
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY 2006 145
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Abstract—The processing of airborne synthetic aperture radar
(SAR) data requires a precise compensation of the deviations of the
platform movement from a straight line. This is usually carried out
by recording the trajectory with a high-precision navigation system
and correcting them during SAR focusing. However, due to the
lack of accuracy in current navigation systems, residual motion er-
rors persist in the images. Such residual motion errors are mainly
noticeable in repeat-pass systems, where they are causing time-
varying baseline errors, visible as artefacts in the derived phase
maps. In this letter, a refined method for the estimation of time-
varying baseline errors is presented. An improved multisquint pro-
cessing approach is used for obtaining robust estimates of higher
order baseline errors over the entire scene, even if parts of the
scene are heavily decorrelated. In a subsequent step, the proposed
method incorporates an external digital elevation model for detec-
tion of linear and constant components of the baseline error along
azimuth. Calibration targets in the scene are not necessary.

Index Terms—Baseline refinement, calibration, interferometry,
motion compensation, repeat-pass, synthetic aperture radar
(SAR).

I. INTRODUCTION

A IRBORNE synthetic aperture radar (SAR) systems
usually record the platform movement to later carry out

motion compensation during data processing. However, any
motion compensation approach is restricted by the quality of
the sensor’s navigation system, which is nowadays typically
limited to a precision of about 1–5 cm. Uncompensated motion
errors cause artefacts in the images, among the most important
are geometric distortions and phase errors. If a high-precision
navigation system is used, such errors are often very small and
can be neglected in most applications.

However, this is not the case for interferometric repeat-pass
systems. Residual motion errors of each flight track are inde-
pendent and introduce an unknown time-varying baseline error.
In contrast to single-pass systems, residual phase errors caused
by this unknown baseline variation do not cancel out during in-
terferogram generation. Even in case of a high-precision navi-
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gation system this effect may cause significant phase errors in
range and azimuth direction, in principle corresponding to the
projection of the time-varying baseline error onto the radar line
of sight (LOS).

Recently, there have been some efforts to estimate time
varying baseline errors from the processed InSAR data itself
and to correct them in a postprocessing step [1]–[4]. However,
all of these methods have certain limitations. The methods
described in [2] and [3] fully account for the range-dependency
of residual phase errors but are unstable in case of low coher-
ence. In contrast, one of the solutions presented in [4] provides
only a one-dimensional solution but is very stable in case of
decorrelated data sets. Common to all methods is a critical
integration step, which relies on high-quality estimates of the
derivatives of the residual phase errors.

This letter proposes a refined method for the estimation of
time-varying baseline errors that uses the same principle as the
two prior methods, but combines the advantages of both in a
single algorithm. In Section II-B, an enhanced multisquint pro-
cessing approach, similar to the one described in [4], is pre-
sented. This algorithm provides robust estimates of the deriva-
tive of the baseline errors over the entire image, even if some
parts of the scene are completely decorrelated. As described in
Section II-C, a complete two-dimensional solution can be cal-
culated by a least-square-based estimation, allowing to correctly
take into account the variation of phase errors along azimuth and
range direction. In a subsequent step, presented in Section II-D,
the refined method incorporates an external DEM for the detec-
tion of linear components of the baseline error along azimuth,
as well as constant baseline offsets. Finally, in Section III, the
new algorithm is exemplarily applied on an airborne L-band
repeat-pass scene acquired by the German Aerospace Center
(DLR) experimental airborne SAR E-SAR.

II. ESTIMATION OF TIME-VARYING BASELINE ERRORS

A. Standard Multisquint Processing

A full-resolution SAR image is composed of signal con-
tributions with squint angles of a certain range, defined by the
length of the processed synthetic aperture and the mean squint
angle of the imaging geometry. Out of a full-resolution SAR
image with azimuth bandwidth , several subaperture images

, with reduced bandwidth and different mean squint angles,
can be formed. Without loss of generality, in the following a
mean squint angle of zero will be assumed for the full-reso-
lution SAR image.

Interesting in the context of this letter is the effect of mo-
tion errors in the individual subaperture images. As long as
the processing is performed in zero-Doppler geometry, the ac-
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Fig. 1. Standard subaperture processing. Case A: processing with zero squint.
Case B: processing with squint �. A different part of the residual motion error
is mapped onto the processed region.

tual image information remains at the same place for all pro-
cessed subapertures. However, residual phase errors and the cor-
responding geometrical distortions are not identical, as an aper-
ture, shifted in azimuth by

(1)

relative to the one of the case was used for processing,
with denoting the range, and the mean processing squint
of the subaperture. As depicted in Fig. 1, different parts of the
uncompensated motion error are mapped onto the same part of
the SAR image.

A possibility of estimating residual motion errors would be
to process a SAR image twice with different squint angles. The
phase difference between the two subapertures should corre-
spond to the difference of the residual motion error, i.e., to the
local derivative of the error. Integrating it leads to the residual
error itself. However, this approach works only for point-like
targets; in case of distributed targets, different part of the ground
reflectivity are present in the subapertures, which causes com-
plete decorrelation.

Using interferometry, this problem can be solved: the forma-
tion of the interferogram eliminates the influence of the targets
reflectivity. Certainly, information about motion errors in the in-
dividual tracks are lost and only a time-varying baseline error
can be estimated. This approach requires to split both image
spectra into positive and negative Doppler-frequencies and to
form a differential interferogram between the two subaperture
interferograms [5]. Assuming no prior azimuthal coregistration
of the image pair, an estimation of the derivative of the baseline
error can be obtained on a pixel-by-pixel basis by [1], [2]

(2)

with denoting the forward velocity, the spectral separa-
tion of the subapertures, and subaperture 1 of image 1
and 2, and and subaperture 2 of image 1 and 2, respec-
tively. It has to be noted, that, strictly seen, there are additional
phase components in (2) which are not related to baseline errors.
Also large terrain deformations or velocity errors might cause
azimuthal phase effects. Usually their influence is very small;

Fig. 2. Enhanced multisquint processing. The baseline error at a low-coherent
azimuth position can still be measured as long as it is surrounded by higher
coherent regions.

in the following such residual terms will be neglected. How-
ever, significant phase errors are caused by crosstalk between
topography and motion compensation [10], [11]. which have to
be corrected before carrying out (2).

B. Enhanced Multisquint Processing

A major problem in the approach of Section II is the pres-
ence of decorrelated regions, in which no estimation can be per-
formed. A better approach is to use more than two subapertures
with smaller bandwidth. Splitting the image into subapertures
of bandwidth , separated by , spectral diver-
sity phases can be calculated between subaperture and
subaperture .

(3)

Each is proportional to the derivative of the baseline error,
but, due to the smaller spectral separation of the subapertures,
less accurate than the normal spectral diversity solution [5].
Additionally, appears shifted by in azimuth (1)
compared to a zero squint solution, with .
Phase wrapping effects can be avoided by selecting subapertures
with sufficient small spectral separation [5]. Forming a weighted
coherent average of all available , an improved solution can
be obtained

(4)

with denoting the shift operation in azimuth by
and the absolute value of the complex inter-

ferometric coherence of . This approach makes it possible to
limit the negative influence of low coherent areas. As illustrated
in Fig. 2, the error of a certain part of the sensor trajectory is
contained in every subaperture. Each one maps the error onto
different areas of the imaged scene with possibly different
coherence. Consequently, it might be possible to measure the
baseline error over decorrelated areas by using information
coming from with different squint angles. This assumption
is valid as long as within a distance smaller than the total length
of the synthetic aperture some coherent region is existing. As
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Fig. 3. Enlargement of high-coherent regions by enhanced multisquint
processing. (Left column) Estimated @E=@x. (Right column) Estimated
weightsW. (Top) After processing only the first subaperture. (Middle) After
processing one third of the bandwidth. (Bottom) Final solution.

illustrated in Fig. 3, decorrelated regions in the first
shrink step by step while adding new , weighted by their
individual .

A sufficiently large subaperture separation ensures a high sen-
sitivity to motion errors [5], while short subapertures allow a
better estimation of high-frequent errors [6]. The optimal choice
of subaperture bandwidth and separation in (4) depends on both
the coherence and the amount of residual motion errors and has
not been statistically derived yet. Empirically it was found that
about five to seven nonoverlapping subapertures out of the full
bandwidth seem to be a good compromise at L-band.

C. Model-Based Integration

The enhanced solution of (4) represents the derivative in az-
imuth of the time-variant baseline error in LOS direction.
Apart from its azimuth dependency, is varying with range,
too. The reason is the change of the LOS direction from near
range to far range. To obtain the baseline error itself, it is neces-
sary to integrate along azimuth for each range distance
[2], [6]. This integration is a critical step, since decorrelated sec-
tions of in some of the ranges might prevent a proper
solution for these ranges.

As shown in Section II-B, the influence of small decorrelated
regions can be eliminated by enhanced multisquint processing.
However, it cannot be expected that it is possible to blind out all
decorrelated sections for all range distances, particularly when
low-coherent data are analyzed. In this case, a robust model-
based integration approach is preferable. The derivative of the
baseline error in LOS for range-bin at a given azimuth position
can be calculated1 from the derivative in horizontal direction

and the derivative in vertical direction

(5)

using the local off-nadir angle , calculated using an external
DEM (see Section II-D). As are known for all range-bins
of the scene, the baseline error in LOS direction of a given
range-line depends only on two free parameters, and

. They can be estimated from only two individual co-
herent pixels within the range-line. Once they are known, it is
possible to integrate them individually along azimuth and to cal-
culate for the entire scene, i.e., even for completely decorre-
lated regions.

In most cases the problem is strongly overdetermined, as very
likely there are more than two coherent pixels existing in a range
line. This holds in particular when the enhanced multisquint pro-
cessing of Section II-B was applied, which enlarges coherent re-
gions close to the length of the synthetic aperture. In the overde-
termined case, a least squares solution can be obtained using

with

...
... (6)

from the vector formed by the LOS estimations
of an entire range line.

Equation (6) does not yet differentiate between high-co-
herent and low-coherent pixels. To achieve this, a weighted
least squares estimation (WLS)

(7)

can be used. denotes a weighting matrix, which has,
in the case of uncorrelated noise, the form [7]

(8)

with denoting the standard deviation of the signal at
range-bin . Reasonable values for can easily be obtained
from the interferometric coherence [8]

with (9)

and denoting the number of looks. This means that for com-
puting the standard deviation, the mean value of the individual
complex subaperture coherences is used. This ensures that the

1The sign in (5) depends on the look direction of the sensor (left or right).
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enlarged high-coherent regions are correctly taken into account.
Additionally, it is helpful to define a coherence threshold (e.g.,
0.2), under which is set to zero.

The result of the inversion of (7) are robust estimates of
and . From few coherent pixels the inversion

over the entire scene can be performed. Only two coherent
pixels with significantly different range are required for every
azimuth bin, with the advantage that prior to the inversion,
coherent information of single pixels is spread along azimuth
during the enhanced multisquint processing. For azimuth posi-
tions with less than two valid pixels, interpolation is required
before the integration along azimuth is performed.

D. Estimation of Constant and Linear Baseline Errors

One remaining problem during integration of and
are the unknown integration constants. They represent an un-
known constant baseline error, which can principally not be es-
timated by the proposed approach. Its main effect in the SAR
interferogram are nonlinear residual fringes in range direction.
Another problem is the correct estimation of linear baseline er-
rors. In case of a small global misregistration between the im-
ages in azimuth, the estimates of (4) are biased by a constant
offset, which is not caused by a baseline error. The consequence
is that, after integration, an erroneous linear component appears
in the estimated baseline errors, basically provoking a linear
fringe pattern in azimuth. Therefore, it is advisable to subtract
the mean before integration of and , leaving
the linear baseline error as an unknown.

As both components cannot be estimated from the data alone,
a different approach has to be taken. A simple possibility is
to use an external digital elevation model (DEM), like for ex-
ample the one acquired during the Shuttle Radar Topography
Mission (SRTM) (see http://www.jpl.nasa.gov/srtm/), to com-
pare the final fringe pattern after compensation of higher order
baseline errors with synthetic fringes generated from the DEM
[9]. The spatial resolution of the external DEM is of low im-
portance, as it is only desired to estimate 4 parameters of the
baseline error, the two constant and the two linear terms of
and , respectively.

After correcting higher order terms, as described in the
previous two sections, the remaining baseline error at
range-bin and azimuth-bin can be modeled as

(10)

with and denoting the constant and linear terms of the
baseline error, and the azimuth position at bin .
can be directly measured by subtracting a synthetic interfero-
gram, calculated from the external DEM after backgeocoding
to slant-range geometry, from the SAR interferogram obtained
after applying the refined residual corrections and scaling the re-
sult by . If necessary, the residual interferogram has to be
unwrapped before scaling, which is relatively uncritical in this
case, since only very few residual fringes can be expected.

As before, an estimation of the four unknown parameters
can be obtained by a global WLS

optimization

(11)

is a vector of the length formed by all pixels of the
scaled residual interferogram, with denoting the number of
azimuth-bins. Accordingly, is a matrix of size

...
...

...
...

...
...

...
...

(12)

while is a diagonal weighting matrix, formed
analogously to (8). Obviously, the large size of the involved ma-
trices poses a problem. However, since the estimation problem
is again strongly overdetermined, it is unproblematic to under-
sample the residual interferogram by a large factor in order to
lower the computational burden when solving (12). Addition-
ally, since is diagonal, it is trivial to calculate without
forming itself.

Once is known and using (10), a baseline refinement as
well as a phase correction for the final interferogram can be
calculated.

III. EXPERIMENTAL RESULTS

The proposed approach was applied to an L-band interfero-
metric repeat-pass data acquisition of DLR’s experimental SAR
sensor E-SAR with a baseline of 6.1 m, made in spring 2004.
The test-site is a forested mountainous region in southern Ger-
many (47.75 N, 12.05 E, km ), with topographic varia-
tions of more than 800 m across the scene. Because of the strong
topography within the scene, an adaptive motion compensation
scheme [10] has been used in order to avoid phase errors due
to cross-talk between topography and motion errors. The data
acquisition interval was 39 days, which causes a relatively low
coherence with a mean of .

The data were processed with an azimuth bandwidth of
150 Hz. No coregistration was performed except compensation
of topography related displacements in range direction. During
enhanced multisquint processing, a bandwidth of 30 Hz of the
individual subapertures was used, separated from each other
by 30 Hz. These parameters give a maximum enlargement
of high-coherent areas by about 575 m along azimuth. Fig. 3
demonstrates this effect. By subsequently adding up more and
more subapertures solutions of , on the one hand the
quality of the estimation of improves, while on the
other hand regions of bad estimation due to low coherence
shrink step by step.

After obtaining the final estimation of , the model-
based integration (7) was applied on each individual range line,
using the final matrix of weights as shown in Fig. 3. Addition-
ally, the estimation of linear and constant error terms (11) was
performed, based on a SRTM DEM with a grid size of 90 m. For
solving (12), an undersampling factor of 8 was used to speed up
calculation. From the resulting and , estimates of in
LOS direction can be obtained for the entire scene. In Fig. 4, the
LOS projection at midrange is presented. Fig. 5 shows the orig-
inal interferogram without corrections and an improved interfer-
ogram after reprocessing the slave image with a track modified
by and . In the presented example, the main baseline
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Fig. 4. Baseline error in LOS direction (midrange). Initial estimates and
subsequent estimations after repeated application of the proposed method.

Fig. 5. (a) Initial interferometric phase. (b) Initial interferometric phase after
subtraction of topographic component. (c) Phase correction due to estimated
baseline variations. (d) Final phase after subtraction of topographic component.

error is a large constant offset of about 13 cm, manifesting itself
as a phase ramp across range [Fig. 5(b)]. In contrary, the final
residual phase after correction [Fig. 5(d)] seems to be dominated
by topographic effects, which could not be removed with the
low-resolution SRTM DEM, acquired at a shorter wavelength.

As a check, the proposed method can be applied iteratively on
the reprocessed images. In the presented example, subsequent
estimations gave very small estimates for and in the
order of only 1–2 mm (shown in Fig. 4). This value is an indi-
cator for the achievable precision, although for a real evaluation
of the proposed algorithm, external data, e.g., acquired by laser
tracking, is indispensable.

IV. CONCLUSION

A refined approach for the estimation of high-frequent base-
line errors has been presented. It combines several prior ap-

proaches to a robust integrated solution. Even in case of strong
decorrelation, the refined approach is capable of detecting small
baseline variations and in this way to estimate the corresponding
phase errors across the entire scene. Its main disadvantage is the
computational burden for forming several subaperture interfer-
ograms. In practice, the time needed for baseline refinement is
comparable to the time needed for the SAR processing itself.

Apart from scene coherence, the accuracy of the algorithm
depends also on the system parameters, as well as on the separa-
tion and bandwidth of subapertures. Also other residual effects,
in particular large terrain movements in azimuth between the
data takes or large velocity errors, can lower the precision of the
proposed approach. Topography adaptive motion compensation
is crucial for airborne repeat-pass interferometry and no accu-
rate estimation of baseline errors is possible without applying
such compensation.

The true accuracy of the presented method is unclear and
needs further investigation. As an indication, a convergence
to estimates of few millimeters were found in case of E-SAR
L-band data. This precision lies significantly above the accu-
racy of up-to-date navigation systems.

The proposed method can equally be applied to single-pass
systems, where errors in the measurement of the lever arms or
rotation angles occur. The high scene coherence in this case pro-
vides an optimum base for the proposed method.
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