
1

Band Selection for Hyperspectral Image
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Abstract— Spectral band selection is a fundamental problem
in hyperspectral data processing. In this paper, a new band-
selection method based on mutual information (MI) is proposed.
MI measures the statistical dependence between two random
variables and can therefore be used to evaluate the relative
utility of each band to classification. A new strategy is described
to estimate the mutual information using a priori knowledge
of the scene, reducing reliance on a ‘ground truth’ reference
map, by retaining bands with high associated MI values (subject
to certain so-called ‘complementary’ conditions). Simulations of
classification performance on 16 classes of vegetation fromthe
AVIRIS 92AV3C dataset show the effectiveness of the method,
which outperforms an MI-based method using the associated
reference map, an entropy-based method and a correlation-based
method. It is also competitive with the steepest ascent (SA)
algorithm at much lower computational cost.

I. I NTRODUCTION

Hyperspectral sensors simultaneously measure hundreds of
contiguous spectral bands with a fine spectral resolution, e.g.,
0.01µm. For instance, the AVIRIS hyperspectral sensor [1]
has 224 spectral bands ranging from 0.4µm to 2.5µm. Such
a large number of bands implies high-dimensionality data, pre-
senting several significant challenges to image classification.
The dimensionality of input space strongly affects the perfor-
mance of many supervised classification methods [2]. There is
likely to be redundancy between bands; and some bands may
contain less discriminatory information than others. Finally,
high-dimensional data impose requirements for storage space,
computational load and communication bandwidth that tell
against real-time applications.

It is therefore advantageous to remove bands which con-
vey little or no discriminatory information. Many band-
selection techniques have been proposed, such as search-
based methods [3], [4], [5], [6], transform-based methods [7],
[8], and information-based methods [6], [9]. Other techniques
include a scheme trading spectral for spatial resolution [10],
maximization of Spectral Angle Mapper [11], high-order
moments [12], wavelet analysis [13], etc. However, there are
still some challenges to apply these techniques effectively,
such as high computational cost, presence of local minima
problems, difficulties for real-time implementation, etc.
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In this paper, a new band-selection method based on a mea-
sure of mutual information (MI) is proposed. Dimensionality-
reduction techniques such as principal components have been
deliberately avoided so as to retain the raw hyperspectral data
for purposes of registration with other source images (e.g.,
SAR imagery), and not to lose the original physical meaning.
MI measures the statistical dependence between two random
variables and so can be used to evaluate the relative utility
of each band to classification. Although entropy [6], [9] and
mutual information [7], [14] have obvious potential for band
selection, this has not been fully exploited in the past.

First, a novel strategy is proposed to estimate the mutual
information usinga priori knowledge, to reduce the reliance
of MI estimation on availability of a reference map (i.e.,
the ‘ground truth’ map, in which each pixel is correctly
labeled by its class). This will extend the application scope
and adaptability of the MI-based method. Second, bands are
selected not only on the basis of their associated MI values,
but also their correlation (using the so-called ‘complementary’
level measure) with their neighboring bands. The proposed
method avoids iterative searching, and so provides a low
computational cost solution for time-critical applications. This
method is also useful when it is difficult to obtain enough
training data to validate selection of the classifiers’ parameters,
since it relies less on given ground truth.

II. AVIRIS 92AV3C DATABASE

The public AVIRIS 92AV3C hyperspectral database has
been researched extensively. The database is illustrativeof the
problem of hyperspectral image analysis to determine land use.
It can be downloaded fromftp://ftp.ecn.purdue.
edu/biehl/MultiSpec/. Although the AVIRIS sensor
collects nominally 224 bands of data, 4 of these contain
only zeros and so are discarded, leaving 220 bands in the
92AV3C dataset. At certain frequencies, the spectral images
are known to be adversely affected by atmospheric water
absorption. This affects some 20 bands. Each image is of size
145× 145 pixels. The datacube was collected over a test site
called Indian Pine in north-western Indiana, USA [15], [16].

The database is accompanied by a reference map, indicating
partial ground truth, whereby pixels are labeled as belonging
to one of 16 classes of vegetation. Not all pixels are so
labeled (e.g., highway, rail track, etc.), presumably because
they correspond to uninteresting regions or were too difficult
to label. There are 10366 pixels from 145× 145= 21025
classified as belonging to one of the 16 classes (i.e., 49.3%),
with the unlabeled pixels accounting for the remaining 50.7%.
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III. B AND SELECTION USING INFORMATION THEORY

Let A be a random variable taking values in the setA with
probability distributionsp(A). The entropy is defined by:

H (A) = −
∑

A∈A

p(A) log p(A) (1)

Some methods (e.g., [6], [9]) use the entropy directly as a
criterion for band selection. In these methods, the entropyis
used to estimate the information contained in each individual
band and these are then ranked in order. Bands are selected
by choosing those with the top-ranking entropy values.

However, the entropy measure is not always, as often as-
sumed, consistent with the requirement of image classification.
In fact, the method is only effective when the uncertainty
calculated by the entropy encodes the most discriminatory in-
formation. From equation (1), it is seen thatH (A) is calculated
with respect to the single variableA, without reference to any
objective. Thus, the amount of information measured by the
entropy lacks a point of reference or benchmark, and there is
no guarantee that it matches the information content usefulfor
target classification. To improve the approach, it is logical to
extend the information measure to two variables: one for the
spectral image itself and the other for the target (reference)
image that is directly related to the classification objective.
Mutual information (MI) provides a framework to measure the
similarity between two random variables, and was introduced
for band selection in [14], [7].

Given two random variablesA and B with marginal prob-
ability distributionsp(A) and p(B) and joint probability dis-
tribution p(A, B), the mutual information is defined as:

I (A, B) =
∑

A∈A,B∈B

p(A, B) log
p(A, B)

p(A) · p(B)
(2)

It follows that MI is related to entropy as:

I (A, B) = H (A)+ H (B)− H (A, B) (3)

Here, H (A) and H (B) are the entropies ofA and B, respec-
tively, and H (A, B) is their joint entropy.

Treating the spectral images and the corresponding refer-
ence map as random variables, MI can be used to estimate the
dependency between them. Since the reference map implicitly
defines the required classification result, the MI measures
the relative utility of each spectral band to the classification
objective. Using equation (3), the mutual information between
each of the 220 spectral images (i.e., each band) and the cor-
responding reference map accompanying the 92AV3C dataset
was calculated. The result is shown in Figure 1 as the solid
curve. In the next section, an alternative MI measurement
based on an estimated reference map (shown as a dashed curve
in the figure) is presented.

Figure 1 shows that the spectral bands from approximately
5 to 35, 110 to 150 and 165 to 215 have higher MI values
than other bands. The MI curve also reveals clearly the effect
of atmospheric water absorption, giving the lowest MI values
in bands 104–108 and 150–163 at precisely those frequencies
where absorption occurs.
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Fig. 1. Mutual information of AVIRIS bands 1 to 220 with respect to the
actual reference map (solid line) and the estimated reference map as described
in Section IV (dashed line).

It is instructive to compare this MI curve to selected exam-
ples of AVIRIS images shown in Figure 2(a). It can be seen
that the bands most similar to the reference map of Figure 2(b)
are those having higher values of MI1. For example, the
images of the first row of Figure 2(a) (i.e., the spectral
bands from 121 to 125) bear more obvious resemblance to
the reference map than those in the second row (i.e., from 81
to 85). Their MI values are correspondingly much higher than
those of the spectral bands in the second row. In this particular
example, it is seen that the MI of a spectral band with respect
to the reference map is consistent with visual observations
regarding the relative importance of each spectral band to
classification. Hence, it is reasonable to consider using MIto
encode the relative utility of a spectral band, and to use this
as the basis of band selection. Since the reference map may
be prepared in different ways (e.g., according to the choiceof
pixels to label, the user’s choice of false color, etc.), oneshould
only use the intrinsic properties of spectral reflectance and not
over-interpret the notion of similarity between the imagesin
Figure 2(a) and the reference map in Figure 2(b).

A weaknesses of the straightforward MI method is that it
relies on a reference map, which may not always be available.
To improve the applicability of the method, a new band-
selection scheme based on estimating a reference map is
proposed, as now described.

IV. BAND-SELECTION SCHEME

Motivated by the discussion above, a band-selection scheme
based on mutual information is considered. In this case, instead
of calculating the MI based on the reference map,R, an
estimated reference map,̂R, is used. This is assumed to be
easy to obtain and to be a good estimate ofR. In the pro-
posed method, the estimated reference map is designed using
availablea priori knowledge about the spectral ‘signature’ of
frequently-encountered materials. In the context of particular
imaging applications, such knowledge is often encoded in a
so-called spectral-signature library, such as the USGS Digital
Spectral Libraries athttp://speclab.cr.usgs.gov.

From the spectral-signature library, it is easy to identifyan
approximate wavelength range in which the signatures of in-

1The reader should note that the spectral reflectance values in Figure 2(a)
have been transformed using a false color palette and then converted to gray-
scale; the reference map of Figure 2(b) has had pixels from each of the
16 classes (plus unlabeled pixels) color-coded and also converted to gray-
scale. Although it is hard to distinguish all 16 classes, these figures are
adequate for gaining an impression of similarity of spectral images to the
reference map.
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Fig. 2. (a) Examples of AVIRIS spectral images in informative bands 121–125 and less informative bands 81–85; and (b) thereference map.

Fig. 3. Spectral responses for two classes of vegetation from [15].

terest are significantly differentiated. Such regions are referred
to here askey spectra. For example, in the task of classifying
two particular plants [15], their spectral reflectances canbe
obtained from laboratory measurements, shown in Figure 3.
There is a frequency-dependent overlap between the two
classes due to the natural variability of reflectance. Thus,the
two classes are more separable in the region 1.6–1.8µm than
elsewhere. These relatively more informative bands correspond
to the key spectra.

Generation of the estimated reference map from the avail-
able images exploitsa priori knowledge, which can be
achieved either through subjective evaluation or objective ex-
traction. In the vegetation-dominant scene of AVIRIS 92AV3C,
the task is to classify land use for agriculture. Domain experts
can visually inspect example images (such as those illustrated
in Figure 2(a)) to determine which are likely to be key spectra,
useful in discriminating classes. For a multiclass problem, this
can be implemented by observing (pairwise) the signatures in
the library, selecting a suitable group of bands to cover the
spectra with the biggest divergence, and averaging these. So, if
M j ∈ S, 1≤ j ≤ J are images from the set of key spectraS,
then the estimated reference map̂R is obtained as:

R̂ =
1

J

J∑

j=1

M j (4)

Here, bands 170 to 210 are averaged using equation (4). This
was chosen as a region in which mutual information is high

(see Fig. 1) and relatively constant. Other regions could
have been chosen on the same basis. For a one class versus
the rest problem, signatures of all the other materials can
be averaged as ‘background’, and compared with the target
signature. A more sophisticated scheme would be to generate
the reference map based on some differentiable discriminating
metric and greedy algorithm. The estimated reference map is
unlabeled but this is immaterial as it is not used in classifier
training.

To validate this estimation method, MI computed using
on the estimated reference map,I (Mi , R̂), are compared
with those obtained using the reference map accompanying
the 92AV3c database,I (Mi , R), 1≤ i ≤ 220. This is shown
in Figure 1, where the dashed curve depictsI (Mi , R̂) and
the solid curve depictsI (Mi , R). The overall shapes of the
two curves are very similar, but the MI using the estimated
reference map is consistently higher than that using the real
reference map, because it is computed from means of spectral
reflectances of all materials whereas the real map is com-
puted from integer values arbitrarily coding 16 class labels.
Nonetheless, the excellent agreement in overall shape means
that the estimated reference map can be considered as a good
alternative representation of the ideal classification objective.

With this new approach, MI-based band selection can now
be extended to applications in which the reference map is
difficult to obtain. Spectral bandsi can be ranked according to
their corresponding values ofI (Mi , R̂) and a threshold applied
to retain only the top-ranking bands. From equation (4), it
can be seen that̂R depends only on the data, and would
automatically be updated with new data. In this way, the MI
estimate is ‘adaptive’ to the image content as the investigated
scene changes.

The above scheme works well when the threshold for
selection is low. However, when fewer bands are to be
selected (i.e., high threshold), this scheme may give too
much preference to contiguous bands with high MI values
but also high correlation between bands, indicating consider-
able redundancy. To avoid including redundant information,
two ancillary selection parameters are introduced: rejection
bandwidth B and complementary thresholdη to control
if the neighboring bands surrounding the top-ranked bands
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should be included besides considering their MI values. Here,
B stands for a bandwidth centred at a selected band, indicating
the bands within the bandwidth are highly correlated, and
possibly redundant to the central one, andη evaluates how
much complementary ‘information’ a neighboring band can
supplement to the selected one. If significant change of
‘information’ has been detected for a neighboring band, this
band should be included even if it may fall within the rejection
bandwidth. Algorithm 1 shows the process in detail. First,
defined(n) = 1(M I (n) − M I (n − 1)). Let X be the number
of bands to be selected. At some point in the selection process,
let S be the set of selected bands and letR be the set of of
remaining (unselected) bands. We initialise the process with
S = ∅ andR = {1, 2, . . . , 220}.

Algorithm 1 Band selection using rejection bandwidth and
complementary threshold

while |S| < X do
select band indexS = arg maxs M I (s) wheres ∈ S

neighbor setN = {n | n = S−(B+1), . . . , S, . . . , S+B}
if maxn d(n) < η then
S ← S ∪ S andR← R \ S \N

else
S ← S ∪ S andR← R \ S

end if
end while

The particular values ofB andη were determined by valida-
tion testing, and chosen as 5 and 0.5 respectively. Comparing
the present approach with previous research [6], [7], [9], [14],
the main differences are:

1) MI is used to measure the utility of each band.
2) The MI is calculated with respect to an estimated

reference map rather than a pre-specified reference map.
3) Two parameters,B and η, are introduced to avoid

selecting redundant neighboring bands.

V. SIMULATION RESULTS

Simulations of classification performance have been carried
out to assess the proposed band-selection method on the hyper-
spectral dataset AVIRIS 92AV3C. Currently-popular support
vector machines (SVMs) [17] were chosen as the classifiers
in these simulations since previous studies of hyperspectral
data classification have shown competitive performance with
the best available algorithms [16], [4]. Although SVMs are
used here, the proposed method is not limited to supervised
algorithms. Other classification algorithms are also applicable
since the MI metric is calculated directly from the data,
without feedback from classifiers.

Half of the pixels from each class were randomly chosen for
training, with the remaining 50% forming the test set on which
performance was assessed (Table I). The class labels from the
reference map accompanying the dataset were utilized for the
supervised training. This was repeated 10 times to allow an
estimate of the error in this sampling process. Since SVMs are
inherently binary (two-class) classifiers,C(16, 2) = 120 one-
against-one classifiers were used with subsequent majority

TABLE I

NUMBER OF TRAINING AND TESTING PIXELS IN EACH CLASS.

Class Pixels in Pixels in
training set testing set

1. Alfalfa 27 27
2. Corn-notill 717 717
3. Corn-min 417 417
4. Corn 117 117
5. Grass/Pasture 249 248
6. Grass/Trees 374 373
7. Grass/pasture-mowed 13 13
8. Hay-windrowed 245 244
9. Oats 10 10
10. Soybeans-notill 484 484
11. Soybeans-min 1234 1234
12. Soybean-clean 307 307
13. Wheat 106 106
14. Woods 647 647
15. Bldg-Grass-Tree-Drives 190 190
16. Stone-steel towers 48 47
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Fig. 4. Overall classification accuracy versus percentage of bands removed
for band-selection scheme: solid line is the result using the estimated reference
map, and dashed line is the result using the reference map supplied with the
92AV3C dataset. Here, ‘overall’ means all classes are treated together so that
those with large numbers of pixels (see Table I) have greatereffect. Error bars
represent plus-and-minus one standard deviation over 10 simulation runs.

voting to give a multi-class result. The kernel function used
is an inhomogeneous polynomial with order 5. The penalty
parameterC is tested between 10−3 and 108 by a validation
procedure using training data, and 104 (which is the same for
all classifiers) was chosen as a suitable compromise value.

The main objective of band selection is to remove redundant
spectral bands without degrading the classification accuracy
too much. The simulations were designed to assess the change
of classification accuracy as spectral bands are progressively
removed according to Algorithm 1. Figure 4 shows the results
for the two cases where the MI was calculated with respect to
the reference map accompanying the 92AV3C dataset (dashed
line) and where it was calculated with respect to the estimated
reference map (solid line). Data points are at 5% increments
corresponding to removal of 11 bands at each step.

The results depicted in Figure 4 indicate that:

1) The two curves are very similar when the percentage of
bands cut is less than 80%, showing that the estimated
reference map is a good approximation to the real one;

2) When this percentage is greater than 80%, the perfor-
mance based on the estimated reference map is better.

The second result reveals an important issue on the bias of
probability estimation. In the accompanying reference map,
less than half of all pixels in the scene are labeled (see
Section II), and among them 50% are used as the training set.
This means that less than 25% of pixels are usable based on
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TABLE II

COMPARISON OF PROPOSED METHOD WITH COMPETITOR ALGORITHMS

ON THE BASIS OF OVERALL ACCURACY(%)

Bands Method
Retained MI est SA Entropy Correlation

20 86.57 88.07 74.04 60.39
25 87.18 88.96 75.66 63.62
30 88.23 89.60 76.47 67.28
35 89.00 89.67 78.83 70.49
40 89.38 86.62 80.35 71.88
45 89.67 90.12 81.86 73.48
50 90.25 89.42 82.13 74.08
60 90.14 88.15 83.34 75.26
70 90.54 89.75 85.41 75.93
80 90.62 90.33 86.43 82.69

the accompanying reference map, which may lead to unreliable
estimates of MI. On the other hand, all pixels are exploitable
based on the estimated reference map. As more and more
bands are selected, the two methods tend to give similar results
because most of the essential bands are included.

As expected from Figure 1, the bands with lowest MI
(which were therefore removed earliest) were those affected
by atmospheric problems, e.g., from 104 to 108, 150 to 163
and 220. In previous research [16], [18], these are normally
identified by the prior knowledge of experts. From a practical
point of view, this approach is subjective and impractical in
rapidly changing scenarios. In this sense, the proposed method
provides a better way to discard these bands.

VI. COMPARISON WITH OTHER APPROACHES

To validate the new proposed method using the estimated
reference map (MIest) more fully, performance has been
compared against some other representative band-selection
algorithms on the 92AV3C dataset, namely steepest as-
cent (SA) searching [3], [4], entropy [6], [9] and the very
well-known Pearson correlation coefficient. The compari-
son is carried out for 20 to 80 bands retained, since the
SA algorithm is very computationally-expensive and for the
92AV3C dataset the classification accuracy shows little change
beyond 80 selected. bands.

Table II shows the results. To account for local maxima, the
SA algorithm was run six times with random initialisations,
and the best result chosen for tabulation. The proposed
method easily outperformed the methods based on entropy
and correlation. It is also competitive with the searching-
based SA algorithm, with slightly lower accuracy at band
selection numbers 20 to 35. Considering that the SA algo-
rithm involves computationally-expensive iterative search and
Jeffries-Matusita distance evaluation, the proposed method
provides a useful alternative with much lower computational
cost, suiting it to time-critical applications. It was alsonoticed
in implementing the SA algorithm that when the number
of selected bands increased above about 40, the covariance
matrices used to calculate the Bhattacharyya distance tended
to become singular, producing early cessation of the searchand
a sub-optimal result. We have tried to mitigate this problemby
adding a regularisation factor, but avoidance of this problem
is another reason to favor the new method.

VII. C ONCLUSION

A band-selection method for hyperspectral image analysis
based on estimation of mutual information has been described.

Given the relationship between MI and Bayes error, maxi-
mizing MI is analogous to the idea of maximizing separa-
bility that many other methods employ. Experiments on the
AVIRIS dataset show that the proposed method outperformed
or was competitive with state-of-the-art methods, but having
the advantages of easy implementation and low computational
cost. Future work will concentrate on improved methods for
estimating the reference map from prior knowledge.
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