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Classification and Extraction of Spatial Features in
Urban Areas Using High-Resolution

Multispectral Imagery
Xin Huang, Liangpei Zhang, and Pingxiang Li

Abstract—Classification and extraction of spatial features are
investigated in urban areas from high spatial resolution multi-
spectral imagery. The proposed approach consists of three steps.
First, as an extension of our previous work [pixel shape index
(PSI)], a structural feature set (SFS) is proposed to extract the
statistical features of the direction-lines histogram. Second, some
methods of dimension reduction, including independent com-
ponent analysis, decision boundary feature extraction, and the
similarity-index feature selection, are implemented for the pro-
posed SFS to reduce information redundancy. Third, four classi-
fiers, the maximum-likelihood classifier, backpropagation neural
network, probability neural network based on expectation–
maximization training, and support vector machine, are compared
to assess SFS and other spatial feature sets. We evaluate the pro-
posed approach on two QuickBird datasets, and the results show
that the new set of reduced spatial features has better performance
than the existing length–width extraction algorithm and PSI.

Index Terms—Feature extraction, feature selection, high
spatial resolution multispectral (HSRM) imagery, spatial fea-
ture set.

I. INTRODUCTION

CURRENTLY, commercially available high spatial res-
olution multispectral (HSRM) images, obtained from

QuickBird, IKONOS, and SPOT-5, etc., can provide a large
amount of detailed ground information in a timely manner.
However, the availability of this type of data poses challenges
to image classification. Due to the complex spatial arrangement
and spectral heterogeneity even within the same class, con-
ventional spectral classification methods are inadequate for
HSRM imagery [1]. It is well known that combining spatial
and spectral information can improve land use classification
from HSRM data [2]. Therefore, many effective spatial features
concerning the structure, shape, and geometric characteristics
have been proposed. One commonly applied statistical pro-
cedure for interpreting texture is the gray level cooccurrence
matrix (GLCM), which is a widely used texture and pattern
recognition technique in the analysis of satellite data, and has
been successful to a certain extent [1], [3], [4]. A method
based on straight lines to assess land development in high-
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resolution satellite images is introduced in [5], where a set of
statistical measures are extracted based on the regional line
distribution. A Markov random-field-based method using both
contextual information and a multiscale fuzzy line process for
classifying HSRM imagery is investigated in [6]. In [7] and [8],
the structural information is extracted by applying the extended
morphological profiles with a multiscale approach. Some algo-
rithms that focus on contextual spectral similarity have been
proposed. In [9], a length–width extraction algorithm (LWEA)
is developed to extract the length and width of spectrally similar
connected groups of pixels from the HSRM imagery. These
values of length and width are found by searching along a pre-
determined number of equally spaced lines radiating from the
central pixel. In [10], a pixel shape index (PSI) is introduced,
which sums the length of all the radiating lines to describe the
structure around the central pixel.

In this letter, we first propose some new statistical measures
to extract the structural features of direction lines, such as
weighted mean (w-mean), length–width ratio, and standard
deviation (SD), which overcome the inadequacy of the previous
algorithms (PSI and LWEA). Second, some dimension reduc-
tion approaches, including feature extraction and feature selec-
tion, are tested and compared in order to reduce information
redundancy. Third, different classifiers including maximum-
likelihood classifier (MLC), backpropagation neural network
(BPNN), probability neural network based on expectation–
maximization training (EM-PNN), and support vector machine
(SVM) are used to process the hybrid spectral-structural fea-
tures after the steps of spatial feature extraction and dimension
reduction.

II. STRUCTURAL FEATURE SET (SFS)

PSI and LWEA provide some useful spatial measures includ-
ing length, width, and sum of direction lines. In this letter, the
methods of LWEA and PSI are extended with some new spatial
measures of the direction lines.

A. Direction Lines

Direction lines can be defined as a series of a predetermined
number of equally spaced lines through the central pixel [9],
[10]. The extension of direction lines is based on the neighbor-
ing gray level similarity and the lines radiating from the cen-
tral pixel in different directions. In one direction, the spectral
difference is measured between a pixel and its central pixel in
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order to decide whether this pixel lies in the homogeneous area.
The pixel homogeneity for a direction line is defined as

PH(s, c) = |p(s) − p(c)| (1)

where PH(s, c) represents the homogeneity measurement be-
tween the central pixel and its surrounding pixel. p(c) and p(s)
are the spectral values of the central pixel and the surrounding
pixel, respectively. Two parameters (T1 and T2) control the
extension of each direction line as follows.

1) PH(s, c) is less than a predefined threshold T1.
2) The total number of pixels in one direction line is less

than another predefined threshold T2.

The extension of one direction line will cease if either of
the above conditions is not met. In that case, the extension of
the ith direction line will be terminated, and the algorithm will
skip to search the (i + 1)th direction line. After determining all
the direction lines around one central pixel, their lengths are
calculated as follows:

di =
(
(me1 − me2)2 + (ne1 − ne2)2

) 1
2 (2)

where (me1, ne1) denote the row and column number of the
pixel at one end of the direction line, and (me2, ne2) denote
the row and column number of the pixel at the other end.
The parameters T1 and T2 indicate the maximum spectral and
spatial distances, respectively, between the central pixel and its
surrounding pixels. Theoretically, T1 will be set to between
2.5 to 4.0 times the average SD of the Euclidean distance of the
training pixel data from the class means [9]. T2 is a scale factor
in the algorithm and it is relevant to the image resolution and the
size of the interesting objects. Given a larger T2 is proper for
multiscale objects [10]; it is set as 0.5 to 0.6 times the number
of rows or columns for the image.

Upon completion of the calculation of the lengths of all
direction lines, the direction-line histogram of one central pixel
can be defined as follows, where I represents the whole image,
and c denotes a central pixel:

H(c) :
{
c ∈ I

∣∣ [d1(c), . . . , di(c), . . . , dD(c)]
}

.

B. Statistical Features for the Direction Lines

Some statistical measures will be employed to reduce the
dimensionality and extract the features from the direction-
lines histogram. Six statistical measures are proposed for the
histogram, called the SFS.

1) Length: the maximum in the histogram.

length =
D

max
i=1

(di(c)) (3)

2) Width: the minimum in the histogram.

width =
D

min
i=1

(di(c)) (4)

Fig. 1. Spectral and spatial features for different information classes.

3) PSI: the mean or sum of the histogram [10].

PSI =
D∑

i=1

di(c)
/

D (5)

4) w-mean:

w-mean =
D∑

i=1

a · (ki − 1)
sti

di(c)
/

D (6)

ki is the length of the ith direction line for a central pixel,
a is a constant that adjusts the value of w-mean, and sti
represents the SD of the spectral values in the ith direction
line. A larger value of sti shows that in this direction line
the spectral values fluctuate a lot, and hence it is used as
weight in order to reduce the length of unstable direction
lines.

5) Ratio: It aims to describe the shape contour around the
central pixel. Sorting the lengths of all the direction lines
around one central pixel in sequence, the nth maximum
and the nth minimum are represented as sortnmax(H(c))
and sortnmin(H(c)), respectively. Then, the ratio can be
defined as (in this letter, n = 5, D = 20)

Ratio = arctan

∑n
j=1 sortjmin (H(c))∑n
j=1 sortjmax (H(c))

. (7)

6) SD: It is meaningful when one considers that a narrow
but elongated rectilinear object (for instance a road) could
lead to the same length or PSI values as a square feature
(for instance grass or a building)

SD =
1

D − 1

√√√√ D∑
i=1

(di(c) − PSI)2. (8)

Examples of spectral information and spatial measures for
different classes are given in Fig. 1. All the features have been
normalized to [0, 255] beforehand using the method in [10].
From Fig. 1, it can be clearly seen that different characteristics
are achieved for the different classes. Therefore, the use of these
measures should help in classification.
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III. DIMENSION REDUCTION FOR THE SPATIAL FEATURES

Conventionally, the first spectral principal component of
multispectral data is extracted to build a set of spatial fea-
tures [2], [8]. But in this letter, all the spectral bands are used
to extract the spatial information, after which an unsupervised
feature selection approach using the feature similarity index
(S-Index) [11], which is a fast and effective algorithm, is
employed to select the optimal subset.

S-Index is based on measuring similarity between features
whereby redundancy therein is removed. This method does
not need any searching and therefore is fast. A new feature
similarity measure, called maximum information compression
index (MICI), is introduced in [11]. Let Σ be the covariance
matrix of random variables x and y. Define MICI as λ =
smallest eigenvalue of Σ, i.e.,

2λ(x, y) = var(x) + var(y)

−
√

(var(x) + var(y))2 − 4var(x)var(y)(1 − ρ(x, y)2) (9)

and

ρ(x, y) = cov(x, y)
/√

var(x)var(y) (10)

where var(·) denotes the variance of a variable and cov(·) the
covariance between two variables. The value of λ is zero when
the features are linearly dependent and increases as the amount
of dependence decreases.

It has been proved that this index outperforms some con-
ventional approaches to feature selection, such as branch and
bound, sequential forward search, sequential floating forward
search, and stepwise clustering, both in accuracy and CPU
time [11]. See [11] for a detailed description of the S-Index. For
the purpose of comparison, the methods of decision boundary
feature extraction (DBFE) [8] and independent component
analysis (ICA) [12] are used to achieve the spatial feature
extraction for the HSRM data.

IV. EXPERIMENTS

In this letter, the SVM is employed for the classification of
spectral-structural features. At the same time, the classifiers of
BPNN, MLC, and PNN based on EM training [13] will also
be tested for the purpose of comparison. The one-against-one
method is employed to resolve the multiclass problem of SVM
and the leave-one-out algorithm is used to select the kernel
parameters for the radial basis function [10]. The configuration
for BPNN is: the number of input neurons equals the number of
input features, the number of hidden layer neurons equals twice
the number of input layer neurons, and the stopping rule of the
training phase equals 1000 epochs. Two statistics, overall ac-
curacy (OA) and Kappa coefficient based on confusion matrix,
are utilized to evaluate the classification performances.

The QuickBird image used in experiment (1) consists of
three multispectral bands (RGB) with 2.44-m resolution. The
image is shown in Fig. 2(a), and a reference image is available

Fig. 2. Experimental area and reference image. (a) Test area of QuickBird
image. (b) Reference image.

Fig. 3. Accuracies statistics for dimension reduction methods in
experiment (1).

[Fig. 2(b)]. The numbers of training and testing samples were
selected randomly from the reference data.

1) Comparison of DBFE, ICA, and S-Index: In this ex-
periment, 6-D SFS measures and three bands produce 18-D
spatial features, which will be preprocessed by a normalization
step beforehand [10]. The dimensionally reduced structural
features were integrated with spectral information to achieve
the classification. The parameters of the direction lines were
set as T1 = 110 and T2 = 175, and the SVM classifier was
used. The OAs of classification for test data as a function of
the number of dimensionally reduced features for the different
approaches are shown in Fig. 3. From the figure, it can be
seen that the tendency of the three curves are significantly
similar, and the highest classification accuracies are achieved
when three or four spatial features are included in the feature
sets. When the number of spatial features increases from 0 to
3 (or 4), the three curves ascend obviously to their respective
summits. But when 6-D SFS features are included, the overall
accuracies do not improve much, which demonstrates that more
spatial features do not necessarily produce higher accuracy.
The highest accuracy of 0.885 is achieved by 3-D features
using DBFE; the highest accuracies by S-Index and ICA are
0.873 and 0.871, respectively. Considering that the S-Index is
just a method of feature selection instead of linear combination
and its computational cost is essentially low, the S-Index is
successfully applied for the SFS features.

2) Comparison of GLCM, LWEA, PSI, and SFS: The tex-
tural measures adopted on GLCM include: mean, variance,
contrast, dissimilarity, entropy, and homogeneity [4]. These
measures were calculated setting the interpixel distance equal
to one in all the four directions and finally the directionality
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TABLE I
CLASSIFICATION ACCURACIES FOR DIFFERENT SPATIAL FEATURES IN

EXPERIMENT 1), AND SVM WITH 3-D SPATIAL FEATURES

SELECTED VIA S-INDEX ARE USED

Fig. 4. Classification maps for different features in experiment (1).
(a)–(e) Classification maps for spectral, GLCM, LWEA, PSI, and SFS features,
respectively.

was suppressed by averaging the extracted features over four
directions. The S-Index method and SVM classifier were used
for this comparison and the dimension of all the different spatial
feature sets after feature selection is three. Their classification
accuracies with different information classes are provided in
Table I and the classification maps for all five feature sets are
shown in Fig. 4.

Fig. 5. Accuracy statistics for different classifiers with different input features
in experiment (1).

In Fig. 4(a), the obvious misclassifications lie in spectrally
similar objects such as tree–grass, building–road–bare-soil,
and shadow–water, which illustrates that spectral information
is inadequate for the classification of HSRM data. GLCM
[Fig. 4(b)] improves the classification of tree–grass slightly
and the accuracy of road acquires an obvious increase of 28%;
however, it cannot discriminate water–shadow, which is partly
attributed to its fixed window processing. It is found that PSI
and LWEA achieve similar results, both outperforming GLCM.
SFS is an improved version of LWEA and PSI, and it not only
combines the spatial measures of them but also introduces some
new measures to overcome their defects. Compared with PSI,
the improvements for SFS in OA and Kappa coefficient are
about 6.2% and 8.6%, respectively.

3) Comparison of MLC, BP, EM-PNN, and SVM: For
different classifiers, the dimension of all the spatial features
after feature selection (S-Index) was set equal to 3. In Fig. 5,
the accuracies for four classifiers with five different feature
sets are provided, from which it can be observed that the
proposed SFS features give better performance independent of
the classifiers used.

In order to verify that the proposed algorithms of classifica-
tion and spatial feature extraction work in a stable manner, an-
other QuickBird multispectral image of Beijing was examined,
whose size is 630 × 677 pixels [Fig. 6(a)]. A reference image
with different information classes was available [Fig. 6(b)].

In this experiment, the parameters of the direction lines were
set as T1 = 90, T2 = 210. The relationship between OA and
the number of spatial features for the different feature extraction
methods is shown in Fig. 7. The highest overall accuracies
achieved by DBFE, S-Index, and ICA are, respectively, 0.832,
0.819, and 0.813. It can be concluded that the S-Index is fast
and effective in extracting the SFS features of HSRM data,
although, theoretically, the optimal set of features may be the
result of a linear or nonlinear transformation of the original
features.

Different feature sets were compared again using the SVM
classifier and S-index method. Five spatial features were
selected from the original feature sets. The classification
accuracies with seven information classes for different features
are provided in Table II; the classification maps are shown in
Fig. 6(c) and (d). Compared with LWEA and PSI, the respective
5.5% and 5.3% improvements of OA via SFS features show the
strength of our algorithm, especially in the classification of bare
soil, road, and building.
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Fig. 6. Classification maps for different features in experiment (2). (a) Image
in the experimental area. (b) Reference image. (c)–(d) Classification maps for
spectral information and SFS feature set, respectively.

Fig. 7. Accuracy statistics for dimension reduction methods in
experiment (2).

TABLE II
CLASSIFICATION ACCURACIES FOR DIFFERENT

SPATIAL FEATURES IN EXPERIMENT (2)

V. CONCLUSION

This letter mainly addresses the three following items. The
first one was to introduce some new spatial measures such as
w-mean, SD, and length–width ratio. The second one was to

extract the respective spatial features from each spectral band,
and then to use the methods of S-Index, DBFE or ICA to obtain
the structural information of multispectral bands. The last one
was to compare different features in different classifiers.

The proposed SFS is an extension of previous algorithms.
According to the classification maps and accuracies in exper-
iments, the improvements brought about by SFS are apparent.
Meanwhile, it should be noticed that not all the spatial measures
are indispensable, especially when structural features are ex-
tracted from every spectral band. In experiments, DBFE, ICA,
and S-Index were successful in reducing the high-dimensional
features, but S-Index is more suitable for the SFS features,
although a slightly higher accuracy is achieved by DBFE. After
that, four kinds of classifiers were used to classify spectral-
spatial features in order to test the adaptability of SFS features.
An overall conclusion can be drawn that the proposed SFS
algorithm obviously improves the previous results and SVM is
better at interpreting the hybrid features.
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