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On the Dependence of Delta-k Efficiency on

Multilooking
Francesco De Zan, Pau Prats-Iraola, Marc Rodriguez-Cassola

Abstract—This paper discusses some aspects of the implemen-
tation of Delta-k methods for shift estimation with SAR images.
In particular it shows that a common Delta-k algorithm, which
postpones the multilooking to the differential interferogram and
is therefore robust to the presence of interferometric fringes in
the averaging window, does not reach the maximum possible
performance and should be better considered as a variant of
incoherent cross-correlation. A small adaptation, retaining some
multilooking at interferogram level, can significantly improve the
efficiency.

Index Terms—Synthetic Aperture Radar, SAR interferometry,
delay estimation, Delta-k

I. INTRODUCTION

Delta-k methods for shift estimation have been introduced

into the SAR world by the works of Madsen and Zebker

[1]. Several researchers have subsequently reproposed and

extended them in different directions. In particular, Scheiber

and Moreira in [2] have described an implementation for both

range and azimuth shift estimation, being the original Delta-k

limited to range signals. In this paper we will talk generically

about shift estimation, without the need to make an explicit

distinction between range and azimuth directions.

Delta-k algorithms have been applied to precise SAR image

coregistration, estimation of shifts for geophysical applications

and similar. The related technique called multi-squint has been

used for baseline correction in airborne SAR interferometry

[3], [4], synchronism recovery in bistatic SAR systems [5]

and atmospheric phase screen estimation in SAR interferom-

etry [6].

In their essence, Delta-k methods are based on the funda-

mental equivalence between delays in time domain and the

corresponding phase ramps in the frequency domain: time-

domain shifts can thus be estimated as phase differences

between different subbands. For distributed scenes two inter-

ferograms are generated, one for the lower subband and one

for the higher subband, and their phases are differenciated.

In this paper we deal with the performance of two dif-

ferent Delta-k implementations and we show that the “late-

multilooking” approach, even though it has some desirable

properties, fails to reach the theoretical performance bound.

We propose a compromise solution, with a two-stage averaging

approach.

II. GENERAL CONSIDERATIONS ON DELTA-K METHODS

Delta-k methods constitute an alternative to time-domain

cross-correlation methods [7] with some implementation ad-
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vantages and some disadvantages. We try to simply collect

them here, without indicating a preference for one or the other.

One big advantage of Delta-k methods is that one does not

have to oversample the cross-correlation function in order to

estimate sub-pixel shifts. The phase difference, properly scaled

with the sub-carrier difference, will directly correspond to frac-

tional shifts. Moreover, the implementation is straightforward

and computationally efficient.

Among the disadvantages we count the possibility of having

to solve phase ambiguities (a typical interferometric problem)

and the sensitivity to spectral shift. The impact of spectral

shift depends on the bandwidth: for Delta-k methods, which

work with a fraction of the total bandwidth, the spectral-shift

coherence loss is a few times larger than for the full bandwidth.

Depending on the case, the quality loss might be unacceptable.

A solution is to shift spectrally the slave before the formation

of the two subbands, so to recover coherence. In this case

it is however mandatory to account for the reduction of the

effective carrier separation of the two subbands, or the estimate

will be biased.

III. EARLY AND LATE MULTILOOKING

A. Definitions

Delta-k methods require the generation of two subbands

(both for master and slave) and rely on a double difference:

the first difference is between master and slave (the normal

interferogram), and it is done for both the lower and the

upper subbands. The second difference is between the two

subbands (the differential interferogram). A crucial question

for the implementation is whether multilooking is done at

interferogram level (“early multilooking”) or at differential in-

terferogram level (“late multilooking”). Throughout this paper,

“multilooking” refers to the averaging of samples within a

given window size. Using m and s for master and slave, and

the indices 1 and 2 for the two subbands, the two possible

implementations are

ξ′ = (m1 s∗1) (m
∗

2
s2) (1)

ξ = m1 s∗1 m
∗

2
s2. (2)

The overbars indicate the operation of spatial averaging, and

the asterisks the complex conjugation. In both cases the final

step will be to take the phase of ξ or ξ′, e.g. ϕ = ∠ξ, and

rescale it to a delay (d̂), according to the spectral separation

∆f of the two subband carriers:

d̂ =
ϕ

2π∆f
. (3)
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Before discussing the difference in the performance of the

two implementations, it is worth illustrating the advantage of

the “late” average implementation.

B. Advantage of the “late multilooking” implementation

The biggest advantage in using the “late” average (2) is

the inherent phase compensation. If an interferometric phase

is present in the averaging window, it will be (almost) the

same in the upper and the lower subbands and therefore it will

(almost) cancel out in the product m1 s
∗

1 m
∗

2 s2. Because of

this, there is no need to compensate topographic, atmospheric

or deformation phase variations before averaging. Averages

can actually be conducted on large areas, like is it suggested

in [8]. For “early multilooking” implementations, i.e., Eq. (1),

it is necessary to make sure that the phase variation within the

averaging window is small enough, not to reduce the quality

of the final result. The same issue affects also coherent cross-

correlation, but, obviously, not incoherent cross-correlation.

This paper will show that the advantage of “late mul-

tilooking” does not come for free but entails a significant

performance loss.

IV. PERFORMANCE OF “LATE MULTILOOKING”

For the derivation of the performance, we will assume

that the signals are distributed as complex Gaussians, with

rectangular spectra, and that they are normalized such that

E[mn m
∗

n] = E[sn s
∗

n] = 1. We will call the coherence be-

tween master and slave γ: E[m1 s
∗

1] = E[m2 s
∗

2] = γ, whereas

there is no correlation between the sublooks: E[m1 s
∗

2] =
E[m2 s

∗

1] = E[m1 m
∗

2] = E[s1 s
∗

2] = 0.

The averaged signal or sample mean (Eq. (2)) is written

explicitely as

ξ =
1

4Ns

∑

n

ξn =
1

4Ns

∑

n

m1,n s
∗

1,n m
∗

2,n s2,n, (4)

where Ns is the number of independent samples for each

subband and ξn is the pixel-wise multiplication of the four

subbands (m1 s
∗

1 m
∗

2 s2). To avoid aliasing, the signals are

oversampled by a factor 4 before the multiplication, therefore

the factor 1/4 in (4).

For large Ns the variance of the phase of ξ can be approx-

imated by the variance of the imaginary part of ξ, scaled by

the square of the expected value of ξ:

Var[ϕ] ≈
Var [Im[ξ]]

E[ξ]2
. (5)

The variance of the imaginary part is computed as follows:

Var [Im[ξ]] = E





(

1

4Ns

∑

n

ξn − ξ∗n
2i

)2


 (6)

= E

[

1

(4Ns)2

∑

nk

ξn − ξ∗n
2i

ξn−k − ξ∗n−k

2i

]

(7)

= −
1

4

1

(4Ns)2

∑

nk

E
[

ξnξn−k − ξnξ
∗

n−k

−ξ∗nξn−k + ξ∗nξ
∗

n−k

]

. (8)

Now, assuming Gaussian speckle, it is possible to use Reed

theorem [9] (also known as Wick’s theorem) to compute the

expected values:

E[ξnξn−k] =

= E[m1,n s
∗

1,n m
∗

2,n s2,n m1,n−k s
∗

1,n−k m
∗

2,n−k s2,n−k]

= E[m1,n s
∗

1,n m1,n−k s
∗

1,n−k] E[m
∗

2,n s2,n m
∗

2,n−k s2,n−k]

= (γ2 + γ2 sinc2(k/4))2 (9)

E[ξnξ
∗

n−k] =

= E[m1,n s
∗

1,n m
∗

2,n s2,n m
∗

1,n−k s1,n−k m2,n−k s
∗

2,n−k]

= E[m1,n s
∗

1,n m
∗

1,n−k s1,n−k] E[m
∗

2,n s2,n m2,n−k s
∗

2,n−k]

= (γ2 + sinc2(k/4))2 (10)

E[ξ∗nξn−k] = E[ξnξ
∗

n−k] = (γ2 + sinc2(k/4))2 (11)

E[ξ∗nξ
∗

n−k] = E[ξnξn−k] = (γ2 + γ2 sinc2(k/4))2. (12)

Coming back to the variance of the imaginary part

Var [Im[ξ]] ≈

≈ −
1

2

1

(4Ns)2

∑

nk

(

γ4(1 + 2 sinc2(k/4) + sinc4(k/4))

− (γ4 + 2γ2 sinc2(k/4) + sinc4(k/4))
)

(13)

To proceed we extend the sums over k from −∞ to +∞,

which is a right approximation for large Ns:

∑

k

sinc2(k/4) = 4 (14)

∑

k

sinc4(k/4) = 8/3. (15)

Thus, we have

Var [Im[< ξ >]] ≈ −
1

2

1

(4Ns)2

∑

n

(

γ4(32/3)− 8γ2
− 8/3

)

=
4

3

1

(4Ns)

(

1 + 3γ2
− 4γ4

)

. (16)

In the last step, the sum over n is substituted by a factor 4Ns,

since all terms are identical.

On the other side

E[ξ] =
1

4Ns

∑

n

E[ξn] = E[m1 s
∗

1 m
∗

2 s2] = γ2, (17)

so that the variance of the phase of ξ is approximately

Var[ϕ] ≈
Var [Im[ξ]]

E[ξ]2
≈

1 + 3γ2 − 4γ4

3Ns γ4
. (18)

To get the variance of the delay estimate d̂, one has to

scale (18) by the square of the spectral separation of the two

subbands (i.e., (4π/3)2, for subbands which are 1/3 of the total

bandwidth) and substitute the number of independent samples

if the full-bandwidth images (i.e., Ns = N/3). The choice

of taking the upper and lower third of the bandwith is the

best compromise between subcarrier separation and number

of independent samples in each subband (see [7] for a proof).
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Finally the performance of the delay estimate is:

Var[d̂] ≈
27

16π2

1 + 3γ2 − 4γ4

3N γ4
(19)

=
9

16N

(1− γ2)(1 + 4γ2)

π2γ4
. (20)

This equation is normalized to a unitary bandwidth: the square

root of the variance represents shifts relative to the resolution

element.

Fig. 1. The normalized accuracy (σ
√

N ) of Delta-k as a function of
coherence, with and without spatial averaging of the interferograms. The
number of averaged independent samples in each subband is Ns = 5/γ2

for the simulated case (triangles).

V. COMPARISONS WITH OTHER METHODS

The performance of “late multilooking” derived in this paper

should be compared to the standard “early multilooking” and

to cross-correlation techniques. It is anticipated here that the

comparison will reveal unsuspected relations.

A. Performance of cross-correlation methods

We report here the asymptotic performance of Coherent

Cross-Correlation [7]:

Var[d̂ CCC] ≈
3

2N

1− γ2

π2γ2
= CRLB (21)

and Incoherent Cross-Correlation [10]:

Var[d̂ ICC] ≈
3

10N

(1− γ2)(2 + 7γ2)

π2γ4
. (22)

Note that coherent cross-correlation attains asymptotically the

Cramér-Rao lower bound (CRLB), as the number of indepen-

dent samples tends to infinity.

B. Performance of “early-multilooking”

The asymptotic performance bound of “early-multilooking”

Delta-k was derived in [7], for two subbands spanning the

lower and upper third of the spectrum:

Var[d̂∆k] ≥
27

16N

1− γ2

π2γ2
. (23)

In that paper it was shown that its asymptotic efficiency is

8/9, which means that the variance (23) is just 12.5% larger

than the CRLB (21): on the plot in Fig. 1 the two are almost

indistinguishable.

In terms of Fisher information this translates into a missing

1/9 with respect to the information of the full spectrum. The

missing information resides in each of the three subbands

forming the full spectrum, taken separately, as it is shown in

the following. Consider for example the middle third of the full

bandwidth. The ratio between the information of the middle

third and the full spectrum is 1/27. A factor 1/9 accounts

for the resolution loss (the information goes with the inverse

square of the resolution!); an additional 1/3 represents the

loss of independent samples, for the same data, caused by the

reduced bandwidth. However, since there are three of such

subbands, the contributions of the three subbands is exactly

3× (1/27) = 1/9.

Another way to obtain the same result is to consider a

cascade of Delta-k estimators, to be applied recursively to

smaller and smaller subbands. For instance, at the first level,

one would apply a Delta-k on the full bandwidth (which

amounts to 8/9 of the total available information). Then, at

the second level, one would have three Delta-k estimators,

to each third of the full bandwidth, recovering 1/9 of the

information w.r.t. the first level (i.e. (1/9)×(8/9) = 8/81). At

the third level it is another factor 1/9, and so on. Summing the

geometric series shows that this infinite scheme would recover

perfect efficiency: (8/9)
∑

n(1/9)
n = 1.

We do not intend to suggested this procedure in practice,

as the efficiency of 8/9 is already high: it is useful in order

to reconstruct theoretically the missing information and to

provide an interpretation of the results in [7].

C. Performance comparison and unexpected analogies

It is clear that “late-multilooking” Delta-k (20) performs

definitely worse than the Cramér-Rao bound (21), as one can

see in Fig. 1 comparing the solid with the dashed line. For

high coherences the efficiency is 3/5, for low coherences it

goes to zero because of the extra γ2 factor. The log-scale plot

reveals this fact with a clear slope difference.1 The same can be

said with respect to “early-multilooking” Delta-k (23), which

is very close to the CRLB. Simulations confirm the analytical

derivation, as shown by the “stars” in Fig. 1.

The performance of “late multilooking” Delta-k is instead

surprisingly similar to the one of incoherent cross-correlation

with intensity signals derived in [10] and reported for conve-

nience in (22). Figure 2 shows the relative efficiency between

the two, which is the ratio between (20) and (22). After

examining the situation more carefully, one should conclude

that this is not so strange: “late-multilooking” Delta-k is totally

robust to phase errors and performs like an estimator based

on intensities alone. It could be seen as a frequency-domain

equivalent of incoherent cross-correlation.

Since the two estimators have basically the same perfor-

mance, it is natural to ask whether they are substantially the

same estimator, or they have the same performance by chance.

1This visualization has been suggested by one reviewer.
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Fig. 2. The relative efficiency of “late-multilooking” Delta-k and incoherent
cross-correlation as a function of coherence: the two estimators are almost
equivalent.

The correlation of the shifts obtained with “late multilook-

ing” Delta-k and incoherent cross-correlation is about 0.6-0.7

(Monte Carlo simulations), which means that they are actually

quite similar without being exactly the same. Figure 3 (left)

reports a cross-plot of the two estimates for 1000 simulations.

Fig. 3. Scatter plot of Monte Carlo simulations of “late multilooking”
Delta-k and cross-correlation of intensities. Left: intensities of full-spectrum
signals. Right: intensities of filtered signals. The correlation between the two
estimators is 0.68 on the left and 0.96 on the right.

D. Equalization of intensity spectra

The fact that the two estimators are not totally correlated

leaves room for some improvement, for example averaging

the results of the two. The advantage is anyway rather small,

about 1 dB.

The explanation of the small difference is that the two

estimators are essentially working on the same signals (the

intensities), but with different spectral weightings. Incoher-

ent cross-correlation takes the full spectrum of the intensity

signal, which is shaped like a triangle, thus privileging low

frequencies. “Late multilooking” Delta-k is sensitive to the

high frequencies that result from computing the intensities

only with the subbands signals. The average of the two is

analogous to working with a whitened intensity spectrum,

which maximizes both the number of independent samples

and the resolution.

This interpretation is reinforced by the following obser-

vation: if the original signals are pre-filtered to remove the

central third of the spectrum, an operation that does not affect

Delta-k estimates, the correlation between intensity cross-

correlation and “late-multilooking” Delta-k raises towards

unity, as one can see in Figure 3 (right).

VI. EARLY-LATE COMPROMISE

Of course it is not necessary to choose between doing all

the averaging at interferogram level or doing it only after the

differential interferogram formation. The recommended com-

promise will be to perform a sufficient amount of averaging at

interferogram level, leaving the rest after the formation of the

differential interferogram. The question is: how much early

multilooking is actually needed? The answer depends on the

coherence, with low coherence interferograms requiring more

“early multilooking” for the same efficiency threshold.

The question of Delta-k efficiency goes really back to the

efficiency of the maximum-likelihood interferometric phase

estimator [11]. Almost constant efficiency levels are obtained

for a number of independent samples N that satisfies the

equation γ2N = N0 (const.). Figure 4 reports the efficiency

of the maximum-likelihood phase estimator (for complex

Gaussian signals) for different N0 levels. With N0 = 4 or

5 the efficiency is already quite high (0.8-0.85).

Figure 1 reports also the performance of Delta-k shift

estimation with Ns = 5/γ2 independent samples averaged

at interferogram level. This is enough to achieve a reasonable

efficiency according to the simulations (triangles). Note also

that in most practical cases the phase is flattened with external

information (DEM or ellipsoid), so that a relatively large

“early multilooking” might be acceptable, depending on the

quality of the DEM and the height of ambiguity.

Fig. 4. The efficiency of the maximum-likelihood estimator of the inter-
ferometric phase for Gaussian signals, as a function of coherence and with
N0/γ2 independent samples, for different N0.

The second stage averaging poses an additional challenge.

Because of backscatter variations it might not be advisable

to retain the amplitude information, so that one might want

to normalize the differential interferogram before further av-

eraging. Working directly with phases or shifts would also
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be a possibility, provided that one takes care of possible

ambiguities, i.e., phase wrapping in the differential phase.

VII. CONCLUSION

This letter has discussed the performance of Delta-k es-

timators. The presence of uncompensated fringes in the av-

eraging window calls for a late-multilooking strategy, which

intrinsically removes interferometric phases. However we have

shown that, to preserve the estimator efficiency, it is mandatory

to performs a certain amount of early averaging at inter-

ferogram level, according to the coherence level. The pure

late-multilooking Delta-k estimator is totally insensitive to

phase errors, but its performance is closer to incoherent cross-

correlation rather than coherent cross-correlation. Theory and

simulations agree with each other and confirm the finding.
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