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Abstract— Non-linear dimensionality reduction and vector
segmentation of hyper-spectral images is investigated in this
letter. The proposed framework takes into account the non-
linear nature of high dimensional hyper-spectral images, and
projects onto a lower dimensional space via a spatially-coherent
locally linear embedding technique. The spatial coherence is
introduced by comparing individual pixels based on their local
surrounding neighborhood structure. This neighborhood concept
is also extended to the segmentation and classification stages using
a modified vector angle distance. We present the underlying
concepts of the proposed framework and experimental results
showing the significant classification improvements.

I. I NTRODUCTION

Hyper-spectral images are produced by sensors such as
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer, a
NASA/Jet Propulsion Laboratory Sensor) and Hyperion (a
NASA sensor). These sensors provide data in the form of
hundreds of narrow and adjacent spectral bands. This spectrum
is often unique to the material composition and could be
used, for example, to investigate the compounds and elements
on the surface of the Earth. Such identification is of great
significance for detecting minerals associated with ore deposits
[4], precision farming by assessing crop and soil conditions
[18], and inland water environmental monitoring [7], to name
just a few of the numerous applications of hyper-spectral data.

Hyper-spectral sensors such as AVIRIS deliver calibrated
images of 224 contiguous spectral channels (bands), with
wavelengths from 400 to 2500 nm [1]. The amount of data
that is acquired may typically run into hundreds of megabytes.
The processing of this amount of data requires considerable
time and computing resources. The work here presented first
addresses the problem of reducing this huge amount of data to
tractable levels. The redundancy in the data of adjacent bands
is intrinsically exploited to help in this data reduction. Simulta-
neously, as shown with the experiments in this work, this data
reduction also removes spurious and erroneous information
from the data, thereby leading to more accurate clustering
and classification. We thereby introduce a framework for
dimensionality reduction of hyper-spectral images by adapting
the theory of non-linear dimensionality reduction. Specifically,
our efforts are directed to extend and adapt locally linear
embedding techniques, [17], to the dimensionality reduction
of hyper-spectral images.

Early research in dimensionality reduction and classifica-
tion of hyper-spectral images focused on linear projection
methods such as Principal Component Analysis (PCA) [16].
Methods like PCA, Factor analysis, and multidimensional
scaling, assume that the underlying data manifold is linear,
which is not necessarily true in the case of hyper-spectral data
and most imaging modalities. PCA has been shown not to
perform optimally in the presence of interference sources such
as natural background signatures and structured non-random
noise such as striping, [6], and it is also not appropriate for
material identification and separability. Orthogonal subspace
projection, introduced in [11], does not exploit the higher order
correlations between the spectral bands nor it addresses the
non-linear mixture of spectral signature as explained in [14],
which presents a kernel based non-linear version to address
these issues. In linear spectral mixing methods, [12], the basic
idea is that each pixel in the image can be decomposed into its
constituent end members. This approach does not address the
issue of non-linear mixing of spectral signatures. The idea of
selecting the best bands for analyzing the hyper-spectral data
was also investigated, [9]. The thrust behind this approach
was that each object has unique spectral features which can
be identified by looking at particular bands.

Most of these established methods do not consider the non-
linear characteristics of the hyper-spectral data. The multiple
sources of nonlinearity have been pointed out in [2], and
include the nonlinear nature of scattering, non-linearities due
to the variable presence of water in pixels as a function of
position in the landscape, multiple scattering within a pixel,
and the heterogeneity of sub pixel constituents

A number of methods have been proposed in the literature
in the domain of non-linear dimensionality reduction and
manifold learning. Data driven and non-linear dimensionality
reductions algorithms, e.g., [3], [17], [19], have become pop-
ular in the last few years and are the critical mainstream in
high dimensional data analysis. These methods try to find the
underlying structure of the sampled manifold by non-linear
projections of sample data points. Although these methods
are not strictly based on any physical or phenomenological
models, nevertheless they provide a powerful framework for
processing high dimensional data. Applications of non-linear
dimensionality reduction methods such as ISOMAP in hyper-



spectral images is explained in [2] (the issue of tiling for
large images is also addressed in this work). Unfortunately,
ISOMAP has been shown to work only under quite limited
conditions [8]. Instead, we propose to use the method of
locally linear embedding(LLE) [17]. Early uses of LLE for
hyper-spectral data were reported in [13]. Here, we first extend
LLE by introducing spatial coherence, which is here shown to
be critical for accurate classification and segmentation. This
spatial coherence is introduced following recent results in the
literature of image denoising and texture synthesis [5], [10],
[15], where pixels are compared based on their localn × n
immediate surrounding neighbors. The same concept of spatial
coherence is then also introduced into vector angle distances
in order to classify and segment the data from the non-linearly
embedded hyper-spectral images.

After presenting the original LLE technique, Section II, we
describe the proposed spatially-coherence extension, Section
III, as well as its introduction into the vector angles distance
measurement. We then experimentally show the advantages of
the proposed framework, Section IV. Concluding remarks are
then presented in Section V

II. L OCALLY L INEAR EMBEDDING

Locally linear embedding, [17], is a data driven non-linear
dimensionality reduction method. It is based on the assumption
that each sample point in the higher dimensional manifold can
be approximated by a linear combination of its local neighbors.
It is further assumed that the neighborhood relationship is
preserved during the process of dimensionality reduction,
meaning that for the given high dimensional data with a
low intrinsic (co-)dimension, the same neighborhoods exist
in the original high and lower projected dimensions. The
local geometry for each data point is characterized by patches
formed by the coefficients that linearly reconstruct the data

point from its neighbors. For every data point
→
Xi∈ RD in

high D dimensions, the weightsW = {Wij}i,j are computed
by minimizing the cost function

ε(W) :=
∑

i

‖
→
Xi −

∑
j∈N(i)

Wij

→
Xij‖2, (1)

where the external sum is over all the data points
→
Xi, and the

internal sum is overN(i), thek closest neighbors of
→
Xi (see

Section III). The unknown weightsWij are constrained to add
to one (

∑
j∈N(i) Wij = 1).

After the weights are computed, each high dimensional
observation is mapped to a low dimensional space preserving
the local structure of the manifold. This is done by choosing

low dimensional coordinates
→
Yi∈ Rd, d � D, minimizing the

embedding cost function (Y = {~Yi}i)

φ(Y) :=
∑

i

‖
→
Yi −

∑
j∈N(i)

Wij

→
Y ij‖2 . (2)

Note that while in (1) the minimization is performed on the
weightsWij , these are then fixed in (2), and the minimization

is done with respect to the coordinates
→
Yi, for which a

lower dimensionality has been selected. The minimizations are
straightforward applications of singular valued decomposition
[17].

III. SPATIALLY -COHERENTNEIGHBORHOODSELECTION

The original LLE algorithm has no implicit spatial coher-
ence. Each data is considered a point sample in the underlying
high dimensional manifold embedded inRD. In the case of
hyper-spectral images, these data points are pixels. The pixel-
vector, ~Xi ∈ RD in Equation (1), is then the vector containing
the pixel value at a particular position for all the bands.
Hyper-spectral data are images, and hence the pixel-vectors
are also spatially related. For example, if a given pixel-vector
belongs to a particular class, the probability of its immediate
surrounding pixel-vectors belonging to the same class is high.
Our aim is to first introduce this spatial coherence in the
computation of the high dimensional local neighborhoodN(i)
in equations (1) and (2).

In classical locally linear embedding, the Euclidean distance
is used to computeN(i), the k closest local neighbors to a

point
→
Xi. Instead of using the individual pixels of each band

to compute this Euclidean distance, we propose to use all the
n× n surrounding pixels to~Xi (an n× n square with~Xi as
its center). Hence, each coordinate (band) in~Xi is replaced
by an n2-dimensional vector (we usen = 3 in this work).
In other words, in the case of Euclidean distances, instead of
computing the distance between

→
Xi and

→
Xj as

dE( ~Xi, ~Xj) :=
√∑

p

d2
e( ~Xi(p), ~Xj(p)), (3)

wherede( ~Xi(p), ~Xj(p)) := | ~Xi(p)− ~Xj(p)|, p runs over the
dimensions of~Xi, and ~Xi(p) stands for the respective coor-
dinate (band); we use the following new spatially-coherence
distance to compute the~Xi neighborhoodN(i):

dS( ~Xi, ~Xj) :=
√∑

p

d2
N ( ~Xi(p), ~Xj(p)), (4)

where nowdN ( ~Xi(p), ~Xj(p)) is the distance between the
correspondingn × n surrounding pixels to~Xi(p) and ~Xj(p)
(we can use for example Euclidean distance,L1 distance, or
vector angles to compare these two pixel patches for example).
We have then replaced in the original Euclidean distance
the pixel wise differences byn × n patches differences, for
each coordinatep, thereby introducing spatial coherence. This
substitution has been recently found to be crucial for state-of-
the-art image denoising as well [5], [15].

Note that we do not have to restrict our attention todS in
Equation (4) being Euclidean, and we can also consider here
L1 or vector angle distances for example. We experiment with
these variations as well.

Following this definition of distance, if two pixels are very
similar but their respective surroundingn × n patches are
dissimilar, then the distancedS between the two pixel-vectors



would be high and such pixels would not be considered
neighbors and will not be jointly used to estimate the local
linear embedding in equations (1) and (2). The distancedS

between the two vectors inherently takes into account the
spatial coherence between two vector-pixels. Comparing the
neighborhoods as a measure of similarity for pixel-vectors
provides robustness to spurious information for a pixel, e.g.,
noise.

A different approach to calculate the distance between pixel-
vectors is to explicitly introduce a distance matrixM whose
entries are proportional to the spatial distance between pixels.
This new spatial-distance matrix can then be used to weigh
the entries of the final distance matrix between the pixel-
vectors. A problem with this is that if objects of the same
class are spatially separated, then this spatial-distance matrix
would weigh down the contribution of the spatially separated,
although of same class, pixels, which is undesirable.

Finally, we should note that this concept of replacing indi-
vidual pixel differences byn×n surrounding block differences
is quite general, and as such, we use it below also to compute
the vector angle difference between two pixel-vectors for
classification and clustering.

IV. EXPERIMENTAL RESULTS

Experimental results are now presented for two different
data sets. The first data set is the hyper-spectral image of the
Indian Pines, obtained by the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS, a NASA/JPL sensor) in 1992.1

This data set has 224 spectral channels covering a spectral
region from 0.4 to 2.5 mm in 10 nm intervals. Out of the 224
bands, about 43 bands contained unstructured noise. These
bands are excluded from the experiments, resulting in 181
bands.2 This data comes with its corresponding ground truth
classification, and is thereby here used to show the importance
of spatially-coherent non-linear dimensionality reduction and
classification. The second data is obtained from the Hyperion
sensor aboard the EO-1 satellite (a NASA sensor). This data
set contains 242 spectral channels covering a spectral region
from 356nm to 2577nm, and has a spatial resolution of 30
meters. Out of the 242 bands, 44 bands are not calibrated
due to decreased sensitivity of the detectors within the non-
calibrated spectral regions. The non calibrated bands are set to
zero, and hence we exclude these bands in our experiments.
The results shown in this paper are for two random image
segments of30×30 and36×36 pixels, for the AVIRIS satellite,
and two segments of size70× 70 and80× 80 pixels for the
image obtained from the EO-1 satellite. Similar results where
obtained for other regions of the hyper-spectral images.

For the AVIRIS data, the original 181 band image was first
reduced using the here proposed spatially-coherent (modified)
locally linear embedding, projection onto 5, 10, 25, 50, and
100 bands. For each of these experiments we varied the
number of neighbors (cardinality ofN(i)), using 5, 10, 25,

1http://www.ece.purdue.edu/∼biehl/MultiSpec/documentation.html
2This task could be easily automated by using the fact that the noisy bands

lack structure.

50, 100, 200, 300, and 400 neighbors. Once the dimension
reduced (projected) image was obtained, we performed the
classification using the spatially-coherent vector angles mea-
sure. For the first image segment, which contains four classes,
a sample of size 50 pixels/per class were used as a reference
vectors. For the second image segment, which contains 8
different classes, a sample of 18 pixels/per class were taken
as the reference vectors. Both images also had unclassified
background segments which did not have a representative
spectra, and background segmentation is not addressed in this
test. To overcome this, we forced each pixel in the image to
take a label of one of the existing 4/8 classes. The background
pixels are excluded while considering the accuracy of the
classification.

In the following images from AVIRIS, for finding the
neighborsN(i) to estimate the locally linear embedding,
we experimented with three different distance metrics for
comparing the vector-neighborhoods (both fordS and for
dN ): Euclidean, vector angle, andL1. For simplicity of the
presentation, we didn’t consider all the freedom of the model
in Equation (4), and test only fordS anddN being both the
same selection from the three metrics mentioned above.3 We
also experimented by introducing the spatial distance matrix
M in conjunction with the distance matrix{dS( ~Xi, ~Xj)}i,j

obtained from the above three distance metrics, see Equation
(4). For the first image from AVIRIS, the classification accu-
racy obtained by using all the original 181 noise-free bands
was about 87.8%. With our modified locally linear embedding,
we were able to reduce the number of bands to 10 and
obtain a classification accuracy of 99.82%. Reducing the 181
band to 10-25 bands gave consistent accuracy of more than
90% across all tested distance metricsdS and the number of
neighbors considered. Reduction to 10 bands considering 5
neighbors (according to the spatially consistent metric defined
above), gave the best result consistently for all 3 distance
metrics. Reduction to 25 dimensions considering 10 neighbors
gave the best classification results. Weighing by the spatial-
distance matrixM consistently improved the results for all
three distant metrics and for all the considered number of
projected bands. The results for reduction onto 10 and 25
bands were comparable. The classification accuracy decreased
when the reduced number of bands were 5 (too few) or 50
(too many). Results for this image are visualized in Figure 1.

For the second image from AVIRIS, the classification ac-
curacy obtained by using all the original 181 noise-free bands
was about 67%. With our modified, spatially coherent, locally
linear embedding we were able to reduce the bands to 25
and obtain a classification accuracy of 85%. Projecting the
181 bands to a 25 band image gave consistent accuracy of
more than 75% across all tested distance metrics and the
number of neighbors considered. Reducing to 25 bands and

3In other words, we use Euclidean,L1, or vector angle to compare vectors
in R9×181, the 9 coming from the3 × 3 neighborhood and the181 from
the number of bands. We could obtain even better results ifdN uses one
distance, e.g., vector angle, and thendS a different one, e.g., Euclidean as in
Equation (4).



Fig. 1. Top left: The Ground truth data. Each of the four classes is
represented by different colors. White corresponds to background.
Top right: Classification using the original 181 noise free bands.
The classification accuracy is 87.8%.Middle left: Classification after
reducing the 181 band image to 10 bands using LLE. Vector Angle
was used for classification. The classification accuracy is 86.91%.
Middle right: Classification after reducing the 181 band image to 10
bands using the proposed spatially-coherent LLE combined with the
spatially-coherent vector angle for classification. The classification
accuracy is 99.82 %.Bottom:Same as on the middle right, with the
background pixels masked. Compare with ground truth on top left.

considering 5 neighbors gave the best result consistently for all
3 distance metrics. The results when projecting onto 10 bands
are marginally lower. The classification accuracy decreases
by 5-10% when the reduced number of bands were 5 or 50.
Weighing by the spatial-distance matrix decreases the accuracy
of classification. This is due to the fact that in this image, there
is one class which is spatially separated. Results for this data
are presented in Figure 2.

A confusion matrix for this data is presented in Table I. The
label for each row shows the ground truth class, and labels in
the columns show the classified class. This table shows for
each class how many vector-pixels have been correctly clas-
sified and how many have been not. In the miss-classification
case, the class they have been assigned to is shown. As
expected, most of the vector-pixels are correctly classified,
as can be seen from the large numbers in the diagonal and
the otherwise sparsity of the matrix. The spectral signature of
the ground truth BLU and the ORN region are very close to
each other, see Figure 3, therefore we get maximum miss-
classification when BLU region falsely identified as ORN
region.

For the second set of images obtained from the EO-1
satellite (two segments of it), the original data set of 242
bands was reduced to 172 bands and 178 bands respectively
by removing the non-calibrated bands. Though 42 bands are

Fig. 2. Top left: The ground truth data. Each of eight classes is rep-
resented by different colors. White represents background.Top right:
Classification using the original 181 noise free bands. Background
pixels are classified as belonging to one of existing eight classes.
The classification accuracy is 67%.Bottom left:Classification after
reducing the 181 band image to 10 bands using our modified LLE
and the modified vector angle for classification. The classification
accuracy goes to 85%.Bottom right: Same as on the left, with the
background pixels masked. Compare with ground truth on top left.

ORN RED GRN MGT DBL DGR BLU BRN
ORN 72 0 0 0 0 0 15 4
RED 0 83 0 0 0 0 18 7
GRN 6 0 54 0 8 0 0 0
MGT 0 0 0 77 0 0 0 0
DBU 0 1 0 0 279 6 0 0
DGR 0 0 0 0 0 20 0 0
BLU 80 3 0 0 2 0 184 0
BRN 1 0 0 0 0 0 0 85

TABLE I

CONFUSIONMATRIX

The rows of the confusion matrix represent the true label of each class, as
obtained from the ground truth data. Columns represent the class assigned by
our proposed algorithm. Color codes are as follows ORN-Orange: RED-Red:
GRN-Green: MGT-Magenta: DBU-Dark Blue: DGR-Dark Green: BLU-Blue:
BRN-Brown

Fig. 3. Explanation for the BLU and ORN miss-classification shown
in the confusion matrix. Note, as classified by the ground truth,
vector-pixels from the same class (green and red) are further away
than vector-pixels from different classes (green and blue).



Fig. 4. Top left: Image from E0-1 satellite. The three visible classes
are mountain tops, plains, and green vegetation patch.Top right:
Classification after reducing the data to 25 bands using the proposed
modified LLE. K-means is used for clustering, with the spatially
consistent vector angle as the distance between projected pixels.
Bottom:Same as first row for a different portion of the image.

specified to be non-calibrated and are set to zero, a few
additional bands had to be excluded, they have more than
98% pixels with zero value. The 172/178 band image was
reduced using the proposed modified locally linear embedding
to 5, 10, 25, 50, and 100 projected bands. For each of these
projections we varied the number of neighbors, using 5, 10,
25, 50, and 100. After the dimensionality reduction of the
data, we used the classical K-means algorithm to cluster the
pixels (recall that for this data, ground truth is not available).
The proposed spatially coherent vector angle was used as the
distance metric in the K-means algorithm. No ground truth is
available for this data, therefore the number of classes were
estimated from the visual clues. Specifically, for Figure 4, top,
the three visible materials are the green vegetation patch, the
mountain top rocks, and the plains. For Figure 4, bottom, the
three visible materials are the mountain top, clouds, and the
plains. Figure 4 shows the clustering results for projections
onto 25 bands.

V. CONCLUDING REMARKS

In this letter we have introduced spatial coherence into di-
mensionality reduction and vector angle distance, and showed
their contributions for the classification and clustering of
hyper-spectral data. We effectively reduced the amount of
data by more than 75%, while at the same time improving
classification by more than 15%.

A lot of work remains to be done in the area of hyper-
spectral classification and its connections with dimensionality
reduction. First, in order to deal with large images, the use
of classical works on out-of-sample dimensionality reduction
need to be investigated. This will permit to work with a
subset of the data while extending the learned dimensionality
reduction map to the entire image. In the same flavor, it is also
interesting to perform spatially-coherent LLE as here proposed
on small segments of the hyper-spectral data, and then stitch
them together in order to obtain the global map of the entire

image. This idea of charting is in line with concepts presented
in [2]. Results in this direction will be reported elsewhere.
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