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Abstract—Pixel-wise classification, where each pixel is assignedemploy the contextual information of neighboring pixels in
to a predefined class, is one of the most important procedureés  the classifier, such as spectral-spatial constraint ¢ieaton
hyperspectral image (HSI) analysis. By representing a tegixel as 9]

a linear combination of a small subset of labeled pixels, a spse ) P .
representation classifier (SRC) gives rather plausible rasdts In SRC, a test samplg < R", where P is the number of

compared with that of traditional classifiers such as the suport ~SPectral bands, can be written as a sparse linear combinatio
vector machine (SVM). Recently, by incorporating additioral ~of all the training pixels (atoms in a dictionary) as

structured sparsity priors, the second generation SRCs hay 1

appeared in the literature and are reported to further improve % = min ||y — Ax||§ + MIx|1, (1)

the performance of HSI. These priors are based on exploiting x 2

the spatial dependencies between the neighboring pixelshe N

inherent structure of the dictionary, or both. In this paper, where x € RY, ||x|]i = Y |xi| is f;-norm. A =
we review and compare several structured priors for sparse- ) i=1

representation-based HSI classification. We also propose mew [@1; a2, ,an] is a structured dictionary formed from con-

structured prior called the low rank group prior, which can b e catenation of several class-wise sub-dictionafes},—; ..~
considered as a modification of the low rank prior. Furthermare,  are the columns oA and NV is the total number of training
we will investigate how different structured priors improve the  gamples from all thé< classes, and is a scalar regularization
result for the HSI classification.
parameter.
Index Terms—hyperspectral image, sparse representation, The class label for the test pixgl is determined by the
structured priors, classification minimum residual betweey and its approximation from each
class-wise sub-dictionary:
I. INTRODUCTION

NE of the most important procedures in HSI is image
classification, where the pixels are labeled to one of thehereg c {1,2,---, K} is the group or class index, and
classes based on their spectral characteristics. Due touthe §,(x) is the indicator operation zeroing out all elementscof
merous demands in mineralogy, agriculture and surveilanghat do not belong to the clags
the HSI classification task is developing very rapidly and a In the case of HSI, SRC always suffers from the non-
large number of techniques have been proposed to tackle thigsqueness or instability of the sparse coefficients dudi¢o t
problem [1]. Comparing with previous approaches, SVM ifigh mutual coherency of the dictionary [10]. Fortunately,
found highly effective on both computational efficiency and better reconstructed signal and a more robust representa-
classification results. A wide variety of SVM’s modificat®n tion can be obtained by either exploring the dependencies
have been proposed to improve its performance. Some of themneighboring pixels or exploiting the inherent dictiopar
incorporate the contextual information in the classifié} [ structure. Recently, structured priors have been incatpdr
[3]. Others design sparse SVM in order to pursue a spaiggo HSI classification[]7], which can be sorted into three
decision rule by using;-norm as the regularizer|[4]. categories. &) Priors that only exploit the correlations and
Recently, SRC has been proposed to solve many compuiependencies among the neighboring spectral pixels or thei
vision tasks([5],[[6], where the use of sparsity as a prioemft sparse coefficient vectors, which includes joint sparsfi] [
leads to state-of-the-art performance. SRC has also been @@ph regularized Lasso (referred as the Laplacian regathr
plied to HSI classification |7], relying on the observatitvat | asso) [18] and the low-rank Lasso [14h) (Priors that only
hyperspectral pixels belonging to the same class appra&lyna exploit the inherent structure of the dictionary, such asugr
lie in the same low-dimensional subspace. In order to altevi Lasso [15]. ¢) Priors that enforce structural information on
the problem introduced by the lack of sufficient trainingadatboth sparse coefficients and dictionary, such as collabora-
Haqg et al. [8] proposed the homotopy-based SRC. Anotheive group Lasso[[16] and collaborative hierarchical Lasso
way to solve the problem of insufficient training data is tCHiLasso) [17]. Besides SRC, structured sparsity priar ca
. . also be incorporated into other classifiers such as thetiogis
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class(y) = argmin ||y — Ad,(x)]13, )
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This prior is based on the assumption that pure or mixedany cases, when the neighboring pixels fall on the boundary
pixels from the same classes are highly correlated and dagtween several homogeneous regions, the neighborintg pixe
be represented by a combination of sparse low-rank groupdl belong to several distinct classes (groups) and should
(classes). The proposed prior takes advantage of both tlee different sets of sub-dictionary atoms. Laplacian spar
group sparsity prior, which enforces sparsity across tbags, enhances the differences between sparse coefficient saxtor
and the low rank prior, which encourages sparsity within thbe neighboring pixels that belong to different clusterse W
groups, by only using one regularizer. introduce the weighting matri¥%, wherew;; characterizes

In the following sections, we investigate the roles of difthe similarity between a pair of pixelg; and y; within
ferent structured priors imposed on the SRC optimizatian neighborhood. Optimization with an additional Laplacian
algorithm. Starting with the classical sparsity-norm prior, sparsity prior can be expressed as
we then introduce several different priors with experinaént 1
results. The structured priors discussed are joint sparsit Ir;én §HY — AX||Z + M1 X 1+ Az Zwijllxi - %5113,
Laplacian sparsity, group sparsity, sparse group sparlsity i,j

rank and low-rank group prior. o ®) ,
where\; and)\, are the regularization parameters. The matrix

W is used to characterize the similarity among neighboring
pixels in the spectra space. Similar pixels will possesgelar
weights, and therefore, enforcing the differences betwhen
A. Joint Sparsity Prior corresponding sparse coefficient vectors to become smaller

In HSI, pixels within a small neighborhood usually consistnd similarly allowing the difference between sparse coef-
of similar materials. Thus, their spectral charactersstre ficient vectors of dissimilar pixels to become larger. There
highly correlated. The spatial correlation between neiginy fore, the Laplacian sparsity prior is more flexible than the
pixels can be indirectly incorporated through a joint sjars J0int sparsity prior in that it does not always force all the
model (JSM) [[I1] by assuming that the underlying spar§&ighboring pixels to have the same common support. In this
vectors associated with these pixels share a common sparBfPer, the weighting matrix is computed using the sparse
support. Consider pixels in a small neighborhoodgpixels. Subspace clustering method in [19]. Note that this grouping
LetY € RP*T represent a matrix whose columns corresporﬁantrai”t is enforced on the testing pixels instead of the
to pixels in a spatial neighborhood in a hyperspectral imagéctionary atoms, which is different from group sparsity.

II. HSI CLASSIFICATION VIA DIFFERENT STRUCTURED
SPARSEPRIORS

Columns of Y = [y1,ys,-- ,yr] can be represented as a-€t L = I—D__I/QWD_I/2 be the normalized symmetric
linear combination of dictionary atom¥ = AX, where Laplacian matrlx[[IB],\_/vherD is the.degree matrix computed
X — [X17X2, e 7XT] c RNXT represents a Sparse matrixfrom W We can rewrite the equa“o (5) as

In JSM, the sparse vectors dfneighboring pixels, which are
represented by th& columns ofX, share the same support.
Therefore X is a sparse matrix with only few nonzero rOWSte above equation can be solved by a modified feature-sign

The row-sparse matrix X can be recovered by solving the .
following Lasso problem search algorithm([13].

1
min oY — AX||2 + M| X1 + Aetr(XLXT).  (6)

H%én %HY — AX||F 4+ AIX 1,2, (3) C. Group Sparsity Prior
N The SRC dictionary has an inherent group-structured prop-
where || X|[;.2 = > |x'|2 is an/; o-norm andx’ represents €rty since it is composed of several class sub-dictionarees
, i=1 the atoms belonging to the same class are grouped together to
the ith row of X. _ _ _ form a sub-dictionary. In sparse representation, we diassi
_T_he label for the center pixal. is then determined by the pixels by measuring how well the pixels are represented
minimum total residual error by each sub-dictionary. Therefore, it would be reasonable
class(y.) = argmin | Y — Ad,(X)||%, (4) to enforce the pixels to be represented by groups of atoms
9 instead of individual ones. This could be accomplished by
where §,(X) is the indicator operation zeroing out all theencouraging coefficients of only certain groups to be activet
elements ofX that do not belong to the clags the remaining groups inactive. Group Lassal[15], for exampl
uses a sparsity prior that sums up the Euclidean norm of
. . . every group coefficients. It will dominate the classificatio
B. Laplacian Sparsity Prior performance especially when the input pixels are inheyentl
In sparse representation, due to the high coherency of #éed pixels. Group Lasso optimization can be represerged a
dictionary atoms, the recovered sparse coefficient vedtors 1
multiple neighboring pixels could be partially differentem min =|ly — Ax|[3 + A Z wg||xg||2, (7)
when the neighboring pixels are highly correlated, and this x 2 geG
may led to misclassification. As mentioned in the previous se
tion}fjoint sparsity is able to solve such a problempby erifayc where g C {G1,Ga,++,Gr}y L [IXll2 represents the

geqG
multiple pixels to select exactly the same atoms. However, §roup sparse prior defined in terms &f groups,w, is the
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weight and is usually set to the square root of the cardinalit - - o A
of the corresponding group to compensate for the different Sl o
group sizes. Herex,, refers to the coefficients of each group.
The above group sparsity can be easily extended to the case -
of multiple neighboring pixels by extending problefd (7) to
collaborative group Lasso, which is formulated as

1 |
Y~ AXIE 0D walXl,®) @
g9

where % | X, || represents a collaborative group Lasso regu-

geqG
larizer defined in terms of group aXl, refers to each of the
group coefficient matrix. When the group size is reduced to
one, the group Lasso degenerates into a joint sparsity Lasso -

) ® @) (h)

D. Sparse Group Sparsity Prior
. _ - ig. 1: Sparsity patterns for the toy example: (a) desirearsity regions,
In the formulations[(7) and18), the Coe.ﬁ'c'ents within eac ) £1 minimization using ADMM, (c) joint sparsity, (d) collabdiee group
group are not sparse, and all the atoms in the selected grosiassity, (e) collaborative sparse group sparsity, (f) tenk sparsity, (g) low

could be active. If the sub-dictionary is overcompletentite ank group sparsity and (h) Laplacian sparsity via FFS.
is necessary to enforce sparsity within each group. To aehie
sparsity within the groups, a#i;-norm regularizer can be

added to the group Lassgl (7), which can be written as The low rank group prior is able to obtain the within-group

) sparsity by minimizing the nuclear norm of each group.
min = ||y — Ax|2+ A Z wyllXgll2 + Aellx[1. (9) Furthermore, the summation of nuclear norms empowers the
x 2 proposed prior to obtain a group sparsity pattern. Henee, th

low rank group prior is able to achieve sparsity both within

Similarly, Eq. [9) can be easily extended to the multiplgng 4cross groups by using only one regularization term.
feature case, which can be written as

geqG

) IIl. RESULTS ANDDISCUSSION
min [|Y — AX[[F+ A D wy [ X2+ A2 D wy| Xl A Datasets

9ec 9ea (10 We evaluate various structured sparsity priors on two dif-

Optimization problem[(9) is referred in the literature alTent hyperspectral images and one toy example. The first

the sparse group Lasso and problém (10) as the collaborafi@erspectral image to be assessed is the Indian Pineyedqui

hierarchical Lasso (CHiLassd) [17]. by Airborne Visible/Infrared Imaging Spectrometer (AVER)|
which generates 220 bands, of which 20 noisy bands are

. . removed before classification. The spatial dimension o thi
E. Low Rank/Group Sparsity Prior image is145 x 145, which contains 16 ground-truth classes,

Based on the fact that spectra of neighboring pixels afé shown in Table I. We randomly choose 997 pixes4%
highly correlated, it is reasonable to enforce the low rarf all the labelled pixels) for constructing the dictionaagd
sparsity prior on their coefficient matrix. The low rank priouse the remaining pixels for testing. The second image is the
is more flexible when compared with the joint sparsity prid¢niversity of Pavia, which is an urban image acquired by
which strictly enforces the row sparsity. Therefore, whefie Reflective Optics System Imaging Spectrometer (ROSIS),
neighboring pixels are composed of small non-homogened@Ntains610 x 340 pixels. It generates 115 spectral bands, of
regions, the low rank sparsity prior outperforms the joiwhich 12 noisy bands are removed. There are nine ground-
sparsity prior. Low rank sparse recovery problem has bedin wiuth classes of interests. For this image, we choose 997

studied in [14] and is stated as the following Lasso problerRixels 2.32% of all the labelled pixels) for constructing the
dictionary and the remaining pixels for testing, as shown in

min %HY — AX||1% + A X]+, (11) Table lll. The toy example consists of two different classes
x (class 2 and 14 of the Indian Pine test set), and each class
where||X||. is the nuclear norni[14]. contains 30 pixels. The dictionary is the same as that for the

To incorporate the structure of the dictionary, we nowndian Pine. The toy example is used to evaluate the various
extend the low rank prior to group low rank prior, where theparsity patterns generated by the different structuresgr
regularizer is obtained by summing up the rank of every group

coefficient matrix, B. Models and Methods

Hﬁén %HY —AX||%Z + ) Z wy || Xy |- (12) The test_ed structu_red sparse priors ait)q'p(nt sparsity (JS_),
pere: (i) Laplacian sparsity (LS),iif) collaborative group sparsity
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Fig. 2: Results for the Indian Pine image: (a) ground trulf), tfaining set and (c) test set. Classification map obtaimgedd) SVM, (e) ¢;-minimization
using ADMM, (f) joint sparsity, (g) collaborative group spdy, (h) collaborative sparse group sparsity, (i) lowkaparsity, (j) low rank group sparsity, (k)
£1 minimization via FSS and (I) Laplacian sparsity via FSS.

TABLE II: Classification accuracy%) for the Indian Pine image using 9970(64%) training samples
TABLE |: Number of training and test samples

for the Indian Pine image Optimization Techniques| ADMM/SpaRSA Feature Sign Searc
Class SVM 4 JS LS GS SGS LR LRG [4 LS
Class || Train | Test 1 77.08 68.75 | 79.17 | 85.42 | 79.17 | 87.50 | 75.00 | 91.67 || 66.67 83.33
1 6 48 2 84.96 58.84 | 8194 | 81.34 | 80.62 | 79.92 | 78.60 | 81.71 || 74.42 89.90
2 137 | 1297 3 62.67 2440 | 56.67 | 47.35 | 62.13 | 76.13 | 29.87 | 89.87 || 69.87 78.38
3 80 754 4 8.57 49.52 | 27.62 | 49.76 | 37.14 | 54.29 | 1524 | 67.62 || 64.76 88.15
4 23 211 5 77.18 81.88 | 85.46 | 83.96 | 84.79 | 82.55 | 82.10 | 83.45 || 91.72 94.43
5 48 449 6 91.82 96.88 | 98.36 | 97.48 | 98.96 | 98.36 | 98.21 | 98.36 || 97.02 98.52
6 72 675 7 13.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.57 0.00
7 3 23 8 96.59 96.59 | 100.00 | 99.55 | 99.55 | 99.55 | 99.77 | 99.55 || 99.55 100.00
8 47 442 9 0.00 5.56 0.00 0.00 | 22.22 | 0.00 0.00 0.00 61.11 0.00
9 2 18 10 71.30 24.00 | 18.94 | 31.89 | 39.95 | 45,58 | 8.61 | 49.60 || 76.46 87.43
10 93 875 11 35.25 96.22 | 91.63 | 94.58 | 91.99 | 93.02 | 97.12 | 92.35 || 87.62 98.84
11 235 | 2233 12 42.39 3297 | 4529 | 64.68 | 69.57 | 65.58 | 20.83 | 82.97 || 78.26 91.71
12 59 555 13 91.05 98.95 | 99.47 | 99.48 | 99.47 | 98.95 | 98.95 | 99.47 || 99.47 100.00
13 21 191 14 94.85 98.97 | 98.97 | 99.49 | 98.80 | 99.31 | 99.83 | 99.31 || 97.77 99.57
14 124 | 1170 15 30.70 49.71 | 55.85 | 63.84 | 50.58 | 80.99 | 44.15 | 89.47 || 53.80 69.97
15 37 343 16 27.06 88.24 | 95.29 | 97.65| 95.29 | 98.82 | 97.65 | 97.65 || 85.88 97.65
16 10 85 OA[%] 64.94 71.17 | 76.41 | 79.40 | 80.19 | 83.19 | 71.90 | 86.46 || 83.74 92.58
Total 997 [ 9369 AA[%] 56.53 60.72 | 68.53 | 64.67 | 69.39 | 72.53 | 59.14 | 76.43 || 79.62 79.87
K 0.647 0.695 | 0.737 | 0.712 | 0.781 | 0.807 | 0.695 | 0.843 || 0.833 0.923

TABLE IV: Classification accuracy%) for the University of Pavia image using 997.82%) training samples

TABLE Ill: Number of training and test samples
for the University of Pavia image Optimization Techniques ADMM/SpaRSA Feature Sign Searc!
Class SVM 01 JS LS GS SGS LR LRG [ LS

Class || Train Test 1 84.55 57.11 | 77.04 | 95.08 94.01 97.90 91.16 94.15 72.14 95.85

1 139 6713 2 82.45 58.22 | 67.98 | 66.70 70.04 68.04 69.73 69.32 59.62 64.28

2 137 1859 3 77.08 57.33 44.32 77.55 79.45 73.56 75.80 79.73 66.21 76.51

3 100 2107 4 94.19 95.94 95.13 95.19 95.31 95.55 95.94 98.46 97.67 98.97

4 133 3303 5 99.01 100.00 | 99.85 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 99.85 100.00

5 68 1310 6 23.55 89.60 | 88.31 | 96.60 | 100.00 | 99.74 | 100.00 | 99.96 80.60 98.63

6 135 4969 7 2.06 83.27 | 84.38 | 96.59 95.24 95.56 95.06 95.24 86.76 94.69

7 95 1261 8 33.89 48,65 65.20 67.36 62.24 44.84 65.24 63.06 75.95 95.76

8 131 3747 9 53.05 93.69 99.59 99.59 93.38 93.28 93.57 94.00 90.69 98.35

9 59 967 OA[%] 69.84 66.51 74.05 80.82 81.15 79.07 80.81 81.02 71.41 81.84

Total 997 42926 AA[%] 61.09 75.98 80.06 88.80 87.73 85.36 87.35 87.93 81.05 91.45

K 0.569 0.628 | 0.681 | 0.758 0.675 0.624 0.611 0.66 0.672 0.781

(GS), (v) sparse group sparsity (SGS)) (low rank prior in [7].
(LR) and i) low rank group prior (LRG), corresponding
to Egs. (7), (10), (12), (14), (16) and (17), respectivelyr F In experiments, joint sparsity, group sparsity and low rank
SRC, the parameteps \; and\, of different structured priors priors are solved by ADMM [[20], while CHiLasso and
range from10—3 to 0.1. Performance on the toy exampld-aplacian prior are solved by combining SpaRSAI[21] and
will be visually examined by the difference between thADMM. In addition, in conformity with previous work [13],
desired sparsity regions and the recovered ones. For the the Laplacian regularized Lasso is also solved by a modified
hyperspectral images, classification performance is atedl feature sign search (FSS) method. In this paper, we try to
by the overall accuracy (OA), average accuracy (AA), arpresent a fair comparison among all priors. According to the
the k coefficient measure on the test set. For each structui@gtimization technique, we sort the structured priors imo
prior, we present the result with the highest overall acoyracategories:ij priors solved by ADMM and SpaRSA and)(
using cross validation. A linear SVM is implemented fopriors solved by FSS-based method. The first row of Table Il
comparison, whose parameters are set in the same fashioarzs Table 1V show the methods used to implement the sparse
recovery for each structured prior.
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TABLE V: Computation time (in seconds) for the Indian Pineage

ADMM/SpaRSA FFS
0 JS LS GS | SGS| LR | LRG| LS 2
1124 | 1874 | 4015 | 2811 | 2649 | 4403 | 2904 | 1124 | 11628
C. Results

is a more flexible constraint compared with the joint spgrsit
prior, while the latter works better on large homogeneous
regions. Imposing the group structured prior on the dictign
always gives higher overall accuracy compared with the
prior. We have also observed that the performance is not only
determined by the structured priors, but also depend on the

Sparsity patterns of the toy example are shown in Eig. 1.
The expected sparsity regions are shown in Eig. 1(a), where
the y-axis labels the dictionary atom index and x-axis labelfy
the test pixel index. The red and green regions correspond
to the ideal locations of the active atoms for the class 2
and 14, respectively. Nonzero coefficients that belong herot
classes are shown in blue dots. The joint sparsity, [Big. 1 (c}el
shows clear row sparsity pattern, but many rows are mistpken
activated. As expected, active atoms in Hig. 1 (d), (e) and
(g) demonstrate group sparsity patterns. Comparing the G3
(d) and SGS (e), it is observed that most of the atoms are
deactivated within groups using SGS. The low rank grouprprio
(g) demonstrates a similar sparsity pattern as that of SGS. H4]
the Laplacian sparsity (h), similarity of sparse coeffitsethat 5]
belong to the same classes is clearly visible.

Table Il and Fig[ 'R show the performance of SRCs with
different priors on the Indian Pine image. A spatial winddw o (6]
9x9 (T' = 81) is used since this image consists of mostly large
homogeneous regions. Among SRCs with different priors, thi]
worst result occurs when we use simpgle ADMM. Joint
sparsity prior gives better result than the low rank pridrisT (g
is due to the large areas of homogeneous regions in this image
which favors the joint sparsity model. The highest OA i59]
given by the Laplacian sparsity prior via FFS, such a higfg
performance is partly contributed to the accurate sparse re
covery of the feature sign search method. Both SGS and LI
outperform GS. We can see that among ADMM-based based
methods, the low rank group prior yields the smoothest testiti]
The computational time of various structured priors foriémd
Pine image are shown in Taldlg V. Among ADMM/SpaRSA )
based methods, LRG, GS and SGS take roughly similar time
(~2500s) to process the image, while LR and JS requgﬁ]
longer time ¢4000s). LS via FFS significantly impedes th
computational efficiency.

Results for the University of Pavia image are shown in Tabl&]
IV. The window size for this image i5 x 5 (1" = 25) since
many narrow regions are present in this image. The grolig]
sparsity prior gives the highest OA among the priors optadiz
by ADMM. The low rank sparsity prior gives a much bettefg)
result than joint sparsity since this image contains manglism
homogeneous regions. The Laplacian sparsity prior via ==
gives the highest OA performance. However, the difference
between performance of various structured priors is quies]
small.

IV. CONCLUSION [19]

This paper reviews five different structured sparse priof=]
and proposes a low rank group sparsity prior. Using these
structured priors, classification results of SRCs on HSI agg
generally improved when compared with the classigadpar-
sity prior. The results have confirmed that the low rank prior

corresponding optimization techniques.
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