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Abstract— Spectral band selection is a fundamental problem In this paper, a new band-selection method based on a mea-
in hyperspectral data processing. In this paper, a new band- sure of mutual information (MI) is proposed. Dimensionalit
selection method based on mutual information (M) is propogd. reduction techniques such as principal components have bee

MI measures the statistical dependence between two randomd liberatel ided ¢ tain th h d
variables and can therefore be used to evaluate the relative d€liberately avoided so as to retain the raw hyperspecatal

utility of each band to classification. A new strategy is desibed for purposes of registration with other source images ,(e.g.
to estimate the mutual information using a priori knowledge SAR imagery), and not to lose the original physical meaning.

of the scene, reducing reliance on a ‘ground truth’ referene M| measures the statistical dependence between two random
map, by retaining bands with high associated Ml values (suliict \5riaples and so can be used to evaluate the relative utility

to certain so-called ‘complementary’ conditions). Simuléions of L
classification performance on 16 classes of vegetation frotme Of €ach band to classification. Although entropy [6], [9] and

AVIRIS 92AV3C dataset show the effectiveness of the method, mutual information [7], [14] have obvious potential for lshn
which outperforms an MI-based method using the associated selection, this has not been fully exploited in the past.

reference map, an entropy-based method and a correlationdsed  First, a novel strategy is proposed to estimate the mutual
method. It is also competitive with the steepest ascent (SA) jnformation usinga priori knowledge, to reduce the reliance
algorithm at much lower computational cost. . . - .

of MI estimation on availability of a reference map (i.e.,
the ‘ground truth’ map, in which each pixel is correctly
labeled by its class). This will extend the application s£op
and adaptability of the MI-based method. Second, bands are

Hyperspectral sensors simultaneously measure hundred %FCted not only on the basis of their associated MI values,

contiguous spectral bands with a fine spectral resolutian, e 2!t also their correlation (using the so-called ‘completagyi
0.01um. For instance, the AVIRIS hyperspectral sensor [irilvel measure) with their neighboring bands. The proposed
ethod avoids iterative searching, and so provides a low

has 224 spectral bands ranging from @M to 2.5um. Such i i X " . )
a large number of bands implies high-dimensionality date; p computational cost solution for time-critical applicats This
method is also useful when it is difficult to obtain enough

senting several significant challenges to image classdicat | . q i lecti fthe classifiers’
The dimensionality of input space strongly affects the @erf tr_amm_g aFa to validate se ection of the classillers’ pegters,
jnce it relies less on given ground truth.

mance of many supervised classification methods [2]. Tisere®
likely to be redundancy between bands; and some bands may

contain less discriminatory information than others. Hpa I1. AVIRIS 92AV3C DATABASE
high-dimensional data impose requirements for storageespa The public AVIRIS 92AV3C hyperspectral database has

computational load and communication bandwidth that tell : - :
against real-time applications. ‘been researched extensively. The database is illustraititre

. . roblem of hyper ralim nalysi rmine |
It is therefore advantageous to remove bands which ¢ oblem of hyperspectral image analysis to dete e laed u

ev litle or no discriminatory information. Manv band- t“can be downloaded fronit p://ftp.ecn. purdue.
vey Iscriminatory | lon. y eqqu/ bi ehl / Mul ti Spec/ . Although the AVIRIS sensor
I

selection techniques have been proposed, such as sealgl) . .
ects nominally 224 bands of data, 4 of these contain
based methods [3], [4], [5], [6], transform-based methads [ only zeros and so are discarded, leaving 220 bands in the

[8], and information-based methods [6], [9]. Other techueig 92AV3C dataset. At certain frequencies, the spectral image

include a scheme trading spectral for spatial resolutidj, [1 .
maximization of Spectral Angle Mapoer [11]. hi h_Ordet;alre known to be adversely affected by atmospheric water

P 9 pper [11], hig absorption. This affects some 20 bands. Each image is of size
moments [12], wavelet analysis [13], etc. However, theee

il some challen i v th techni Hrogtiv 45 x 145 pixels. The datacube was collected over a test site
still some challenges to apply these techniques effegt €talled Indian Pine in north-western Indiana, USA [15], [16]

such as high computational cost, presence of local minim . . T
e s S . he database is accompanied by a reference map, indicating
problems, difficulties for real-time implementation, etc. . : .
partial ground truth, whereby pixels are labeled as belongi

. . , _ to one of 16 classes of vegetation. Not all pixels are so
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Guo, Steve R. Gunn, R.I. Damper and J.D.B. Nelson are witbrimétion: abeled (e.g., hig Way_! rai tr.ac ’ et.C.), presumably ee?—
Signals, Images, Systems (ISIS) Research Group, Schooleofrénics and they correspond to uninteresting regions or were too difficu

Computer Science, University of Southampton, Southamfoa7 1BJ, UK. tg |abel. There are 10366 pixels from 145145= 21025
This work was supported by the Data and Information Fusiolfr)[Defence

Technology Centre funded by the UK Ministry of Defence anchaged by le"‘SSiﬁed as belong?ng to one Of_the 16 classes_(i:e., 49-3%)
General Dynamics Limited and QinetiQ. with the unlabeled pixels accounting for the remaining 8.7

I. INTRODUCTION



I11. BAND SELECTION USING INFORMATION THEORY

Let A be a random variable taking values in the getvith
probability distributionsp(A). The entropy is defined by:

15F

Ml values
P

H(A) =— )" p(A)log p(A) L
Ac A 0
Some methods (e.g., [6], [9]) use the entropy directly as .. A

criterion for band selection. In these methods, the entispy . ) i .

. . . . . ... o Fig. 1. Mutual information of AVIRIS bands 1 to 220 with respeo the
used to estimate the information contained in each Ir"ClMdl~'actual reference map (solid line) and the estimated referemap as described
band and these are then ranked in order. Bands are selegtegction IV (dashed line).
by choosing those with the top-ranking entropy values.

However, the entropy measure is not always, as often asit is instructive to compare this Ml curve to selected exam-
sumed, consistent with the requirement of image clasdificat ples of AVIRIS images shown in Figure 2(a). It can be seen
In fact, the method is only effective when the uncertaintjnat the bands most similar to the reference map of Figurg 2(b
calculated by the entropy encodes the most discriminatery are those having higher values of MiFor example, the
formation. From equation (1), it is seen thét A) is calculated images of the first row of Figure 2(a) (i.e., the spectral
with respect to the single variabke, without reference to any bands from 121 to 125) bear more obvious resemblance to
objective. Thus, the amount of information measured by tiilee reference map than those in the second row (i.e., from 81
entropy lacks a point of reference or benchmark, and theret¢s85). Their Ml values are correspondingly much higher than
no guarantee that it matches the information content useful those of the spectral bands in the second row. In this péaticu
target classification. To improve the approach, it is lobtoa example, it is seen that the Ml of a spectral band with respect
extend the information measure to two variables: one for tit@ the reference map is consistent with visual observations
spectral image itself and the other for the target (refeepnaegarding the relative importance of each spectral band to
image that is directly related to the classification objexti classification. Hence, it is reasonable to consider usingdvil
Mutual information (MI) provides a framework to measure thencode the relative utility of a spectral band, and to use thi
similarity between two random variables, and was introduc@s the basis of band selection. Since the reference map may
for band selection in [14], [7]. be prepared in different ways (e.g., according to the chofce

Given two random variabled and B with marginal prob- pixels to label, the user’s choice of false color, etc.), sineuld
ability distributionsp(A) and p(B) and joint probability dis- only use the intrinsic properties of spectral reflectanag rzot

tribution p(A, B), the mutual information is defined as: over-interpret the notion of similarity between the images
Figure 2(a) and the reference map in Figure 2(b).
I (A, B) = Z p(A, B)log P(A, B ) A weaknesses of the straig_htforward MI method is that it
AcABEB P(A) - p(B) relies on a reference map, which may not always be available.
] To improve the applicability of the method, a new band-
It follows that Ml is related to entropy as: selection scheme based on estimating a reference map is

proposed, as now described.
I(A,B)y=H(A)+H(B)—-H(A,B) 3)

Here,H (A) and H (B) are the entropies o and B, respec- IV. BAND-SELECTION SCHEME
tively, and H (A, B) is their joint entropy. Motivated by the discussion above, a band-selection scheme
Treating the spectral images and the corresponding refeased on mutual information is considered. In this caségaus
ence map as random variables, MI can be used to estimate@hecalculating the MI based on the reference ma), an
dependency between them. Since the reference map implicRStimated reference maR, is used. This is assumed to be
defines the required classification result, the MI measuréasy to obtain and to be a good estimateRofin the pro-
the relative utility of each spectral band to the classifizat pPosed method, the estimated reference map is designed using
objective. Using equation (3), the mutual information be¢w availablea priori knowledge about the spectral ‘signature’ of
each of the 220 spectral images (i.e., each band) and the dtgquently-encountered materials. In the context of pakair
responding reference map accompanying the 92AV3C datak§edging applications, such knowledge is often encoded in a
was calculated. The result is shown in Figure 1 as the sofi@-called spectral-signature library, such as the USG&dDig
curve. In the next section, an alternative MI measuremefpectral Libraries att p: // specl ab. cr. usgs. gov.

based on an estimated reference map (shown as a dashed cur7éom the spectral-signature library, it is easy to idendify
in the figure) is presented. approximate wavelength range in which the signatures of in-

Figure 1 shows that the spectral bands from apprOXimatelehe reader should note that the spectral reflectance vatuEgire 2(a)
510 35, 110 to 150 and 165 to 215 have higher Ml Valu%ve been transformed using a false color palette and therexded to gray-
than other bands. The MI curve also reveals clearly the effeecale; the reference map of Figure 2(b) has had pixels froch e the

of atmospheric water absorption, giving the lowest Ml valug-® classes (plus unlabeled pixels) color-coded and alsvectn to gray-
scale. Although it is hard to distinguish all 16 classes,s¢héigures are

in bands 104__108 and 150-163 at precisely those frequeng&s,iate for gaining an impression of similarity of spedimages to the
where absorption occurs. reference map.
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Fig. 2. (a) Examples of AVIRIS spectral images in informativands 121-125 and less informative bands 81-85; and (efbwence map.

601 ] Class 1 (see Fig. 1) and relatively constant. Other regions could
EZ7] Class 2 .

] have been chosen on the same basis. For a one class versus
the rest problem, signatures of all the other materials can
be averaged as ‘background’, and compared with the target
signature. A more sophisticated scheme would be to generate
the reference map based on some differentiable discrimmat
metric and greedy algorithm. The estimated reference map is
unlabeled but this is immaterial as it is not used in clagsifie
training.
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Wavelength (um) To validate this estimation method,AMI computed using
on the estimated reference map(M;, R), are compared
Fig. 3. Spectral responses for two classes of vegetatian fid). with those obtained using the reference map accompanying

the 92AV3c databasd,(Mj, R), 1 <i < 220. This is shown
terest are significantly differentiated. Such regions aferred in Figure 1, where the dashed curve depittd/;, R) and
to here askey spectra. For example, in the task of classifyingthe solid curve depict$ (M;, R). The overall shapes of the
two particular plants [15], their spectral reflectances ban two curves are very similar, but the MI using the estimated
obtained from laboratory measurements, shown in Figure reéference map is consistently higher than that using the rea
There is a frequency-dependent overlap between the twaderence map, because it is computed from means of spectral
classes due to the natural variability of reflectance. Tthes, reflectances of all materials whereas the real map is com-
two classes are more separable in the region 1.6+h.8nhan puted from integer values arbitrarily coding 16 class label
elsewhere. These relatively more informative bands cpared Nonetheless, the excellent agreement in overall shape snean
to the key spectra. that the estimated reference map can be considered as a good

Generation of the estimated reference map from the availternative representation of the ideal classificatiorectdje.

able images exploitsa priori knowledge, which can be wjth this new approach, Mi-based band selection can now
achieved either through subjective evaluation or objecti¥- pe extended to applications in which the reference map is
traction. In the vegetation-dominant scene of AVIRIS 92&/3 (itficult to obtain. Spectral bandscan be ranked according to
the task is to classify land use for agriculture. Domain etge their corresponding values ofM;, R) and a threshold applied
can visually inspect example images (such as those ilkestrato retain only the top-ranking bands. From equation (4), it
in Figure 2(a)) to determine which are likely to be key sp@ctrcan be seen thaR depends only on the data, and would
useful in discriminating classes. For a multiclass probl#ms automatically be updated with new data. In this way, the MI

can be implemented by observing (pairwise) the signaturesdstimate is ‘adaptive’ to the image content as the invesstita
the library, selecting a suitable group of bands to cover th@ene changes.

spectra with the biggest divergence, and averaging thesé. S
Mj € S, 1< j < J are images from the set of key specfia
then the estimated reference mes obtained as:

The above scheme works well when the threshold for
selection is low. However, when fewer bands are to be
selected (i.e., high threshold), this scheme may give too
3 much preference to contiguous bands with high MI values
R— 1 Z M, (4) but also high correlation between bands, indicating carsid

J able redundancy. To avoid including redundant information
two ancillary selection parameters are introduced: rigjact
Here, bands 170 to 210 are averaged using equation (4). Thésdwidth B and complementary thresholg to control
was chosen as a region in which mutual information is high the neighboring bands surrounding the top-ranked bands

i=1



TABLE |

should be included besides considering their Ml valueseHer
NUMBER OF TRAINING AND TESTING PIXELS IN EACH CLASS

B stands for a bandwidth centred at a selected band, indicatin

the bands within the bandwidth are highly correlated, and Class tr;,';fﬁgss'gt teps'gﬁlgs ;r;t
possibly redundant to the central one, apdvaluates how 1. Alfalfa 27 27
much complementary ‘information’ a neighboring band can g gom-nqti” 11177 11177
supplement to the selected one. If significant change of ;o™ 117 117
‘information’ has been detected for a neighboring bands thi 5. Grass/Pasture 249 248
band should be included even if it may fall within the rejeati ?- grassffees g 31@ 313
bandwidth. Algorithm 1 shows the process in detail. First, g H;?ifvi%fgﬁamowe it ™
defined(n) = A(MI(n) — MI (n — 1)). Let X be the number 9. Oats ‘ 10 10
of bands to be selected. At some point in the selection pspces 10. Soybeans-notill 484 484
let S be the set of selected bands and7ebe the set of of 11. Soybeans-min 1234 1234
o S . 12. Soybean-clean 307 307
remaining (unselected) bands. We initialise the procesk wi 13. Wheat 106 106
S=¢andR=1{1,2,...,220. 14. Woods 647 647
T 15. Bldg-Grass-Tree-Drives 190 190
16. Stone-steel towers 48 a7

Algorithm 1 Band selection using rejection bandwidth and
complementary threshold
while |S] < X do
select band indes = argmax M| (s) wherese S
neighborsefV' = {n|n=S—(B+1),...,S,..., S+B}
if max,d(n) < n then
S« SUSandR <~ R\S\ NV
else
S« SuSandR <« R\ S

Overall classification accuracy (%)

I I I I I
10 20 30 40 50 60 70 80 90
end |f Percentage of spectral bands cut

=}

end while

Fig. 4. Overall classification accuracy versus percentdgeands removed

for band-selection scheme: solid line is the result usiegestimated reference
The particular values dB andn were determined by valida- map, and dashed line is the result using the reference magiedipvith the

tion testi d ch 5 d 05 tively. C 92AV3C dataset. Here, ‘overall’ means all classes areddetigether so that

Ion testing, and ¢ osen_ as a_n - respectively. Lompanl,se with large numbers of pixels (see Table I) have gredtect. Error bars

the present approach with previous research [6], [7], [P3],[ represent plus-and-minus one standard deviation overriglation runs.

the main differences are:
1) Ml is used to measure the utility of each band. voting to give a multi-class result. The kernel function dise
2) The MI is calculated with respect to an estimatel$ an inhomogeneous polynomial with order 5. The penalty

reference map rather than a pre-specified reference magrameterC is tested between 18 and 16 by a validation

3) Two parametersB and 5, are introduced to avoid Procedure using training data, and*I@nhich is the same for

selecting redundant neighboring bands. all classifiers) was chosen as a suitable compromise value.
The main objective of band selection is to remove redundant
V. SIMULATION RESULTS spectral bands without degrading the classification acgura

‘too much. The simulations were designed to assess the change

Simulations of classification performa_mce have been mhrrlgf classification accuracy as spectral bands are progedgsiv
out to assess the proposed band-selection method on the hypg,, e according to Algorithm 1. Figure 4 shows the results
spectral dataset AVIRIS 92AV3C. Currently-popular suppo

hi h he classifi for the two cases where the Ml was calculated with respect to
vector machines (SVMs) [17] were chosen as the classi '9h reference map accompanying the 92AV3C dataset (dashed

in these simulations since previous studies of hyperspectf, ) ang where it was calculated with respect to the estithat
data cIaSS|f|c_at|0n have _shown competitive performanch Wikoterence map (solid line). Data points are at 5% increments
the best available algorithms [16],_ [4]. A!th_ough SVMs are, responding to removal of 11 bands at each step.
used.here, the proposgq m_ethod |s.not limited to supervise he results depicted in Figure 4 indicate that:
algorithms. Other classification algorithms are also ayablie o
since the MI metric is calculated directly from the data, 1) The two curves are very similar when the percentage of
without feedback from classifiers. bands cut is less than 80%, showing that the estimated
Half of the pixels from each class were randomly chosen for _ reéference map is a good approximation to the real one;
training, with the remaining 50% forming the test set on wahic 2) When this percentage is greater than 80%, the perfor-
performance was assessed (Table I). The class labels from th ~ Mance based on the estimated reference map is better.
reference map accompanying the dataset were utilized éor th The second result reveals an important issue on the bias of
supervised training. This was repeated 10 times to allow arobability estimation. In the accompanying reference map
estimate of the error in this sampling process. Since SVMs dess than half of all pixels in the scene are labeled (see
inherently binary (two-class) classifieitS(16, 2) = 120 one- Section Il), and among them 50% are used as the training set.
against-one classifiers were used with subsequent majofityis means that less than 25% of pixels are usable based on



COMPARISON OF PROPOSED METHOD WITH COMPETITOR ALGORITHMS

TABLE Il

ON THE BASIS OF OVERALL ACCURACY(%)

Given the relationship between Ml and Bayes error, maxi-
mizing MI is analogous to the idea of maximizing separa-
bility that many other methods employ. Experiments on the
AVIRIS dataset show that the proposed method outperformed
or was competitive with state-of-the-art methods, but hgvi
the advantages of easy implementation and low computdtiona
cost. Future work will concentrate on improved methods for
estimating the reference map from prior knowledge.

Bands Method
Retained [ MI_est SA Entropy  Correlation
20 86.57 88.07 74.04 60.39
25 87.18 88.96 75.66 63.62
30 88.23  89.60 76.47 67.28
35 89.00 89.67 78.83 70.49
40 89.38 86.62 80.35 71.88
45 89.67 90.12 81.86 73.48
50 90.25 89.42 82.13 74.08
60 90.14  88.15 83.34 75.26
70 90.54 89.75 85.41 75.93
80 90.62 90.33 86.43 82.69

(2]

the accompanying reference map, which may lead to unreliabl3]
estimates of MI. On the other hand, all pixels are explogabl
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