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Multibaseline Polarimetric SAR Interferometry
Coherence Optimization
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Abstract—This letter analyzes different approaches for polar-
imetric optimization of multibaseline (MB) interferometric co-
herences. Two general methods are developed to simultaneously
optimize coherences for more than two data sets. The first method
provides every data set with a distinct dominant scattering mecha-
nism (SM). The second optimization method is constrained to use
equal SMs at all data sets. As the experimental results indicate,
MB coherence optimization does improve the accuracy in the
estimation of dominant SMs and the associated interferometric
phases. Both methods are evaluated on real data acquired by the
German Aerospace Agency (DLR)’s enhanced synthetic aperture
radar sensor (ESAR) at L-band.

Index Terms—Coherence optimization, multibaseline (MB), po-
larimetric synthetic aperture radar interferometry (PolInSAR).

I. INTRODUCTION

OLARIMETRIC synthetic aperture radar interferometry
P (PolInSAR) is an advanced technique that makes it pos-
sible to separate scattering centers inside a resolution cell.
By varying the polarization states, optimal scattering mech-
anisms (SMs) with the highest coherence can be obtained.
Optimizing coherence provides the possibility to reduce the
uncertainty in interferometric phase estimation. The decorrela-
tion terms are decreased with coherence optimization, and the
signal-to-noise ratio is improved. This maximization makes the
estimation of the topography more accurate. Polarimetric co-
herence optimization can also be applied to vertically structured
media to resolve the dominant scattering centers.

With the introduction of PolInSAR, a coherence optimization
technique was presented by Cloude and Papathanassiou [1].
This method is considered as the most general one since it
allows different polarization states at the ends of the baseline.
Colin et al. [2] outlined a general optimization routine with a
constraint of equal polarization states. In the meantime, various
other PolInSAR coherence optimization algorithms to optimize
the coherence in a subspace and to give suboptimal solu-
tions have been developed, for example, by Sagués et al. [3],
Yamada et al. [4], Tabb et al. [5], Gomez-Dans and Quegan [6],
and Qong [7].

The extension of single-baseline (SB) PolInSAR to multiple
baselines increases the observation space. Analyzing a series
of coherent polarimetric data sets enables more advanced and
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more accurate applications. The range varies from polarimetric
differential interferometry (PolDInSAR) to parameter inversion
techniques with more complex physical models. It is also of
importance to identify the most coherent scattering center in
all data sets, thus minimizing the phase errors. This delivers
the most accurate estimates of the interferometric phases and of
the SMs.

Given a multibaseline (MB) data set, coherences can be opti-
mized independently for every baseline. This partly reproduces
the results and errors of the SB case and leads to different domi-
nant scattering centers depending on the chosen baseline. A bet-
ter approach to find the most coherent and dominant scatterer
is simultaneous optimization of MB coherences. This approach
generally leads to lower coherence magnitudes, but the corre-
sponding SMs and their interferometric phases are estimated on
the basis of all available information and, thus, more accurately.

Most of the current airborne and spaceborne PolInSAR
systems acquire data with spatial and temporal baseline separa-
tions. With respect to baseline separation properties, two cohe-
rence optimization criteria are considered. With proximate
baselines, one would prefer to extract equal SMs (ESMs) of
the highest coherence. With more divergent baseline proper-
ties, another approach is more reasonable, i.e., to use slightly
different polarizations [multiple SMs (MSMs)] for different
tracks to estimate the coherence of the dominant scatterers.
As an example, changes in the scattering behavior, as caused,
for example, by meteorological influences or vegetation growth
between the acquisition times, will induce different polarization
signatures for the same scattering structures. Both approaches,
namely MSM and ESM, are analyzed, and two methods are
developed and evaluated, as described in the following sections.

II. MB POLINSAR

An MB n-track geometry contains (n/2)(n — 1) direct base-
lines. Fully polarimetric monostatic data can be represented in
the Pauli basis, assuming reciprocity, for every track 7 € [1, n]
by the scattering vector k;, i.e.,
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The MB PolInSAR coherency matrix T, representing estimated
covariance of polarimetric and interferometric channels, is
generated by multilooking of the outer product of the aggre-
gated scattering vector k. Thus
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where () represents the multilooking operator, and ' is the
Hermitian transformation. T';; contain polarimetric informa-
tion, whereas €2;; (i # j) contain baseline-dependent polari-
metric and interferometric information.

The concept of SM is crucial to polarimetric interferometry
and can be interpreted as representing the polarization state
pair of the transmit and receive channels or as describing the
physical characteristics of scatterers (hence the name). For
the monostatic case, an SM vector corresponds to a complex
unitary vector w € C3 with four degrees of freedom. To obtain
the scattering amplitude for a specific pair of transmit/receive
polarizations, the scattering vector is projected onto the SM:
S; = wiki. SM vectors can be used to examine the covariance
(cross correlation) of two interferometric data sets ¢ and j
for specific polarization states w; and w;: 0;; = (SiSﬁ =
wzﬂij w;. Typically, covariances are examined for equal polar-
izations utilizing the same SMs: w; = w;. The corresponding
interferometric coherence and phase estimates, in the general
case, are the following:

w, ﬂ”wj

VU”UN \/wTT”w W ' ]w]
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Yij(wiwj) = |'Y € (3)

III. MB COHERENCE OPTIMIZATION

In contrast with the independent SB coherence optimization
methods, MB methods simultaneously optimize coherences
in several baselines. Thus, they are expected to deliver more
robust estimates of the optimized interferometric phases and
dominant SMs.

The general MB-MSM method assigns a distinct SM to each
track. This approach allows one to optimize the coherence
for SMs that might have different polarimetric signatures in
different data sets. The MB-ESM method, on the other hand,
enforces equal polarimetric signatures of scatterers along all
baselines (w; = w; Vi, ), and the application of this method
is restricted to a single SM for the dominant scatterer.

The general MB optimization problem can thus be stated as
the maximization of a function f(y,, ... w.,) (possibly w; = w;
for ESM) incorporating coherence moduli for all baselines. In
the simplest case, the optimization function f is determined by
the sum over coherence moduli: f = " |v;;|. As can be shown,
there are no exact analytical methods applicable for the simple
sum optimization problem, neither for MSM nor for ESM.
However, two algorithms will be presented that achieve such
optimizations with a high degree of accuracy and efficiency.

A. MSM Optimization

The SB coherence optimization with two SMs (i.e.,
SB-MSM) [1], which is a canonical correlation analysis (CCA)
problem [8], optimizes the modulus of the covariance wTﬂ” w;
for two data sets ¢ and j while keeping the variances w; T';;w;
and w' ; Tjjw; constant. In [1], the modulus of the complex
Lagranglan L is maximized by introducing the real-valued
multipliers A; and A;, i.e.,

L= wiﬂijwj — A (wZTiiwi - 1) = <w;Tjjwj - 1) :
)

As it has been shown, the solution can be obtained by setting
the partial derivatives of L with respect to variables \;, A;, w;,
and w; to zero. Thus
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Optimal SMs and the corresponding coherences are obtained
from the resulting eigenvalue problems, i.e.,

T, QT Qjw; = Adjw; ©)
T3 Q4 T35 Qjwi = Nidjw;. (10)

Since T;; and T;; are Hermitian and positive definite, the
inverses, as well as square roots, of these matrices exist. One
can show that Ai = Aj = A by left multiplying (7) and (8) with
w and w and using (5) and (6). Furthermore, the complex
Lagrange functlon (4) can be transformed into a real-valued
function. These two modifications make it possible to express
the optimization problem in the following notation:

L= Z Z wQ”w]—)\Z(w T”wz—l).

i=1 j=1#1

(11

This function is real valued due to the fact that the first term
of L stands for the sum of Re(w!€2;;w;) for all i # j, since
w! Qw wj = (w Qﬂwl) This modification uses the phase am-
biguity between w; and wj, i.e., arg(wiw]), to cause a shift
of coherence phases toward zero. The second term in (11)
is real valued since it contains quadratic forms of Hermitian
matrices. For n = 2, the optimization problem formulated in
(11) is equivalent to (4), i.e., to the SB case.

When more than two data sets are taken into consideration,
optimization is referred to as the multiset CCA [9]. In this
case, (11) can be interpreted as a weighted optimization of
coherences since it refers to optimizing the sum of covariances
wzﬂijwj while keeping the sum of variances wITiiwi con-
stant. Setting the partial derivatives of (11) to zero will lead to
the generalized eigenvalue problem (12) that optimizes a linear
combination of coherences (i € [1,...,n]), ie.,

Z Qijwj = \T,;w;, <— Aw = \Bw <—
=11

0 Qp Q][ w1 Ty 0 - 0 J[w:
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The optimized coherence modulus for the SB case is equal to
the largest eigenvalue in (12) and the square root of the largest
eigenvalues in (9) and (10). Furthermore, the phase of the SB
optimized coherence is equal to — arg(w!w,) (= arg(whwi))
from (12) since (11) automatically deals with the phase am-
biguity issue. For more than two data sets, the largest eigen-
value does not anymore correspond to the optimized coherence
modulus, but rather to the weighted mean of the optimized co-
herence moduli. However, the eigenvectors include the optimal
SMs, although unnormalized and containing phase ambiguities.
Both issues, if not removed, might distort the interpretation of
optimal SMs and interferometric phases.

MB-MSM coherence optimization can be summarized by the
algorithm that follows.

1) Obtain eigenvectors from the generalized eigenvalue
problem (12): Aw = ABw, where A=T - B, B =
;" , T;i, and @ is the direct sum operator.

2) Normalize the SM vectors from w = [wq, ...
that for all i € [1,n] : wiw; = 1.

3) Remove the phase shiftlfrom these vectors with respect
to an arbitrary track m € [1,n], so that for all ¢ € [1,n] :
arg(wl,w;) = 0.

4) Compute, if needed, optimized coherences according to
(3) using vectors w; after normalization and the removal

of phase ambiguities.

,wn]T, so

B. ESM Optimization

For relatively small temporal and spatial separations between
data sets, polarimetric coherency matrices T';; are often very
similar. Allowing different SMs for all data sets becomes less
important or even undesirable. In [2], an optimization method,
which constrains the optimized SMs to be equal (SB-ESM), is
presented for the SB case. It is based on the numerical range
[10] properties of the matrix IT;;, i.e.,

1 n
IT;; = T;”QQijTgW, where T, = — E Ty;.
n
i=1

13)

For the SB case, as in [2], i =1, 7 =2, and n = 2. The
numerical range of matrix IT;;, W(II;;), can be interpreted as
the set of coherences 7 of IL;; in all polarizations, i.e.,

Yij(w) =wiIl;w — VTew
W J wiy/Tew
W(H”) = {XTHin X € (CB,XTX = 1} .

(14)
15)

The maximal coherence modulus of IL;; corresponds to the
numerical radius r(I1;;), i.e.,
r(IL;;) = max{|xTHZ—jx| ix e C3 xix = 1} . (16)
In [2], an iterative method [11] is used to compute r(II;;) for
the SB case.
The remainder of this section describes an extension of
the SB algorithm to the MB case (MB-ESM). The sum of

coherences ) |7;;(w)| is taken as the optimization criterion,
where the SMs are all equal: w; = w; = w forall ¢, j € [1,n].
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In an attempt to remove the modulus operation, the phase shift
variables 0;; € [—m, 7|, 8;; = —0,;, are introduced to validate
the following inequality:

n n n n
maxy Y Fywye 0 <maxd Y [Fiw|- (D)

i=1 j=1#i i=1 j=1#i

The left term is real valued since %j(w)e’wii =
(Vjicwye 97)1, as was the case with (11). The maximum
of the left side depends on the given set of phase shift variables
{0;;}, whereas the maximum on the right side is constant.
Equality is achieved when phase shifts are equal to the
phases of optimal coherences, so that the real parts of the
phase-shifted optimal coherences are equal to the coherence
moduli. Therefore, the optimization process consists in the
simultaneous search for the optimized coherence phases and
the corresponding optimal SM. As for the SB approach,
the MB-ESM coherence optimization is not analytically
solvable. However, an efficient iterative optimization method is
presented, which converges in a few (i.e., two to five) iterations.

An estimate for the optimal SM can be obtained from the
eigenvector associated with the largest eigenvalue of the com-
bined Hermitian matrix H in

Hw = w, where H=> Y e . (18)
i=1 j=1#i

Estimates for the optimal phase shifts are in turn obtained from

0;j = arg (WTHZ-]-W) . (19)

The phase shifts can then be reintroduced to (18) to obtain
an improved estimate of the optimal SM w. By iteratively
adjusting the phase shifts 6;;, one obtains progressively better
estimates of w.

This method may lead to a suboptimal local maximum. To
avoid this, one can perform several optimizations with different
initial phase shifts. Another approach is an effective strategy
for initialization. Since ESM coherence sets describe simple
convex filled regions in the unitary complex coherence plane
[2], phase shift angles 6;; can be initialized with the trace
phases of II;;. Such an initialization significantly improves
the optimization performance with respect to the number of
iterations and robustness.

It should be noted that when the polarimetric coherency ma-
trices T';; significantly differ, the ESM coherence optimization
might fail to converge on the global optimum. In such cases, the
MSM coherence optimization method should be preferred.

Finally, the steps involved in the proposed MB-ESM coher-
ence optimization algorithm are given here.

1) Initialization: §;; = arg(trace IL;;); A = 0.

2) Computation of H and w from (18) with current esti-
mates of optimal phase shifts 6;;. w is the eigenvector
corresponding to the highest eigenvalue Ay ax.

3) Improved estimation of 6;; using computed w via (19).
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Fig. 1.

Experimental scenes. (a) and (b) Alling and Oberpfafenhoffen areas in Pauli decomposition. (c)—(f) Optimized coherence magnitudes |y12| for (b) of the

first baseline for SB-MSM, SB-ESM, MB-MSM, and MB-ESM. (g)—(j) Optimized coherence phases arg ;2 of (b) of the first baseline for SB-MSM, SB-ESM,

MB-MSM, and MB-ESM.

4) Termination criterion: Apax — A < g, where ¢ is an ar-
bitrary small constant. If the criterion is not met, then
\ = Amax, and go to step 2).

5) The optimal SM vector w and corresponding op-
timal coherences are calculated from w via w =
T, 2w/ (wiTe"?w) and (14).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of optimization methods greatly depends
on the configuration of the acquisition system (e.g., baseline
lengths, acquisition times, and frequency) and the imaged
media. The applicability is limited by the critical spatial and
temporal separations between the data sets, and in case of strong
decorrelation in most data sets, the obtained results might be
questionable. Evaluation experiments on real data are presented
to emphasize the difference and the sensitivity of the proposed
MB coherence optimization methods versus the SB coherence
optimization methods.

Two scenes have been examined. The first scene is a rural
area near Alling, Germany, and is shown in Fig. 1(a). This
area contains mostly vegetated agricultural fields. The data set
comprises three coherent tracks with spatial baselines between
1 and 40 m and temporal baselines of 15 and 30 min. An-
other scene in the Oberpfaffenhofen area [Fig. 1(b)] contains
diverse scattering media, including forests, surface, and urban
areas. Five tracks with baselines between 5 and 37 m and
temporal separations between 15 min and 1 h are used. The
same preprocessing procedures have been applied to both data
sets, including flat-earth removal, range spectral filtering, and
multilooking with 16 looks. Multilooking was done by spatial
summation, not smoothing, to ensure a high degree of statistical
independence between neighboring samples.

Fig. 1(c)—(f) and (g)—(j) shows the coherence moduli and
coherence phases of the Oberpfaffenhofen scene after opti-
mization with SB-MSM, SB-ESM, MB-MSM, and MB-ESM
methods, respectively, for the first baseline. The corresponding
baseline has a 5-m spatial separation and a 15-min temporal
separation. The modulus images provide visual evidence that
SB optimized coherences achieve higher values than their MB
counterparts. The decrease of coherence moduli for MB coher-
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Fig. 2. Normalized optimal coherence moduli histograms. (a) Alling scene:
agricultural region with three data sets. (b) Oberpfafenhoffen scene: forested
region with five data sets.

ence optimization can also be observed on coherence moduli
histograms for the given scenes in Fig. 2. This is related to
the number of constraints and the dimension of the available
search space. The contrast improvement of MB optimization
techniques is conspicuous, particularly over forested areas.
This tendency might be interpreted as the reduction of opti-
mal coherence bias [12]. The advantage in utilizing numerous
baselines for the optimization lies here: by interferometric
baseline-dependent multilooking, i.e., by deliberately choos-
ing suitable baselines, the optimal coherence bias might be
reduced. However, further experiments have to be carried out
to evaluate the bias reduction possibilities of MB optimizaton
techniques.

It is important to note the major difference between the SB
and the MB methods. Since the SB methods independently
optimize coherences, they acquire higher coherence values, but
the corresponding phases and SMs are different, indicating
different dominant scattering centers. Such effects can be more
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(a) SB-MSM p, (c) SB-ESM pg

(b) MB-MSM p,

Fig. 3. Local correlation pg of optimized interferometric phases with N =
7 X 7 =49 over all baselines.
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Fig. 4. Mean of pg as a function of spatial neighborhood averaging N.

closely examined by considering the interferometric phases of
optimized coherences and their spatial variances. The differ-
ences of optimized coherence phases in Fig. 1(g)—(j) are hardly
visible. However, quantitative examination of the local phase
correlation over homogeneous areas reveals the improvement
of the phase stability with a higher number of baselines. The
correlation of the optimized phases pg is computed from the
phase ¢ of the optimized coherence in a local window of NV
samples, i.e.,

N
X 1 i o
p¢:|(e“ﬁ>‘: i E €%, where ¢; = arg’yjpt. (20)
j=1

An area of fields in the lower right edge of the Oberpfaffenhofen
test site has been examined. This area is assumed to be homo-
geneous and devoid of topographic variations. Fig. 3 shows the
local phase correlation p, for different optimization methods
using a 7 x 7 averaging window. The averaged correlation for
all baselines is presented. The diagram in Fig. 4 presents the
results of the mean correlation coefficient calculations on ho-
mogeneous fields and for different averaging windows. These
results demonstrate the improvement of the phase stability of
simultaneous MB coherence optimization methods for both
MSM and ESM.

V. CONCLUSION

MB coherence optimization concepts have been analyzed,
and two optimization algorithms have been developed for the
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most general cases: one with MSMs in the data sets and
one with ESMs. Initial experiments regarding MB coherence
optimization properties have been conducted and discussed.

It has been observed that even when enforcing simultaneous
MB coherence optimization, it is still possible to achieve very
high coherences, coming close to SB optimized coherences.
It has been shown that the utilization of multiple baselines
for the optimization of coherences has certain advantages over
SB optimization with regard to accuracy improvement in the
estimation of dominant coherent phase centers and SMs, and
coherence contrast improvement, which may be related to the
optimal coherence bias reduction.

The extension of polarimetric optimization to the MB case
has potential practical uses in various areas. The presented
methods provide coherence optimization techniques to applica-
tions with more than one baseline for the first time. New fields
are, for instance, PoIDInSAR, permanent scatterer determina-
tion, classification, or change monitoring and detection over
multitemporal and MB data sets. Furthermore, utilizing more
than two data sets, if available, will improve the robustness
in determining the most coherent SMs and is useful even for
SB applications, such as digital elevation model extraction or
parameter inversion.
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