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Abstract—Supervised classification of hyperspectral images is
a very challenging task due to the generally unfavorable ratio
between the number of spectral bands and the number of train-
ing samples available a priori, which results in the Hughes phe-
nomenon. For this purpose, several feature extraction methods
have been investigated in order to reduce the dimensionality of
the data to the right subspace without significant loss of the
original information that allows for the separation of classes. In
this letter, we explore the use of spectral unmixing for feature
extraction prior to supervised classification of hyperspectral data
using support vector machines. The proposed feature extraction
strategy has been implemented in the form of four different un-
mixing chains and evaluated using two different scenes collected
by National Aeronautics and Space Administration Jet Propulsion
Laboratory’s Airborne Visible/Infrared Imaging Spectrometer.
The experiments suggest competitive results but also show that
the definition of the unmixing chains plays an important role
in the final classification accuracy. Moreover, differently from
most feature extraction techniques available in the literature, the
features obtained using linear spectral unmixing are potentially
easier to interpret due to their physical meaning.

Index Terms—Endmemberextraction, featureextraction,hyper-
spectral image classification, spectral unmixing, support vector
machines (SVMs).

I. INTRODUCTION

IN MANY studies, hyperspectral analysis techniques are
divided into full- and mixed-pixel classification techniques

[1]–[3], where each pixel vector defines a spectral signature or
fingerprint that uniquely characterizes the underlying materials
at each site in a scene. Full-pixel classification techniques
assume that each spectral signature comprises the response of
one single underlying material. Often, however, this is not a
realistic assumption. If the spatial resolution of the sensor is
not fine enough to separate different pure signature classes at
a macroscopic level, these can jointly occupy a single pixel,
and the resulting spectral signature will be a composite of the
individual pure spectra, often called endmembers in hyperspec-
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tral imaging terminology [4]. Let us denote a remotely sensed
hyperspectral scene with n bands by I, in which each pixel is
represented by a vector X = [x1, x2, . . . , xn] ∈ �n, where �
denotes the set of real numbers in which the pixel’s spectral
response xk at sensor channels k = 1, . . . , n is included. Under
the linear mixture model assumption, each pixel vector can be
modeled using

X =

p∑

z=1

Φz ·Ez + n (1)

where Ez denotes the spectral response of endmember z,
Φz is a scalar value designating the fractional abundance of
the endmember z at the pixel X, p is the total number of
endmembers, and n is a noise vector. Two physical constraints
can be imposed into the model described in (1): abundance
nonnegativity constraint, i.e., Φz ≥ 0, and abundance sum-to-
one constraint, i.e.,

∑p
z=1 Φz = 1 [5].

Several machine learning techniques have been applied,
under the full-pixel assumption, to extract relevant information
from hyperspectral data. The good classification performance
exhibited by the support vector machine (SVM) [1], [6], [7]
using spectral signatures as input features can be improved by
applying suitable feature extraction strategies that are able to
reduce the dimensionality of the data to a subspace without
losing the original information [8]. Techniques used for this
purpose include principal component analysis (PCA) [3],
minimum noise fraction (MNF) [9], or independent component
analysis (ICA) [10]. PCA and MNF maximize the amount of
data variance and signal-to-noise ratio (SNR), respectively,
yielding a transformed data set in a new uncorrelated coordinate
system, while ICA tries to find components as statistically
independent as possible. However, all these methods maximize
the information contained in the first transformed components,
relegating variations of less significant size to low-order
components. If such low-order components are not preserved,
small classes may be affected. The inclusion of spatial features
such as morphological profiles can be used to address this issue
[8], [11], [12].

In this letter, we explore an alternative strategy focused on
the use of spectral unmixing for feature extraction prior to
classification. Previous efforts in this direction were presented
in [13] and [14], but the analysis of whether spectral unmixing
can replace standard feature extraction transformations remains
an unexplored topic. Although classification techniques of-
ten neglect the impact of mixed pixels in the provision of
a set of final class labels, widely used benchmark data sets
in the literature—e.g., the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) Indian Pines scene—are known to be
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Fig. 1. Unmixing-based feature extraction chains #1 (spectral endmembers)
and #2 (spatial–spectral endmembers).

dominated by mixed pixels, even if the associated ground-truth
information is only available in full-pixel form. Hence, the use
of spectral unmixing presents distinctive features with regard
to other approaches such as PCA, MNF, or ICA. First, it pro-
vides additional information for classification in hyperspectral
analysis scenarios with moderate spatial resolution, since the
subpixel composition of training samples can be used as part of
the learning process of the classifier. Second, the components
estimated by spectral unmixing can be physically explained
as the abundances of spectral endmembers. Third, spectral
unmixing does not penalize classes which are not relevant in
terms of variance or SNR. Here, we design different unmixing
processing chains with the goal of addressing three specific
research questions.

1) Is spectral unmixing a feasible strategy for feature extrac-
tion prior to classification?

2) Does the inclusion of spatial information at the endmem-
ber extraction stage lead to better classification results?

3) Is it really necessary to estimate pure spectral endmem-
bers for classification purposes?

We have structured the remainder of this letter as follows.
Section II describes the considered spectral unmixing chains.
Section III presents different experiments specifically designed
to address the aforementioned research questions and provide a
comparison between the proposed unmixing-based strategy and
other feature extraction approaches in the literature. Section IV
concludes with some remarks and future research avenues.

II. UNMIXING-BASED FEATURE EXTRACTION

A. Unmixing Chain #1

In this section, we describe our first approach to design an
unmixing-based feature extraction chain which can be summa-
rized by the flowchart in Fig. 1. First, we estimate the number
of endmembers p directly from the original n-dimensional
hyperspectral image I. For this purpose, we use in this letter
two standard techniques widely used in the literature such as
the HySime method [15] and the virtual dimensionality (VD)
concept [16]. Once the number of endmembers p has been esti-
mated, we apply an automatic algorithm to extract a set of end-
members from the original hyperspectral image [17]. Here, we
use an orthogonal subspace projection technique [18] which has

Fig. 2. Unmixing-based feature extraction chain #3 (chain #4 replaces end-
member extraction with averaging of the signatures associated to each labeled
class in the training set).

been shown in previous work to provide a very good tradeoff
between the signature purity of the extracted endmembers and
the computational time to obtain them. Preliminary experiments
conducted with other endmember extraction techniques, such as
vertex component analysis [19] and N-FINDR [20], have shown
very similar results in terms of classification accuracy. Finally,
linear spectral unmixing (either unconstrained or constrained)
can be used to estimate the abundance of each endmember in
each pixel of the scene, providing a set of p abundance maps.
Then, standard SVM classification is performed on the stack of
abundance fractions using randomly selected training samples.

B. Unmixing Chain #2

In this section, we introduce a variation of the unmixing-
based feature extraction chain which includes spatial prepro-
cessing prior to endmember extraction in order to guide the
endmember searching process to those areas which are more
spatially homogeneous. This approach is shown in Fig. 1. The
spatial preprocessing strategy adopted in this letter is described
in detail in [21]. As in the previous chain, the features resulting
from the proposed (spatially enhanced) unmixing process are
used to train an SVM classifier with a few randomly selected
labeled samples. The classifier is then tested using the remain-
ing labeled samples.

C. Unmixing Chain #3

Our main motivation for introducing a third unmixing-based
feature extraction chain is the fact that the estimation of the
number of endmembers p in the original image is a very
challenging issue. Fig. 2 shows a new chain in which the
endmembers are extracted from the set of available (labeled)
training samples instead of from the original image. This chain
introduces two important variations: 1) As a simplification to
the challenging estimation problem, the number of endmembers
to be extracted is set as the total number of different classes
c in the training set, and 2) the endmember searching process
is conducted only on the training set, which reduces compu-
tational complexity. However, the number of endmembers in
the original image p is probably different than c, the number of
labeled classes. Therefore, in order to unmix the original image,
we need to address a partial unmixing problem (in which
not all endmembers may be available a priori). A successful



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

762 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 8, NO. 4, JULY 2011

TABLE I
CLASSIFICATION ACCURACIES (PERCENTAGE) AND STANDARD DEVIATION OBTAINED AFTER APPLYING THE CONSIDERED SVM CLASSIFICATION

SYSTEM (WITH GAUSSIAN AND POLYNOMIAL KERNELS) TO THREE DIFFERENT TYPES OF FEATURES (ORIGINAL, REDUCED, AND UNMIXING BASED)
EXTRACTED FROM THE AVIRIS INDIAN PINES AND KENNEDY SPACE CENTER SCENES (TEN RANDOMLY CHOSEN TRAINING SETS)

technique for this purpose is mixture-tuned matched filtering
(MTMF) [22], also known as constrained energy minimization
[23], which combines linear spectral unmixing and statistical
matched filtering. From matched filtering, it inherits the ability
to map a single known target without knowing the other back-
ground endmember signatures. From spectral mixture model-
ing, it inherits the leverage arising from the mixed pixel model
and the constraints on feasibility.

D. Unmixing Chain #4

The fourth unmixing chain tested in our experiments rep-
resents a slight variation of unmixing chain #3 in which the
spectral signatures used for unmixing purposes are not obtained
via endmember extraction but through averaging of the spectral
signatures associated to each labeled class in the training set.
To keep the number of estimated components low, only one
component is allowed for each class. This averaging strategy
produces c signatures, each representative of a labeled class,
which are then used to partially unmix the original hyperspec-
tral scene using MTMF.

III. EXPERIMENTAL RESULTS

A. Hyperspectral Data

The first data set used in our experiments was collected by
the AVIRIS sensor over the Indian Pines region. The scene1

comprises 145 lines by 145 samples and 220 spectral channels
with the wavelength range from 0.4 to 2.5 μm, nominal spectral
resolution of 10 nm, and spatial resolution of 20 m by pixel.
After removing noisy and water absorption bands, 202 channels
were left. The ground truth contains 16 land cover classes. The
number of pixels in the smallest class is 20, while the number
of pixels in the largest class is 2468.

The second data set was collected by the AVIRIS sensor
over the Kennedy Space Center,2 Florida, in March 1996. The
portion of this scene used in our experiments has dimensions

1Available online: http://dynamo.ecn.purdue.edu/~biehl/MultiSpec
2Available online: http://www.csr.utexas.edu/hyperspectral/data/KSC/

of 292 × 383 pixels. After removing water absorption and low-
SNR bands, 176 bands were used for the analysis. The spatial
resolution is 20 m by pixel. Twelve ground-truth classes were
available, where the number of pixels in the smallest class is
134 while the number of pixels in the largest class is 761.

B. Experiments

1) Experiment 1. Use of Unmixing as a Feature Extraction
Strategy: In this experiment, we use the AVIRIS Indian Pines
and Kennedy Space Center data sets to analyze the impact of
imposing nonnegativity and sum-to-one constraints in abun-
dance estimation prior to classification. For the AVIRIS Indian
Pines image, we construct ten small training sets by randomly
selecting 5%, 10%, and 15% of the ground-truth pixels. For the
AVIRIS Kennedy Space Center, since the size of the smaller
classes is bigger, we decided to reduce the training sets even
more and selected 1%, 3%, and 5% of the available ground-
truth pixels. Then, the three considered types of input features
(original, reduced, and unmixing based) are built for the se-
lected training samples and used to train an SVM classifier
in which two types of kernels, i.e., polynomial and Gaussian,
are used. The SVM was trained with each of these training
subsets and then evaluated with the remaining test set. Each
experiment was repeated ten times, and the mean and standard
deviation accuracy values were reported. Kernel parameters
were optimized by a grid search procedure, and the optimal
parameters were selected using tenfold cross validation. The
LIBSVM library3 was used for the experiments.

Table I summarizes the overall classification accuracies ob-
tained after applying the considered SVM classification sys-
tem (with polynomial and Gaussian kernels) to the features
extracted after applying unmixing chain #1 (see Fig. 1) to
the AVIRIS scenes. The dimensionality of the input data, as
estimated by a consensus between the HySime and the VD
concept, was p = 18 for the Indian Pines scene and p = 15 for
the Kennedy Space Center scene. Chain #1 was implemented
using two different linear spectral unmixing algorithms [5]:
unconstrained and fully constrained; due to better accuracy and

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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TABLE II
STATISTICAL DIFFERENCES EVALUATED USING MCNEMAR’S TEST (POLYNOMIAL KERNEL)

faster computation, only results for the unconstrained case are
presented. The results after applying the classification system to
the original spectral features and to those extracted using PCA,
MNF, and ICA are also reported.

As shown in Table I, the classification accuracy is correlated
with the training set size (the larger the training set, the higher
the classification accuracy). The good generalization ability
exhibited by SVMs is demonstrated by the classification results
reported for the original spectral information, even with very
limited training sets. The fact that MNF is more effective
than PCA and ICA for feature extraction purposes is also
remarkable, since the MNF has been more widely used in the
context of spectral unmixing rather than classification. Table I
also reveals that the use of unmixing chain #1 as a feature
extraction strategy cannot improve the classification results pro-
vided by PCA, MNF, ICA, or the original spectral information.
This is because endmember extraction is generally sensitive
to outliers and anomalies; hence, a strategy for directing the
endmember searching process to spatially homogeneous areas
could improve the final classification results.

2) Experiment 2. Impact of Including Spatial Information at
the Endmember Extraction Stage: In this experiment, we apply
unmixing chain #2 for feature extraction prior to classification.
As shown in Table I, spatial preprocessing prior to endmember
extraction cannot lead to improved classification results with
regard to chain #1 and the original spectral information. This is
due to the spectral similarity of the most spatially representative
classes in our considered scenes. For instance, in the AVIRIS
Indian Pines scene, the corns and soybeans were very early
in their growth cycle at the time of data collection, which
resulted in low coverage of the soil (≈5%) [24]. Given this
low canopy ground cover, the variation in spectral response
among different classes is very low, and spatial information
cannot significantly increase discrimination between different
classes. In order to address this issue, a possible solution is
to conduct the endmember extraction process in a supervised
fashion, taking advantage of the information contained in the
available labeled samples in order to guarantee that a highly
representative endmember is selected per class.

3) Experiment 3. Impact of Endmember Purity on the Final
Classification Results: In a supervised endmember extraction
framework, our first experiment is based on applying unmixing
chain #3 to select endmembers only from the available train-
ing samples. Apart from reducing computational complexity
(which, in this case, involves a search for c endmembers in
the pixels belonging to the training set), Table I reveals that
this strategy improves the classification results reported for
chains #1 and #2. However, in order to make sure that only one
endmember per labeled class is used for unmixing purposes,
we also apply unmixing chain #4 in which spectral averaging
of the available training pixels in each class is conducted in

order to produce a final set of c spectral signatures. Although
averaging of endmembers can lead to degradation of spectral
purity, it can also reduce the effects of noise and/or average out
the subtle spectral variability of a given class, thus obtaining
a more representative endmember for the class as a whole.
This is illustrated by the classification results for unmixing
chain #4 in Table I, which outperform those reported for most
other tested methods except the MNF. This indicates that, in
a supervised unmixing scenario, the use of spectrally pure
signatures is not as important as the choice of signatures which
are representative of the available training samples.

Table II shows the statistical differences (average value of
ten comparisons) between traditional dimensionality reduction
methods and unmixing chains #3 and #4, computed using
McNemar’s test [25] for the case of the polynomial kernel.
The differences are statistically significant at a confidence level
of 95% if |Z| > 1.96. For each couple of compared feature
extraction chains, we report also how many times each chain
wins/ties/loses after comparing the thematic maps obtained
using the same training set. If the value of Z reported for
each entry in Table II is positive and larger than 1.96, the first
compared chain wins. By convention, the comparison is always
performed with the first chain in a line in Table II and the
second chain in a column in Table II. It can be noticed that
unmixing chains #3 and #4 always perform significantly better
than PCA and ICA. MNF performs better than chain #3, while
the differences with chain #4 are in general not significant.

To conclude this section, Fig. 3 shows the best classifi-
cation results (out of ten runs) obtained after applying the
SVM—trained with 10% of the available training samples—to
each feature extraction strategy considered for the AVIRIS
Indian Pines scene. As shown in Fig. 3, both the MNF in
Fig. 3(d) and chain #4 in Fig. 3(h) provide the best classification
scores, with less confusion in heavily mixed classes.

IV. CONCLUSION AND FUTURE RESEARCH LINES

In this letter, we have investigated several strategies to extract
relevant features from hyperspectral scenes prior to classifi-
cation. For classification scenarios using SVMs trained with
relatively small subsets of labeled samples, our experimental
results reveal that the MNF greatly improves accuracies when
compared to the more well-known PCA and ICA transfor-
mations, used as an unsupervised feature reduction tool prior
to classification. Due to the reduced dimensionality, classi-
fication using both the MNF and PCA subspaces generally
improved the overall accuracy when compared to using all the
original pixel’s spectral curves. The results indicate that the
proposed unmixing-based feature extraction chains can provide
an alternative strategy to the PCA or MNF by incorporating
information about the (possibly) mixed nature of the training
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Fig. 3. Best classification results for AVIRIS Indian Pines (using SVM classifier with Gaussian kernel, trained with 10% of the available samples per class).
(a) Ground-truth. (b) Original image (84.27%). (c) PCA (83.33%). (d) MNF (89.41%). (e) Chain #1 (81.29%). (f) Chain #2 (79.64%). (g) Chain #3 (87.99%).
(h) Chain #4 (89.26%). (i) Class accuracies (MNF versus Chain #4).

samples during the learning stage, with the potential advantage
of improved interpretability of features due to the physical
nature of the extracted abundance maps. Although final clas-
sification accuracies are likely to be dependent on the particular
data set considered, the chains tested suggest higher accuracies
with respect to traditional methods, such as PCA and ICA, and
comparable accuracies related to MNF.

Further research is needed to define an optimality criterion to
design unmixing chains as a feature reduction tool for classifi-
cation purposes. A start point might be chain #4 which indicates
that, in the context of a supervised unmixing scenario, the use
of spectrally pure signatures is not as important as the choice
of signatures which are highly representative of the available
training samples.

ACKNOWLEDGMENT

The authors would like to thank D. Landgrebe and
M. Crawford for sharing the hyperspectral data and the two
reviewers for their comments.

REFERENCES

[1] A. Plaza, J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone,
G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, J. Gualtieri,
M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in tech-
niques for hyperspectral image processing,” Remote Sens. Environ.,
vol. 113, pp. 110–122, Sep. 2009.

[2] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.

[3] J. A. Richards, “Analysis of remotely sensed data: The formative decades
and the future,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 422–
432, Mar. 2005.

[4] J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture modeling:
A new analysis of rock and soil types at the Viking Lander 1 site,”
J. Geophys. Res., vol. 91, no. B8, pp. 8098–8112, 1986.

[5] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mix-
ture analysis for material quantification in hyperspectral imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.

[6] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances, and
J. Calpe-Maravilla, “Composite kernels for hyperspectral image classi-
fication,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97,
Jan. 2006.

[7] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote-
sensing images with support vector machines,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[8] A. Plaza, P. Martinez, J. Plaza, and R. Perez, “Dimensionality reduc-
tion and classification of hyperspectral image data using sequences of
extended morphological transformations,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 3, pp. 466–479, Mar. 2005.

[9] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation
for ordering multispectral data in terms of image quality with implications
for noise removal,” IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1,
pp. 65–74, Jan. 1988.

[10] P. Comon, “Independent component analysis, a new concept?” Signal
Process., vol. 36, no. 3, pp. 287–314, Apr. 1994.

[11] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005.

[12] P. Gamba, F. Dell’Acqua, A. Ferrari, J. A. Palmason, and J. A.
Benediktsson, “Exploiting spectral and spatial information in hyperspec-
tral urban data with high resolution,” IEEE Geosci. Remote Sens. Lett.,
vol. 1, no. 4, pp. 322–326, Oct. 2004.

[13] B. Luo and J. Chanussot, “Hyperspectral image classification based on
spectral and geometrical features,” in Proc. IEEE Int. Workshop Mach.
Learn. Signal Process., 2009, pp. 1–6.

[14] B. Luo and J. Chanussot, “Unsupervised classification of hyperspectral
images by using linear unmixing algorithm,” in Proc. IEEE Int. Conf.
Image Process., 2009, pp. 2877–2880.

[15] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral sub-
space identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8,
pp. 2435–2445, Aug. 2008.

[16] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal
sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 42, no. 3, pp. 608–619, Mar. 2004.

[17] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and com-
parative analysis of endmember extraction algorithms from hyperspectral
data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650–663,
Mar. 2004.

[18] J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification
and dimensionality reduction: An orthogonal subspace projection,” IEEE
Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785, Jul. 1994.

[19] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analy-
sis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[20] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral
end-member determination in hyperspectral data,” in Proc. SPIE Image
Spectrometry V , 2003, vol. 3753, pp. 266–277.

[21] M. Zortea and A. Plaza, “Spatial preprocessing for endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679–2693,
Aug. 2009.

[22] J. Boardman, “Leveraging the high dimensionality of AVIRIS data for
improved subpixel target unmixing and rejection of false positives: Mix-
ture tuned matched filtering,” in Proc. 5th JPL Geosci. Workshop, 1998,
pp. 55–56.

[23] Q. Du, H. Ren, and C.-I. Chang, “A comparative study for orthogonal
subspace projection and constrained energy minimization,” IEEE Trans.
Geosci. Remote Sens., vol. 41, no. 6, pp. 1525–1529, Jun. 2003.

[24] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote
Sensing. Hoboken, NJ: Wiley, 2003.

[25] G. Foody, “Thematic map comparison: Evaluating the statistical sig-
nificance of differences in classification accuracy,” Photogramm. Eng.
Remote Sens., vol. 70, no. 5, pp. 627–633, May 2004.


