is found by solving the system ofdx

dξ = V 1 and dt
dξ = V 2.

4.1 Special cases of constantρij(x)

4.1.1 Nonconstantb(x)

Here, we consider the case when the inertia coupling functionsρ11(x), ρ12(x) andρ22(x) are constant
functions. In this case, we haveC3 = 0 andF (x1) = Fcb(x1) for some constantFc. This corresponds
to the case ofF ′(x) 6= 0 in the previous section. It can be deduced from (50) to (53) thatf2c = f3c and
consequently equation (48) is satisfied identically. Therefore, the projection of the isovector field onto
the graph space is:

b′(x)V 1 = −a1b(x), (68)

V 2 = a1t + a0, (69)

V 1
0 =

[
a1C1(x) + C2(x)V 1

]
tu2 +

(a1

2
+ f2c

)
u1 + a0C1(x)u2 + g1

3(x, t), (70)

V 2
0 =

(a1

2
− a0Fcb(x) + f3c

)
u2 + g2

3(x, t), (71)

and the equations (50)-(53) reduce to the following three equations:

2w3(V 1)′ − w′
3V

1 − 2a1w3 = 0, (72)

2w2(V 1)′ − w′
2V

1 − 2a1w2 = 0, (73)

2w1(V 1)′ − w′
1V

1 − 2a1w1 = 0. (74)

It can be derived from these three equations that(
w2

w3

)′
V 1 =

(
w1

w2

)′
V 1 =

(
w1

w3

)′
V 1 = 0.

Therefore,V 1 is non-zero only ifw1(x) = k1w3(x) andw2(x) = k2w3(x) for some positive constants
k1 andk2. We will discuss these two cases in the following.
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• For arbitrarywi(x), i = 1, 2, 3.
For this case, from (68) with the assumption thatb(x) 6= 0 for anyx, we conclude thata1=0. Thus
the following isovector field:

V 1 = 0, (75)

V 2 = a0, (76)

V 1
0 = f3cu

1 + g1
3(x, t), (77)

V 2
0 = f3cu

2 + g2
3(x, t). (78)

For non-trivial symmetry, we must havea0 6= 0. Letting g1
3 = 0 and g2

3 = 0, the similarity
solutions have the following form:

u1(x, t) = U(x)e
f3c
a0

t, (79)

u2(x, t) = V (x)e
f3c
a0

t, (80)

whereU(x) andV (x) satisfy the following set of ODEs:

2(w1 − w2)U ′′ + 2(w3 − w2)V ′′ + 2(w′
1 − w′

2)U
′ + 2(w′

3 − w′
2)V

′

−f3cb(x)
a0

− f2
3c(ρ11 + ρ12)

a2
0

U +
f2
3cρ12

a2
0

V = 0,

2w2U
′′ − 2w3V

′′ + 2w′
2U

′ − 2w′
3V

′ +
f3cb(x)

a0
V − f3

3c(ρ12 + ρ22)
a2
0

U +
f2
3cρ22

a2
0

V = 0.

• Forw1(x) = k1w3(x) andw2(x) = k2w3(x).
In this case, we are left with only two equations:

b′(x)V 1 + a1b(x) = 0, (81)

2w3(V 1)′ − w′
3V

1 − 2a1w3 = 0. (82)

The general solution to (82) is

V 1(x) =
√

w3(x)

[∫ x

0

a1√
w3(ζ)

dζ + k

]
, (83)

for some constantk. If wi(x), i = 1, 2, 3, are constant functions, it can be seen thatb(x) must
have the form

b(x) =
c∗

a1x + c0
.

V 1 = a1x + c0,

V 2 = a1t + a0,

V 1
0 =

(a1

2
+ f2c

)
u1 + g1

3 ,

V 2
0 =

(a1

2
+ f2c

)
u2 + g2

3 .

The similarity variable is:

ξ =
a1x + c0

a1t + a0
,
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and the corresponding ODEs are:[
−2w2ξ

2 + 2w3ξ
2 + ρ12ξ

4
]
Vξξ +

[
(2a1 + 4f3c)(w3 − w2)ξ +

c∗

a1
ξ2 + 2ρ12ξ

3

]
Vξ

+ [2w3 − 2w2]
[a1

2
+ f3c

] [a1

2
+ f3c − 1

]
V +

[
2w1ξ

2 − 2w2ξ
2 − (ρ11 + ρ12)ξ4

]
Uξξ

+
[
(2a1 + 4f3c)(w1 − w2)ξ − 2(ρ11 + ρ12)ξ3

]
Uξ + [2w1 − 2w2]

[a1

2
+ f3c

] [a1

2
+ f3c − 1

]
U = 0,[

−2w3ξ
2 + ρ22ξ

4
]
Vξξ +

[
−(2a1 + 4f3c)w3ξ −

c∗

a1
ξ2 + 2ρ22ξ

3

]
Vξ

−2w3

[a1

2
+ f3c

] [a1

2
+ f3c − 1

]
V +

[
2w2ξ

2 − (ρ12 + ρ22)ξ4
]
Uξξ

+
[
(2a1 + 4f3c)w2ξ − 2(ρ12 + ρ22)ξ3

]
Uξ + 2w2

[a1

2
+ f3c

] [a1

2
+ f3c − 1

]
U = 0.

4.1.2 Constantb(x)

In this case, we haveC3 = 0 andb(x) = bc for some constantbc. From (64), (65) and (67), it can be
seen that we must as well have

a0F∗ + f2c − f3c = 0.

The equations (63) to (67) reduce to the following three equations:

2w1(V 1)′ − w′
1V

1 = 0,

2w2(V 1)′ − w′
2V

1 = 0,

2w3(V 1)′ − w′
3V

1 = 0.

These three equations imply(
w1

w2

)′
V 1 =

(
w3

w2

)′
V 1 =

(
w1

w3

)′
V 1 = 0.

• wi(x), i=1,2,3, are arbitrary.
In this case, we have

V 1 = 0,

V 2 = a0,

V 1
0 = f2cu

1 + g1
3 ,

V 2
0 = f2cu

2 + g2
3 .

Lettingg1
3 = 0 andg2

3 = 0, we obtain similarity solutions of the following form:

u1(x, t) = U(x)e
f2c
a0

t, (84)

u2(x, t) = V (x)e
f2c
a0

t, (85)

whereU(x) andV (x) satisfy the following ODE’s.

2(w1 − w2)U ′′ + 2(w3 − w2)V ′′ + 2(w′
1 − w′

2)U
′ + 2(w′

3 − w′
2)V

′

+
(

ρ12f
2
2c − a0f2cbc

a2
0

)
V −

[
f2
2c(ρ11 + ρ12)

a2
0

]
U = 0,

−2w2U
′′ + 2w3V

′′ − 2w′
2U

′ + 2w′
3V

′ −
(

ρ22f
2
2c + a0f2cbc

a2
0

)
V +

[
f2
2c(ρ12 + ρ22)

a2
0

]
U = 0,
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• w1(x) = k1w3(x), w2(x) = k2w3(x) for some constantsk1 andk2.
For this case, we have

V 1(x) = b0

√
w3(x), for some constantb0.

For the case ofconstantw3, we have

V 1 = b0, (86)

V 2 = a0, (87)

V 1
0 = f2cu

1 + g1
3 , (88)

V 2
0 = f2cu

2 + g2
3 . (89)

Lettingg1
3 = 0, g3

2 = 0 and fora0 6= 0, we have the following similarity solutions:

u1(ξ, t) = U(ξ)e(
f2c
a0

)t, (90)

u2(ξ, t) = V (ξ)e(
f2c
a0

)t, (91)

with the similarity variableξ being

ξ = x− b0

a0
t,

andU(ξ) andV (ξ) satisfying the following set of ODEs:[
−2w2 + 2w3 +

ρ12b
2
0

a2
0

]
Vξξ +

[
bcb0

a0
− 2ρ12b0f2c

a2
0

]
Vξ +

[
−bcf2c

a0
+

ρ12f
2
2c

a2
0

]
V

+
[
−2w2 + 2w1 −

(ρ11 + ρ12)b2
0

a2
0

]
Uξξ +

[
2(ρ11 + ρ12)b0f2c

a2
0

]
Uξ −

[
(ρ11 + ρ12)f2

2c

a2
0

]
U = 0,[

−2w3 +
ρ22b

2
0

a2
0

]
Vξξ +

[
−bcb0

a0
− 2ρ22b0f2c

a2
0

]
Vξ +

[
bcf2c

a0
+

ρ22f
2
2c

a2
0

]
V

+
[
2w2 −

(ρ12 + ρ22)b2
0

a2
0

]
Uξξ +

[
2(ρ12 + ρ22)b0f2c

a2
0

]
Uξ −

[
(ρ12 + ρ22)f2

2c

a2
0

]
U = 0,

Lettingg1
3 = 0, g3

2 = 0 and fora0 = 0, the similarity solutions take the following form:

u1(x, t) = U(t)e
f2c
b0

x, (92)

u2(x, t) = V (t)e
f2c
b0

x, (93)

whereU(t) andV (t) satisfy the following set of ODE’s:

b2
0(ρ11 + ρ12)Ü − b2

0ρ12V̈ + b2
0bcV̇ + 2f2

2c(w2 − w1)U + 2f2
2c(w2 − w3)V = 0,

b2
0(ρ12 + ρ22)Ü − b2

0ρ22V̈ − b2
0bcV̇ − 2f2

2cw2U + 2f2
2cw3V = 0.
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