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Abstract— In this letter, we present an object-based post-classification relearning 

approach for enhanced supervised remote sensing image classification. Conventional 

post-classification processing techniques aim to enhance the classification accuracy by 

imposing smoothness priors in the image domain (based on e.g., majority filtering or 

markov random fields). In contrast to that, here, a supervised classification model is 

learned for a second time with additional information generated from the initial 

classification outcome to enhance discriminative properties of relearned decision 

functions. This idea is followed within an object-based image analysis framework. 

Therefore, we model spatial-hierarchical context relations with the preliminary 

classification outcome by computing class-related features using a triplet of hierarchical 

segmentation levels. Those features are used to enlarge the initial feature space and 

impose spatial regularization in the relearned model. We evaluate the relevance of the 

method in the context of classifying of a high resolution multispectral image, which was 

acquired over an urban environment. Experimental results show enhanced classification 

accuracy using this method compared to both a per-pixel based approach and outcomes 

obtained with a conventional object-based post-classification processing technique (i.e., 

object based voting). 
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I. INTRODUCTION 

ethods for derivation of thematic information from remote sensing data have been a major 

research subject over the past decades. Thereby, supervised classification approaches are 

very popular due to their accuracy, robustness, and flexibility [1]. The idea of such methods is 

to infer a rule (e.g., a decision function) from limited but properly encoded prior knowledge to 

assign a class label to unseen instances of the domain under analysis. Thereby, the concept of 

spectral per-pixel classification has been extended especially for remote sensing data with a 

ground sampling distance considerably higher than the objects of interest. This kind of data 

became in particular available with the advent of sensors such as IKONOS, QuickBird, 

WorldView I-III, or GeoEye, among others. The high geometric resolution can induce high 

intraclass and low interclass variabilities especially in heterogeneous environments such as 

urban areas. This causes dominantly the well-known salt-and-pepper effect in the 

classification outcome, when relying solely on individual spectral signatures of pixels [2]. 

To cope with this problem, three distinguishable strategies were followed in the past: (i) 

Deployment of features that aim to incorporate spatial relations before classification (referred 

to as spectral-spatial classification). Those kinds of features take the neighborhood of 

individual pixels into account such as morphological operators (e.g, [3]-[5]), or texture 

measures (e.g.,[6]-[8]); (ii) Partition of the image with a segmentation algorithm into objects 

and usage of e.g., the spectral means and spatial-hierarchical context characteristics for 

classification on segment level (referred to as object-based image analysis (OBIA)) [2], [9], 

[10]; (iii) The refinement of the classification outcome by classification postprocessing (CPP) 

[11]. With respect to the latter, the majority of approaches aim to refine the initial 

classification outcome by taking advantage of spatial occurrence and alignment of class labels 

and eventually relabel them in the image domain, based on e.g., majority filtering [12], or 

markov random fields [13]. 

Recently, Huang et al. [11] proposed two CPP strategies that deploy the concept of 

relearning. Thereby, a supervised classification model is learned for a second time with 

additional features derived from the initial classification outcome. In particular, they propose 

to compute a primitive co-occurrence matrix and local class histograms for characterization of 

the spatial occurrence and alignment of class labels in the feature space. Experimental results 

showed better accuracies compared to a per-pixel approach and traditional CPP methods. 

In this letter, we adapt the idea of relearning and extend it in the context of an OBIA 

approach, referred to as object-based post-classification relearning (OBR). We make use of 

the unique capabilities of OBIA, which allow addressing a multiplicity of spatial scales and 

hierarchies within the image domain [9]. To this purpose, the initial classification outcome is 

aggregated first on a triplet of segmentation levels, which were generated from the remote 

sensing imagery. The information is used to compute multiple class-related features, which 

are subsequently used for relearning the model. This is intended to allow for representing 

complex spatial-hierarchical context relations of class labels in the feature space in order to 

simultaneously enhance discriminative properties of relearned decision functions and impose 

adequate smoothness priors. To demonstrate the relevance of the method we compare it to the 

current most popular OBIA CPP strategy, named object-based voting (OBV) [11]. 

Additionally, comparisons to a per-pixel based approach are made based on both spectral and 
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model, which allows for building robust models with a high generalization capability based 

on a comparatively small number of labeled training samples. For solving a multi-class 
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