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ABSTRACT 

The problem of estimating the signal-to-noise ratio 

(SNR) of the cross-polarised channels and the noise 

variance in polarimetric synthetic aperture radar (SAR) 

data is dealt with. The Cramér-Rao Lower Bound 

(CRLB) is evaluated for the joint estimation of SNR of 

the cross-polarised channels and the noise variance, as 

well as for the SNR of the cross-polarised channels, in 

case the noise variance is known. Maximum likelihood 

(ML) estimators are then derived, one which jointly 

estimates the SNR of the cross-polarised channels and 

the noise variance and another which estimates the SNR 

of the cross-polarised channels, in case the variance is 

known. The performance of the estimators is assessed 

and a comparison with a coherence-based (CB) SNR 

estimator and an eigenvalue-based (EB) noise variance 

estimator is carried out. As far as the SNR estimation is 

concerned, both the ML and the CB estimator are 

positively biased, but the bias of the ML estimator is 

smaller than the bias of the CB estimator. As far as the 

noise variance estimation is concerned, the ML 

estimator is unbiased and efficient, while the EB 

estimator is negatively biased. The difference in the 

biases is also shown using TerraSAR-X fully-

polarimetric data, acquired during the Dual Receive 

Antenna (DRA) campaign. 

 

1. INTRODUCTION 

Fully polarimetric synthetic aperture radar (SAR) 

systems allow the extraction of physical information 

from the observed scattering of microwaves by surface 

and volume structures [1]. 

Fig. 1 shows the Pauli color-coded image and the 

coherence between the two cross-polarised channels, 

HV and VH, for a fully polarimetric data set, acquired 

by the German satellite TerraSAR-X over Lower 

Bavaria, Germany, during the Dual-Receive Antenna 

(DRA) campaign. As apparent, the coherence is quite 

low, not only over the two rivers, but also over some of 

the surrounding agricultural fields. For a monostatic 

system, where the transmitting and receiving antennas 

are placed at the same location, the data of the two 

cross-polarised channels are equal, but for the thermal 

noise, which adds in the receiver. A low coherence 

between the two cross-polarised channels, therefore, 

means that thermal noise is significant. 

 
(a) 

 

 

 
(b) 

 

Figure 1. TerraSAR-X fully polarimetric data set 

acquired over Lower Bavaria, Germany. (a)Pauli color-

coded image. (b) Coherence between the two cross-

polarised channels (HV and VH). 



 

The effect of thermal noise on polarimetric SAR data 

has been first analysed in [2], where it is examined how 

polarimetric measurements, such as the covariance 

matrix and the Stokes matrix, are affected by thermal 

noise and it is also pointed out as a first order correction 

can be applied to averaged covariance matrix or Stokes 

matrix values, if the noise variance is known. If such 

first order noise corrections are not applied, several 

measures commonly derived from polarimetric SAR 

data may give erroneous results, hence the importance 

of an unbiased and accurate estimate of the noise 

variance. 

Furthermore, an estimate of the signal-to-noise ratio 

(SNR) of the different polarimetric channels is also of 

importance, as different applications have different 

requirements in terms of SNR and the estimated SNR 

let us understand whether or not a data set is suitable for 

a given application. In particular, due to the low 

backscatter, the SNR of the cross-polarised channels can 

be critical, even considering the 3 dB gain resulting 

from symmetrisation [2]. 

 

2. STATEMENT OF THE PROBLEM 

Let us assume that calibrated single-look complex data, 

corresponding to the two cross-polarised channels of a 

polarimetric SAR system, are available and let us 

consider a set of N independent resolution cells, over 

which a distributed target extends. Let u1[i], i = 0..N-1, 

and u2[i], i = 0..N-1, be the complex amplitudes 

corresponding to the above mentioned N resolution cells 

for the two channels. 

As mentioned, the signals received by the two channels 

are equal, but for an additive term due to the thermal 

noise. Therefore, each of the two sequences uk[i], k =1, 

2, can be written as the sum of a common sequence s[i], 

representing the useful signal, and a sequence wk[i], k 

=1, 2, representing the additive thermal noise 
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It is assumed that s[i], i = 0..N-1, are N independent 

realisations of a circularly symmetric Gaussian random 

variable with mean zero and variance A
2
. This is, in fact, 

the behaviour of a distributed scatterer, whose radar 

cross section (RCS) is equal to A
2
, in case the speckle is 

fully developed. It is also assumed that wk[i], k =1, 2, i 

= 0..N-1, are 2N independent realisations of a circularly 

symmetric Gaussian random variable with mean zero 

and variance σ
2
. Moreover, it is assumed that and s[i], i 

= 0..N-1, and wk[j], k =1, 2, j = 0..N-1, are uncorrelated.  

As s[i], i = 0..N-1, and wk[j], k =1, 2, j = 0..N-1 are two 

uncorrelated circularly symmetric Gaussian random 

variables, they are also statistically independent. The 

signal-to-noise ratio of the cross-polarised channels SNR 

is defined as 
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We would like to estimate SNR and the noise variance 

σ
2
 from u1[i], i = 0..N-1, and u2[i], i = 0..N-1, under the 

stated assumptions. 

 

3. CRAMÉR-RAO LOWER BOUND 

The Cramér-Rao lower bound (CRLB) is the minimum 

variance achievable by any unbiased estimator [3]. 

Therefore, if an estimator is unbiased and its variance is 

equal to the CRLB, it is the minimum variance unbiased 

(MVU) estimator [3]. 

The CRLB can be obtained from the natural logarithm 

of joint probability density function (PDF) of the 2N 

observables, which can be collected in an observation 

vector x 

 

            TNuuuNuuu 1      1   0   1      1   0 222111  x       (3) 

 

Under the stated assumptions, the PDF of x is given by 
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where Cx is the 2N  2N covariance matrix of x. The 

elements of Cx are given by 
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The covariance matrix Cx can be therefore rewritten as a 

block matrix 
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where IN is the identity matrix of size N. Recalling that 

the determinant and the inverse of a square block matrix 

M, written as in 

 











DC

BA
M                                                                (7) 

 

are given by [4] 
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and [5] 
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respectively, the determinant and the inverse of the 

covariance matrix Cx are given by 
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and 
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respectively. 

The quantity x
H

Cx
-1

x in Eq. 4 can be expanded as 
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and the natural logarithm of the PDF of Eq. 4 is 

therefore given by  
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3.1. Joint Estimation of SNR and Noise Variance 

The CRLB for the joint estimation of SNR and σ
2
 are 

given by the diagonal elements of the inverse of the 2  

2 Fischer information matrix J(SNR, σ
2
) [3] 
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In particular, the inverse matrix J
-1

(SNR, σ
2
) is given by 

 

 
   

 




























NN

SNR
N

SNR

N

SNR

SNR
42

22

2

2

12
2

12

2

12

,




1
J

                 (15) 

 

The CRLB for the joint estimation of SNR and σ
2
 are 

therefore given by  
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respectively. 

3.2. Case of Known Noise Variance 

In case the noise variance σ
2
 is known (e.g. physical 

measurements are available or a very accurate estimate 

has been carried out using the whole data set and 

assuming spatial stationarity), it is of interest to derive 

the CRLB for the SNR estimation. 

This is given by the inverse (or reciprocal) of the single-

element Fischer information matrix J(SNR) 
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It therefore holds 
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By comparison with Eq. 16, it can be noticed that the 

CRLB is by a factor of 2 better, if the noise variance σ
2
 

is known. 

 

4. MAXIMUM LIKELIHOOD ESTIMATION 

4.1. Joint Estimation of SNR and Noise Variance 

The maximum likelihood (ML) estimates of SNR and σ
2
 

are the values of SNR and σ
2
 for which the PDF of the 

observation vector in Eq. 4 is maximum [3]. In order to 

derive a closed-form expression for these estimates, the 

expression in Eq. 4 has to be maximised with respect to 

each of the two variables. As the logarithm is a strictly 

monotonic function, this is equivalent to maximise the 

logarithm of the PDF in Eq. 4, which is given in Eq. 13. 

In particular, the first-order partial derivatives (with 

respect to SNR and σ
2
) of the expression in Eq. 13 have 

to be set equal to zero 
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By solving for SNR and σ
2
, one obtains the maximum 

likelihood SNR and noise variance estimates, which are 

given by 
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and 
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respectively. 

Figs. 2 and 3 display the relative bias and accuracy for 

the ML joint SNR and noise variance estimator for 

different values of N. As apparent, the ML noise 

variance estimator is unbiased and efficient, while the 

ML SNR estimator is positively biased. 

 

 
(a) 

 
(b) 

 

Figure 2. Performance plots for the ML noise variance 

estimator for different values of N. (a) Relative bias. (b) 

Relative accuracy. The dashed lines represent the 

CRLB. 

 

 

 

 

 
(a) 

 
(b) 

 

Figure 3. Performance plots for the ML SNR estimator 

for different values of N. (a) Relative bias. (b) Relative 

accuracy. 

 

4.2. Case of Known Noise Variance 

In case the noise variance σ
2
 is known, the ML estimate 

of the SNR of the cross-polarised channels is obtained 

by setting to zero the first-order partial derivative with 

respect to SNR of the expression in Eq. 13 
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The ML estimate of SNR, which is also function of the 

noise variance σ
2
, is therefore given by 

 

 
   

2

1

4
ˆ

2

1

0

2

21
2 












N

iuiu

RNS

N

i
ML

                                 (24) 

 

Fig. 4 displays the relative bias and accuracy for the ML 

SNR estimator, in case the variance is known, for 

different values of N. In this case, the ML SNR 

estimator is unbiased and efficient. 
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(b) 

 

Figure 4. Performance plots for the ML SNR estimator 

in case of known variance for different values of N. (a) 

Relative bias. (b) Relative accuracy. The dashed lines 

represent the CRLB. 

 

5. COMPARISON WITH OTHER ESTIMATORS 

The ML estimators can be compared to other estimators 

in terms of relative bias and accuracy. 

5.1. Noise Variance Estimation 

Concerning the noise variance estimation, a noise 

variance estimator has been proposed in [6], which 

estimates the noise variance as the minimum of the two 

eigenvalues of the covariance matrix of the 2-

dimensional vector containing the data of the two cross-

polarised channels 
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The expression of the noise variance estimate, from now 

on referred to as eigenvalue-based (EB), is given by [7] 
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Fig. 5 displays the relative bias and accuracy for the EB 

noise variance estimator for different values of N. As 

apparent, the EB noise variance estimator is negatively 

biased. As the ML noise variance estimator is unbiased, 

the ML estimator should be preferred to the EB 

estimator. 

 
(a) 

 
(b) 

 

Figure 5. Performance plots for the ML noise variance 

estimator for different values of N. (a) Relative bias. (b) 

Relative accuracy. 

 

The bias can be also observed on real data. Fig. 6 shows 

the histograms of estimated noise variances, obtained 

applying the ML and the EB estimators to a 1024  

1024 pixel patch extracted from a fully polarimetric data 

set, acquired by the German satellite TerraSAR-X over 

Austfonna, Svalbard, Norway, during the dual receive 

antenna (DRA) campaign. An 11  11 pixel window has 

been used. 

 

 
Figure 6. Histograms of the ML and EB noise variance 

estimates for a patch of TerraSAR-X fully polarimetric 

data, acquired over Austfonna, Svalbard, Norway. 

 

A similar estimator is reported in [6], where the noise 

variance is estimated as the smallest eigenvalue of the 4 

 4 coherency matrix. 

5.2. SNR Estimation 

Concerning the estimation of the SNR of the cross-

polarised channels, it can be estimated from the 



 

coherence magnitude between the two cross-polarised 

channels, defined as [8] 
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The SNR influences the coherence magnitude according 

to the following formula [8] 
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which can be inverted to obtain a SNR estimate, from 

now on referred to as coherence-based (CB) SNR 

estimate 
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Fig. 7 displays the relative bias and accuracy for the CB 

SNR estimator for different values of N. As apparent, 

the CB SNR estimator is positively biased . Comparing 

Figs. 3 and 7, it can be noticed that the bias of the CB 

SNR estimator is larger than the bias of the ML 

estimator by a factor of two for high SNR values and 

even more for low SNR values. 
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(b) 

 

Figure 7. Performance plots for the ML SNR estimator 

for different values of N. (a) Relative bias. (b) Relative 

accuracy. 

Even in this case the difference of biases can be 

observed on real data. Fig. 8 shows the histograms of 

estimated SNR, obtained applying the ML and the CB 

estimators to the 1024  1024 pixel patch extracted 

from the Austfonna data set. An 11  11 pixel window 

has been used. 

 

 
Figure 8. Histograms of the ML and CB SNR estimates 

for a patch of TerraSAR-X fully polarimetric data, 

acquired over Austfonna, Svalbard, Norway. 

               

6. CONCLUSION 

The problem of estimating the SNR of the cross-

polarised channels and the noise variance has been dealt 

with. The CRLB has been derived and ML estimators 

are proposed, which perform better than other 

estimators in terms of relative bias and accuracy. 

 

REFERENCES 

1. Lee J.S. & Pottier E. (2009). Polarimetric Radar 

Imaging. From Basics to Applications, CRC Press, 

New York. 

2. Freeman A. (1993), “The Effect of Noise on 

Polarimetric SAR Data”, Proc. IGARSS, Tokio, 

Japan, pp.799–802. 

3. Kay S.M. (1993). Fundamentals of Statistical 

Signal Processing: Estimation Theory, Prentice-

Hall, Upper Saddle River, NJ. 

4. Silvester J. R. (2000). “Determinants of block 

matrices”, Mathematical Gazette, 84(501), pp. 460–

467. 

5. Ayres, F. Jr. (1962). Matrices, Shaum's Outline 

Series, McGraw-Hill, New York. 

6. Hajnsek I., Papathanassiou K.P. & Cloude S.R. 

(2001), “Removal of Additive Noise in Polarimetric 

Eigenvalue Processing”, Proc. IGARSS, Sidney, 

Australia, pp.2778–2780.  

7. Cloude, S.R. (2011). Introduction to Pol-InSAR, in 

Materials of the “Advanced Course on Radar 

Polarimetry”, 17-21 January 2011, ESA-ESRIN, 

Frascati, Rome, Italy 

(http://earth.eo.esa.int/pub/polsarpro_ftp/RadarPol_

Course11/Wednesday19/Basics-

Poinsar_theory_Cloude.pdf). 

8. Bamler R. & Hartl P. (1998), “Synthetic aperture 

radar interferometry”, Inv. Probl., 14, pp. R1-R54. 

http://earth.eo.esa.int/pub/polsarpro_ftp/RadarPol_Course11/Wednesday19/Basics-Poinsar_theory_Cloude.pdf
http://earth.eo.esa.int/pub/polsarpro_ftp/RadarPol_Course11/Wednesday19/Basics-Poinsar_theory_Cloude.pdf
http://earth.eo.esa.int/pub/polsarpro_ftp/RadarPol_Course11/Wednesday19/Basics-Poinsar_theory_Cloude.pdf

