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Abstract—Pixel-wise classification, where each pixel is assigned
to a predefined class, is one of the most important proceduresin
hyperspectral image (HSI) analysis. By representing a testpixel as
a linear combination of a small subset of labeled pixels, a sparse
representation classifier (SRC) gives rather plausible results
compared with that of traditional classifiers such as the support
vector machine (SVM). Recently, by incorporating additional
structured sparsity priors, the second generation SRCs have
appeared in the literature and are reported to further improve
the performance of HSI. These priors are based on exploiting
the spatial dependencies between the neighboring pixels, the
inherent structure of the dictionary, or both. In this paper,
we review and compare several structured priors for sparse-
representation-based HSI classification. We also propose anew
structured prior called the low rank group prior, which can b e
considered as a modification of the low rank prior. Furthermore,
we will investigate how different structured priors improve the
result for the HSI classification.

Index Terms—hyperspectral image, sparse representation,
structured priors, classification

I. I NTRODUCTION

ONE of the most important procedures in HSI is image
classification, where the pixels are labeled to one of the

classes based on their spectral characteristics. Due to thenu-
merous demands in mineralogy, agriculture and surveillance,
the HSI classification task is developing very rapidly and a
large number of techniques have been proposed to tackle this
problem [1]. Comparing with previous approaches, SVM is
found highly effective on both computational efficiency and
classification results. A wide variety of SVM’s modifications
have been proposed to improve its performance. Some of them
incorporate the contextual information in the classifiers [2],
[3]. Others design sparse SVM in order to pursue a sparse
decision rule by usingℓ1-norm as the regularizer [4].

Recently, SRC has been proposed to solve many computer
vision tasks [5], [6], where the use of sparsity as a prior often
leads to state-of-the-art performance. SRC has also been ap-
plied to HSI classification [7], relying on the observation that
hyperspectral pixels belonging to the same class approximately
lie in the same low-dimensional subspace. In order to alleviate
the problem introduced by the lack of sufficient training data,
Haq et al. [8] proposed the homotopy-based SRC. Another
way to solve the problem of insufficient training data is to
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employ the contextual information of neighboring pixels in
the classifier, such as spectral-spatial constraint classification
[9].

In SRC, a test sampley ∈ RP , whereP is the number of
spectral bands, can be written as a sparse linear combination
of all the training pixels (atoms in a dictionary) as

x̂ = min
x

1

2
‖y −Ax‖22 + λ‖x‖1, (1)

where x ∈ RN , ‖x‖1 =
N∑
i=1

|xi| is ℓ1-norm. A =

[a1, a2, · · · , aN ] is a structured dictionary formed from con-
catenation of several class-wise sub-dictionaries,{ai}i=1,...,N

are the columns ofA andN is the total number of training
samples from all theK classes, andλ is a scalar regularization
parameter.

The class label for the test pixely is determined by the
minimum residual betweeny and its approximation from each
class-wise sub-dictionary:

class(y) = argmin
g

‖y −Aδg(x)‖
2
2, (2)

where g ⊂ {1, 2, · · · ,K} is the group or class index, and
δg(x) is the indicator operation zeroing out all elements ofx

that do not belong to the classg.
In the case of HSI, SRC always suffers from the non-

uniqueness or instability of the sparse coefficients due to the
high mutual coherency of the dictionary [10]. Fortunately,
a better reconstructed signal and a more robust representa-
tion can be obtained by either exploring the dependencies
of neighboring pixels or exploiting the inherent dictionary
structure. Recently, structured priors have been incorporated
into HSI classification [7], which can be sorted into three
categories. (a) Priors that only exploit the correlations and
dependencies among the neighboring spectral pixels or their
sparse coefficient vectors, which includes joint sparsity [12],
graph regularized Lasso (referred as the Laplacian regularized
Lasso) [13] and the low-rank Lasso [14]. (b) Priors that only
exploit the inherent structure of the dictionary, such as group
Lasso [15]. (c) Priors that enforce structural information on
both sparse coefficients and dictionary, such as collabora-
tive group Lasso [16] and collaborative hierarchical Lasso
(CHiLasso) [17]. Besides SRC, structured sparsity prior can
also be incorporated into other classifiers such as the logistic
regression classifiers [18].

The main contributions of this paper are(a) to assess the
SRC performance using various structured sparsity priors for
HSI classification, and(b) to propose a conceptually similar
prior to CHiLasso, which is called the low-rank group prior.

http://arxiv.org/abs/1401.3818v1
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This prior is based on the assumption that pure or mixed
pixels from the same classes are highly correlated and can
be represented by a combination of sparse low-rank groups
(classes). The proposed prior takes advantage of both the
group sparsity prior, which enforces sparsity across the groups,
and the low rank prior, which encourages sparsity within the
groups, by only using one regularizer.

In the following sections, we investigate the roles of dif-
ferent structured priors imposed on the SRC optimization
algorithm. Starting with the classical sparsityℓ1-norm prior,
we then introduce several different priors with experimental
results. The structured priors discussed are joint sparsity,
Laplacian sparsity, group sparsity, sparse group sparsity, low-
rank and low-rank group prior.

II. HSI CLASSIFICATION V IA DIFFERENT STRUCTURED

SPARSEPRIORS

A. Joint Sparsity Prior

In HSI, pixels within a small neighborhood usually consist
of similar materials. Thus, their spectral characteristics are
highly correlated. The spatial correlation between neighboring
pixels can be indirectly incorporated through a joint sparsity
model (JSM) [11] by assuming that the underlying sparse
vectors associated with these pixels share a common sparsity
support. Consider pixels in a small neighborhood ofT pixels.
Let Y ∈ RP×T represent a matrix whose columns correspond
to pixels in a spatial neighborhood in a hyperspectral image.
Columns ofY = [y1,y2, · · · ,yT ] can be represented as a
linear combination of dictionary atomsY = AX, where
X = [x1,x2, · · · ,xT ] ∈ RN×T represents a sparse matrix.
In JSM, the sparse vectors ofT neighboring pixels, which are
represented by theT columns ofX, share the same support.
Therefore,X is a sparse matrix with only few nonzero rows.
The row-sparse matrix X can be recovered by solving the
following Lasso problem

min
X

1

2
‖Y −AX‖2F + λ‖X‖1,2, (3)

where‖X‖1,2 =
N∑
i=1

‖xi‖2 is an ℓ1,2-norm andxi represents

the ith row of X.
The label for the center pixelyc is then determined by the

minimum total residual error

class(yc) = argmin
g

‖Y −Aδg(X)‖2F , (4)

where δg(X) is the indicator operation zeroing out all the
elements ofX that do not belong to the classg.

B. Laplacian Sparsity Prior

In sparse representation, due to the high coherency of the
dictionary atoms, the recovered sparse coefficient vectorsfor
multiple neighboring pixels could be partially different even
when the neighboring pixels are highly correlated, and this
may led to misclassification. As mentioned in the previous sec-
tion, joint sparsity is able to solve such a problem by enforcing
multiple pixels to select exactly the same atoms. However, in

many cases, when the neighboring pixels fall on the boundary
between several homogeneous regions, the neighboring pixels
will belong to several distinct classes (groups) and should
use different sets of sub-dictionary atoms. Laplacian sparsity
enhances the differences between sparse coefficient vectors of
the neighboring pixels that belong to different clusters. We
introduce the weighting matrixW, wherewij characterizes
the similarity between a pair of pixelsyi and yj within
a neighborhood. Optimization with an additional Laplacian
sparsity prior can be expressed as

min
X

1

2
‖Y −AX‖2F + λ1‖X‖1 + λ2

∑

i,j

wij‖xi − xj‖
2
2,

(5)
whereλ1 andλ2 are the regularization parameters. The matrix
W is used to characterize the similarity among neighboring
pixels in the spectra space. Similar pixels will possess larger
weights, and therefore, enforcing the differences betweenthe
corresponding sparse coefficient vectors to become smaller,
and similarly allowing the difference between sparse coef-
ficient vectors of dissimilar pixels to become larger. There-
fore, the Laplacian sparsity prior is more flexible than the
joint sparsity prior in that it does not always force all the
neighboring pixels to have the same common support. In this
paper, the weighting matrix is computed using the sparse
subspace clustering method in [19]. Note that this grouping
constraint is enforced on the testing pixels instead of the
dictionary atoms, which is different from group sparsity.
Let L = I−D−1/2WD−1/2 be the normalized symmetric
Laplacian matrix [19], whereD is the degree matrix computed
from W. We can rewrite the equation (5) as

min
X

1

2
‖Y −AX‖2F + λ1‖X‖1 + λ2tr(XLXT ). (6)

The above equation can be solved by a modified feature-sign
search algorithm [13].

C. Group Sparsity Prior

The SRC dictionary has an inherent group-structured prop-
erty since it is composed of several class sub-dictionaries, i.e.,
the atoms belonging to the same class are grouped together to
form a sub-dictionary. In sparse representation, we classify
pixels by measuring how well the pixels are represented
by each sub-dictionary. Therefore, it would be reasonable
to enforce the pixels to be represented by groups of atoms
instead of individual ones. This could be accomplished by
encouraging coefficients of only certain groups to be activeand
the remaining groups inactive. Group Lasso [15], for example,
uses a sparsity prior that sums up the Euclidean norm of
every group coefficients. It will dominate the classification
performance especially when the input pixels are inherently
mixed pixels. Group Lasso optimization can be represented as

min
x

1

2
‖y −Ax‖22 + λ

∑

g∈G

wg‖xg‖2, (7)

where g ⊂ {G1, G2, · · · , GK},
∑
g∈G

‖xg‖2 represents the

group sparse prior defined in terms ofK groups,wg is the
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weight and is usually set to the square root of the cardinality
of the corresponding group to compensate for the different
group sizes. Here,xg refers to the coefficients of each group.
The above group sparsity can be easily extended to the case
of multiple neighboring pixels by extending problem (7) to
collaborative group Lasso, which is formulated as

min
X

1

2
‖Y −AX‖2F + λ

∑

g∈G

wg‖Xg‖2, (8)

where
∑
g∈G

‖Xg‖2 represents a collaborative group Lasso regu-

larizer defined in terms of group andXg refers to each of the
group coefficient matrix. When the group size is reduced to
one, the group Lasso degenerates into a joint sparsity Lasso.

D. Sparse Group Sparsity Prior

In the formulations (7) and (8), the coefficients within each
group are not sparse, and all the atoms in the selected groups
could be active. If the sub-dictionary is overcomplete, then it
is necessary to enforce sparsity within each group. To achieve
sparsity within the groups, anℓ1-norm regularizer can be
added to the group Lasso (7), which can be written as

min
x

1

2
‖y −Ax‖22 + λ1

∑

g∈G

wg‖xg‖2 + λ2‖x‖1. (9)

Similarly, Eq. (9) can be easily extended to the multiple
feature case, which can be written as

min
X

1

2
‖Y −AX‖2F + λ1

∑

g∈G

wg‖Xg‖2 + λ2

∑

g∈G

wg‖Xg‖1.

(10)
Optimization problem (9) is referred in the literature as

the sparse group Lasso and problem (10) as the collaborative
hierarchical Lasso (CHiLasso) [17].

E. Low Rank/Group Sparsity Prior

Based on the fact that spectra of neighboring pixels are
highly correlated, it is reasonable to enforce the low rank
sparsity prior on their coefficient matrix. The low rank prior
is more flexible when compared with the joint sparsity prior
which strictly enforces the row sparsity. Therefore, when
neighboring pixels are composed of small non-homogeneous
regions, the low rank sparsity prior outperforms the joint
sparsity prior. Low rank sparse recovery problem has been well
studied in [14] and is stated as the following Lasso problem

min
X

1

2
‖Y −AX‖2F + λ‖X‖∗, (11)

where‖X‖∗ is the nuclear norm [14].
To incorporate the structure of the dictionary, we now

extend the low rank prior to group low rank prior, where the
regularizer is obtained by summing up the rank of every group
coefficient matrix,

min
X

1

2
‖Y −AX‖2F + λ

∑

g∈G

wg‖Xg‖∗. (12)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Sparsity patterns for the toy example: (a) desired sparsity regions,
(b) ℓ1 minimization using ADMM, (c) joint sparsity, (d) collaborative group
sparsity, (e) collaborative sparse group sparsity, (f) lowrank sparsity, (g) low
rank group sparsity and (h) Laplacian sparsity via FFS.

The low rank group prior is able to obtain the within-group
sparsity by minimizing the nuclear norm of each group.
Furthermore, the summation of nuclear norms empowers the
proposed prior to obtain a group sparsity pattern. Hence, the
low rank group prior is able to achieve sparsity both within
and across groups by using only one regularization term.

III. R ESULTS AND DISCUSSION

A. Datasets

We evaluate various structured sparsity priors on two dif-
ferent hyperspectral images and one toy example. The first
hyperspectral image to be assessed is the Indian Pine, acquired
by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
which generates 220 bands, of which 20 noisy bands are
removed before classification. The spatial dimension of this
image is145 × 145, which contains 16 ground-truth classes,
as shown in Table I. We randomly choose 997 pixels (10.64%
of all the labelled pixels) for constructing the dictionaryand
use the remaining pixels for testing. The second image is the
University of Pavia, which is an urban image acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS),
contains610× 340 pixels. It generates 115 spectral bands, of
which 12 noisy bands are removed. There are nine ground-
truth classes of interests. For this image, we choose 997
pixels (2.32% of all the labelled pixels) for constructing the
dictionary and the remaining pixels for testing, as shown in
Table III. The toy example consists of two different classes
(class 2 and 14 of the Indian Pine test set), and each class
contains 30 pixels. The dictionary is the same as that for the
Indian Pine. The toy example is used to evaluate the various
sparsity patterns generated by the different structured priors.

B. Models and Methods

The tested structured sparse priors are: (i) joint sparsity (JS),
(ii) Laplacian sparsity (LS), (iii) collaborative group sparsity
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2: Results for the Indian Pine image: (a) ground truth, (b) training set and (c) test set. Classification map obtainedby (d) SVM, (e) ℓ1-minimization
using ADMM, (f) joint sparsity, (g) collaborative group sparsity, (h) collaborative sparse group sparsity, (i) low rank sparsity, (j) low rank group sparsity, (k)
ℓ1 minimization via FSS and (l) Laplacian sparsity via FSS.

TABLE I: Number of training and test samples
for the Indian Pine image

Class Train Test
1 6 48
2 137 1297
3 80 754
4 23 211
5 48 449
6 72 675
7 3 23
8 47 442
9 2 18
10 93 875
11 235 2233
12 59 555
13 21 191
14 124 1170
15 37 343
16 10 85

Total 997 9369

TABLE II: Classification accuracy (%) for the Indian Pine image using 997 (10.64%) training samples

Optimization Techniques ADMM/SpaRSA Feature Sign Search
Class SVM ℓ1 JS LS GS SGS LR LRG ℓ1 LS

1 77.08 68.75 79.17 85.42 79.17 87.50 75.00 91.67 66.67 83.33
2 84.96 58.84 81.94 81.34 80.62 79.92 78.60 81.71 74.42 89.90
3 62.67 24.40 56.67 47.35 62.13 76.13 29.87 89.87 69.87 78.38
4 8.57 49.52 27.62 49.76 37.14 54.29 15.24 67.62 64.76 88.15
5 77.18 81.88 85.46 83.96 84.79 82.55 82.10 83.45 91.72 94.43
6 91.82 96.88 98.36 97.48 98.96 98.36 98.21 98.36 97.02 98.52
7 13.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.57 0.00
8 96.59 96.59 100.00 99.55 99.55 99.55 99.77 99.55 99.55 100.00
9 0.00 5.56 0.00 0.00 22.22 0.00 0.00 0.00 61.11 0.00
10 71.30 24.00 18.94 31.89 39.95 45.58 8.61 49.60 76.46 87.43
11 35.25 96.22 91.63 94.58 91.99 93.02 97.12 92.35 87.62 98.84
12 42.39 32.97 45.29 64.68 69.57 65.58 20.83 82.97 78.26 91.71
13 91.05 98.95 99.47 99.48 99.47 98.95 98.95 99.47 99.47 100.00
14 94.85 98.97 98.97 99.49 98.80 99.31 99.83 99.31 97.77 99.57
15 30.70 49.71 55.85 63.84 50.58 80.99 44.15 89.47 53.80 69.97
16 27.06 88.24 95.29 97.65 95.29 98.82 97.65 97.65 85.88 97.65

OA[%] 64.94 71.17 76.41 79.40 80.19 83.19 71.90 86.46 83.74 92.58
AA [%] 56.53 60.72 68.53 64.67 69.39 72.53 59.14 76.43 79.62 79.87

κ 0.647 0.695 0.737 0.712 0.781 0.807 0.695 0.843 0.833 0.923

TABLE III: Number of training and test samples
for the University of Pavia image

Class Train Test
1 139 6713
2 137 1859
3 100 2107
4 133 3303
5 68 1310
6 135 4969
7 95 1261
8 131 3747
9 59 967

Total 997 42926

TABLE IV: Classification accuracy (%) for the University of Pavia image using 997 (2.32%) training samples

Optimization Techniques ADMM/SpaRSA Feature Sign Search
Class SVM ℓ1 JS LS GS SGS LR LRG ℓ1 LS

1 84.55 57.11 77.04 95.08 94.01 97.90 91.16 94.15 72.14 95.85
2 82.45 58.22 67.98 66.70 70.04 68.04 69.73 69.32 59.62 64.28
3 77.08 57.33 44.32 77.55 79.45 73.56 75.80 79.73 66.21 76.51
4 94.19 95.94 95.13 95.19 95.31 95.55 95.94 98.46 97.67 98.97
5 99.01 100.00 99.85 100.00 100.00 100.00 100.00 100.00 99.85 100.00
6 23.55 89.60 88.31 96.60 100.00 99.74 100.00 99.96 80.60 98.63
7 2.06 83.27 84.38 96.59 95.24 95.56 95.06 95.24 86.76 94.69
8 33.89 48,65 65.20 67.36 62.24 44.84 65.24 63.06 75.95 95.76
9 53.05 93.69 99.59 99.59 93.38 93.28 93.57 94.00 90.69 98.35

OA[%] 69.84 66.51 74.05 80.82 81.15 79.07 80.81 81.02 71.41 81.84
AA [%] 61.09 75.98 80.06 88.80 87.73 85.36 87.35 87.93 81.05 91.45

κ 0.569 0.628 0.681 0.758 0.675 0.624 0.611 0.66 0.672 0.781

(GS), (iv) sparse group sparsity (SGS), (v) low rank prior
(LR) and (vi) low rank group prior (LRG), corresponding
to Eqs. (7), (10), (12), (14), (16) and (17), respectively. For
SRC, the parametersλ, λ1 andλ2 of different structured priors
range from10−3 to 0.1. Performance on the toy example
will be visually examined by the difference between the
desired sparsity regions and the recovered ones. For the two
hyperspectral images, classification performance is evaluated
by the overall accuracy (OA), average accuracy (AA), and
the κ coefficient measure on the test set. For each structured
prior, we present the result with the highest overall accuracy
using cross validation. A linear SVM is implemented for
comparison, whose parameters are set in the same fashion as

in [7].

In experiments, joint sparsity, group sparsity and low rank
priors are solved by ADMM [20], while CHiLasso and
Laplacian prior are solved by combining SpaRSA [21] and
ADMM. In addition, in conformity with previous work [13],
the Laplacian regularized Lasso is also solved by a modified
feature sign search (FSS) method. In this paper, we try to
present a fair comparison among all priors. According to the
optimization technique, we sort the structured priors intotwo
categories: (i) priors solved by ADMM and SpaRSA and (ii)
priors solved by FSS-based method. The first row of Table II
and Table IV show the methods used to implement the sparse
recovery for each structured prior.
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TABLE V: Computation time (in seconds) for the Indian Pine image

ADMM/SpaRSA FFS
ℓ1 JS LS GS SGS LR LRG LS ℓ1

1124 1874 4015 2811 2649 4403 2904 1124 11628

C. Results

Sparsity patterns of the toy example are shown in Fig. 1.
The expected sparsity regions are shown in Fig. 1(a), where
the y-axis labels the dictionary atom index and x-axis labels
the test pixel index. The red and green regions correspond
to the ideal locations of the active atoms for the class 2
and 14, respectively. Nonzero coefficients that belong to other
classes are shown in blue dots. The joint sparsity, Fig. 1 (c),
shows clear row sparsity pattern, but many rows are mistakenly
activated. As expected, active atoms in Fig. 1 (d), (e) and
(g) demonstrate group sparsity patterns. Comparing the GS
(d) and SGS (e), it is observed that most of the atoms are
deactivated within groups using SGS. The low rank group prior
(g) demonstrates a similar sparsity pattern as that of SGS. For
the Laplacian sparsity (h), similarity of sparse coefficients that
belong to the same classes is clearly visible.

Table II and Fig. 2 show the performance of SRCs with
different priors on the Indian Pine image. A spatial window of
9×9 (T = 81) is used since this image consists of mostly large
homogeneous regions. Among SRCs with different priors, the
worst result occurs when we use simpleℓ1-ADMM. Joint
sparsity prior gives better result than the low rank prior. This
is due to the large areas of homogeneous regions in this image,
which favors the joint sparsity model. The highest OA is
given by the Laplacian sparsity prior via FFS, such a high
performance is partly contributed to the accurate sparse re-
covery of the feature sign search method. Both SGS and LRG
outperform GS. We can see that among ADMM-based based
methods, the low rank group prior yields the smoothest result.
The computational time of various structured priors for Indian
Pine image are shown in Table V. Among ADMM/SpaRSA-
based methods, LRG, GS and SGS take roughly similar time
(∼2500s) to process the image, while LR and JS require
longer time (∼4000s). LS via FFS significantly impedes the
computational efficiency.

Results for the University of Pavia image are shown in Table
IV. The window size for this image is5 × 5 (T = 25) since
many narrow regions are present in this image. The group
sparsity prior gives the highest OA among the priors optimized
by ADMM. The low rank sparsity prior gives a much better
result than joint sparsity since this image contains many small
homogeneous regions. The Laplacian sparsity prior via FFS
gives the highest OA performance. However, the difference
between performance of various structured priors is quite
small.

IV. CONCLUSION

This paper reviews five different structured sparse priors
and proposes a low rank group sparsity prior. Using these
structured priors, classification results of SRCs on HSI are
generally improved when compared with the classicalℓ1 spar-
sity prior. The results have confirmed that the low rank prior

is a more flexible constraint compared with the joint sparsity
prior, while the latter works better on large homogeneous
regions. Imposing the group structured prior on the dictionary
always gives higher overall accuracy compared with theℓ1
prior. We have also observed that the performance is not only
determined by the structured priors, but also depend on the
corresponding optimization techniques.
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