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Abstract—Remote sensing hyperspectral sensors collect large
volumes of high dimensional spectral and spatial data. However,
due to spectral and spatial redundancy the true hyperspectral
signal lies on a subspace of much lower dimension than the
original data. The identification of the signal subspace is a very
important first step for most hyperspectral algorithms. In this
paper we investigate the important problem of identifying the
hyperspectral signal subspace by minimizing the mean squared
error (MSE) between the true signal and an estimate of the
signal. Since the MSE is uncomputable in practice, due to its
dependency on the true signal, we propose a method based
on the Steins unbiased risk estimator (SURE) that provides an
unbiased estimate of the MSE. The resulting method is simple
and fully automatic and we evaluate it using both simulated and
real hyperspectral data sets. Experimental results shows that
our proposed method compares well to recent state-of-the-art
subspace identification methods.

Index Terms—Hyperspectral imaging (HSI), model selection,
rank selection, tuning parameter selection, mean squared er-
ror (MSE), sparsity, wavelets, Stein’s unbiased risk estimator
(SURE).

I. INTRODUCTION

HYPERSPECTRAL remote sensing has the potential to
detect and identify ground materials in remotely sensed

scenes. As a result, it has found use in a great number of
remote sensing applications.

Hyperspectral images (HSIs) contain detailed spectral in-
formation across a range of wavelengths. Thus, each pixel
represents a spectral response. Having such a detailed spectral
resolution decreases the spatial resolution [1]. Due to spectral
redundancy, hyperspectral data lives in a low-rank subspace
of the original high dimensional space (i.e., the rank of the
subspace is much lower than the number of bands of the
HSI). That fact is reflected in models typically used for
hyperspectral data [2], [3], [4], where the unknown signal is
modeled as a linear combination of few endmembers weighted
by abundance fractions.

Since HSI generally lie on a low dimensional subspace
the identification of it is a crucial task in HSI modeling and
analysis. An important step in the subspace identification is
the problem of selecting the rank of the hyperspectral data
and selecting it correctly is very important. For instance, in
unmixing application, over/under estimating the rank parame-
ter can substantially change the result of endmember detection
and consequently the corresponding abundance maps. Despite
significant efforts the hyperspectral rank selection problem
remains a big challenge. In the literature, signal subspace iden-
tification is also referred to by alternative names such as rank
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selection, intrinsic order selection, estimation of the number
of endmembers, virtual dimension, estimation of number of
spectrally distinct signal sources, etc. [5], [6], [7]. In this
paper, we use two terms, the subspace dimension and rank
exchangeably.

In [8], an eigenvalue based detector was developed by
Harsanyi, Farrand and Chang called HFC. Later, HFC was
extended to cope with the presence of non-uniform noise in
the spectral direction of HSI, the resulting method was called
NWHFC. Also, in [9], it was shown that information theoretic
criteria such as the minimum description length (MDL) [10]
and Akaike’s information criterion (AIC) [11] are not suitable
for identification of the signal subspace. Recently, a method
for estimating spectral endmembers similar to HFC has been
proposed in [12].

Hyperspectral subspace identification by minimum error
(HySime) [5] determines the subspace dimension (rank) by
deriving an unbiased estimate of the MSE and is therefore
similar to the method proposed in this paper. But, HySime
is based on a different modeling for the hyperspectral data
and thus leads to a different method. In [13], an extension
of iterated constrained endmember (ICE) [14] was given by
promoting sparsity prior to estimate the rank of hyperspectral
data set. A rank selection approach was given in [15] that
uses the `2,∞ norm to select the subspace while accounting
for the presence of rare signal. In [16], the HSI rank was
selected based on estimating the MSE using a simultaneous
rank selection and denoising approach. Also, two geometry-
based approaches (GENE-CH and GENE-AH) were proposed
in [17] for estimating the number of endmembers. GENE-
CH and GENE-AH are based on the hypotheses that all the
observed pixels lie in the convex hull and the affine hull
of the endmember signatures, respectively. In addition, these
algorithms rely on endmember estimation method called p-
norm-based pure pixel identification (TRI-P).

Due to spatial redundancy, HSIs are sparse in a sparsi-
fying dictionary such as wavelets [18]. Wavelets have been
widely used for sparse signal modeling since they are able to
represent signals with sparse coefficients [19], [20], [21]. An
integral part of sparse modeling is sparse estimation. Sparse
estimation problems, such as matching pursuit (MP) [22], least
absolute shrinkage and selection operator (Lasso) [23], and
basis pursuit denoising (BPDN) [24] have opened a broad
research area called sparse signal processing or sparse signal
analysis. Sparse models are used in many HSI applications
such as denoising, blind source separation and inpainting [25],
[26], [27]. Here, we use a sparse model and estimation for
hyperspectral subspace identification.

Hyperspectral subspace dimension (rank) is a hyperspectral
model parameter. Hence, we seek a model selection criteria
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for HSI which depends only on the observed data. A typical
criterion used for model selection is the mean square error
(MSE). The MSE is not computable since it requires knowl-
edge of the true (unknown) signal. Therefore, computationally
intensive methods such as cross-validation (CV) have been
widely used for estimating the MSE, for model selection [28],
[29] and tuning parameter selection [30], [31], [32]. Stein’s
unbiased risk estimator (SURE) is introduced in [33] as an
unbiased estimator of the MSE. SURE is used for selecting
the thresholding parameter for wavelet shrinkage in [34] and
then as a general method for selecting tuning parameter in
[35]. Since then, SURE has been widely used for model and
parameter selection in the area of signal processing [30], [36],
[37] and see [38] for further references.

In this paper, we propose a hyperspectral subspace iden-
tification technique called hyperspectral SURE (HySURE).
HySURE is a SURE-based technique which selects the sub-
space dimension and sparsity tuning parameters, simultane-
ously, for hyperspectral data. Previous subspace identification
methods are only concerned about the spectral redundancy and
therefore only focus on selecting the rank of the hyperspectral
signal. Unlike previous methods HySURE also makes use of
the spatial redundancy. In experiments, HySURE is compared
with other techniques for both simulated and real HSI data
sets. Also, it is shown that the sparse model used in this paper
outperforms some other sparse models in terms of SURE value
for real and simulated hyperspectral data.

The rest of the paper is organized as follows. After giving a
short description of the notations used in the paper, a general
sparse model and sparse estimation for HSI are presented
in Section II and III, respectively. HySURE proposed as a
hyperspectral rank selection method in Section IV. The exper-
imental results are given in Sections V and VI for simulated
and real hyperspectral data sets, respectively. Finally, Section
VII concludes the paper.

A. Notation

In this paper, the number of bands and pixels in each band
are denoted by p and n, respectively. Matrices are represented
by bold and capital letters, column vectors by bold letters and
the element placed in the ith row and jth column by aij . The
identity matrix of size p × p is given by Ip. I stands for the
indicator function and X̂ for the estimate of X.

II. HYPERSPECTRAL IMAGE MODELING

A hyperspectral image can be modeled by

Y = X + N,

where Y =
[
y(i)

]
is an n×p matrix containing the vectorized

observed image at band i in its ith columns, X =
[
x(i)

]
is

the true unknown signal to be estimated and is represented
as an n× p matrix containing the unknown vectorized image
at band i in its ith columns and N =

[
n(i)

]
is an n × p

matrix containing the vectorized zero-mean Gaussian noise at
band i in its ith columns. Note that, the Gaussian noise model
has been very commonly used in the remote sensing litera-
ture for hyperspectral modeling, e.g., [5], [17]. We assume

that the noise is whitened by the noise covariance matrix,
Ω = diag

(
σ2
1 , σ

2
2 , . . . , σ

2
p

)
where σp is the noise standard

deviation in band p, thus after estimation the signal is restored
by X̂Ω1/2.

A general sparse model for the HSI is given by

Y = AWrM
T
r + N, (1)

where A =
[
a(i)

]
(n × n matrix) and Mr =

[
m(i)

]
(p × r

matrix, r ≤ min (n, p)) are known two dimensional and
one dimensional orthogonal sparsifying bases, respectively,
and Wr =

[
w(i)

]
(n × r matrix) contains unknown sparse

coefficients for the unknown hyperspectral data, X. In this
paper we will focus on orthogonal wavelet bases.

III. HYPERSPECTRAL IMAGE ESTIMATION

Penalized least squares has been widely used for estimating
signal processing models. Penalized least squares is the sum of
a squared error term and a penalty. The penalty term should be
chosen based on the prior knowledge of the signal. Here, the
`1 penalty is used to promote sparsity. Since remote sensing
signals such as HSIs are not inherently sparse, they need to
be expanded in a basis where they have sparse representation.
The sparse estimation problem for the general model (1) is
given by

Ŵr = argmin
Wr

1

2

∥∥Y −AWrM
T
r

∥∥2
F
+
∑
t,k

λ |wtk| . (2)

It can be seen that the solution to (2) is given by the following
shrinkage function (see Appendix A)

ŵtk = max (0, |btk| − λ)
btk
|btk|

. (3)

where B = ATYMr = [btk].

IV. ESTIMATING MSE USING SURE
In (2), λ and r are unknown and we want to select them so

that they minimize the MSE,

Rλ,r = E
∥∥∥X− X̂λ,r

∥∥∥2
F
, (4)

where λ is the sparsity tuning parameter and r is the rank
number. Unfortunately, in most applications such as HSI the
true signal X is unknown and thus it is impossible to compute
the MSE. For deterministic signals in Gaussian noise such as
(1) an unbiased estimator of the MSE called SURE can be
derived. The general form of SURE is given by

R̂λ,r = ‖E‖2F + 2

p∑
j=1

tr

(
Ω
∂x̂(j)

∂yT(j)

)
− np,

where E = Y −AŴrM
T
r is the residual. In Appendix B it

is shown that SURE for (2) is given by

R̂λ,r = ‖E‖2F + 2ed(r, λ)− np (5)

where ed(r, λ) is the effective dimensionality of the subspace
identified and is given by

ed(r, λ) =
n∑
t=1

r∑
k=1

I(|btk| > λ). (6)
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Fig. 1. Contour plot in a logarithmic scale of SURE w.r.t. the rank number,
r, and the sparsity tuning parameter, λ, for simulated hyperspectral data set
1.

From (6) it is clear that ed(r, λ) is simply the number of
coefficients in the subspace identified determined by the rank
r and the number of coefficients in an orthogonal sparsifying
basis, such as wavelets, that survive the threshold λ. The
SURE formula (5) makes it clear that the method is a tradeoff
between the fit of the model ‖E‖2F and the effective dimen-
sionality ed. The fit generally improves (‖E‖2F decreases)
with increasing r and decreasing λ, but on the other hand
ed increases. So one expects that SURE takes a minimum for
some 0 < r < p and λ > 0.

To use SURE in practice a grid is selected for λ and r and
then SURE is computed for each grid point. The optimal rank
and tuning parameter λ are selected based on the minimum of
SURE:

(λ̂, r̂) = argmin
λ,r

R̂λ,r.

As an example on the use of SURE we apply it on simulated
data set 1 (described below) having SNR=15 dB. Fig. 1 depicts
how SURE selects model parameters, the rank and the sparsity
tuning parameters, simultaneously. Fig. 1 is a contour plot of
the risk value in a logarithmic scale for 1 ≤ r ≤ 224 and
0 ≤ λ ≤ 4. SURE selects r = 8 and λ = 0.44 for this
experiment, since they give the lowest risk value.

A. Hyperspectral SURE

The model presented in (1) allows for some flexibility, i.e.
A and Mr can be selected in various ways. In this paper
we select A as the two dimensional orthogonal wavelet basis
and Mr as a low rank matrix of spectral eigenvectors. We
will justify this choice in the experimental section. We call
the method that results from this choice hyperspectral SURE
(HySURE).

V. SIMULATIONS AND EVALUATIONS

As we mentioned above model (1) allows for some flex-
ibility in the selection of A and Mr and the HySURE is

the method that follows when the quantities are selected
as 2D wavelet basis and a low rank spectral eigenvector
matrix, respectively. Here we justify the choice of HySURE
by comparing it with six alternative models (all in the form
of the general model) given in Table I. For convenience, all
the models are numbered in Table I with brief descriptions
so we call them by numbers (1-7) in the rest of the paper.
Note that HySURE uses model (7). Also, in this section,
HySURE is compared with four other HSI rank selection tech-
niques (NWHFC, HySime, GENE-CH and GENE-AH) from
the literature in several experiments by using two simulated
hyperspectral data sets. In experiments, five level Daubechies
wavelet with eight coefficients for the spatial basis and with
two coefficients for the spectral basis are used.

A. Hyperspectral Image Simulation

As previously mentioned, computing MSE for a real data is
impossible since the true signal is unknown. Therefore, in this
paper simulated hyperspectral data sets are used so we are able
to compute the MSE and compare it with SURE. The compari-
son based on the simulated data shows the reliability of SURE
as an estimator for MSE. Additionally, the proposed HSI rank
selection technique is evaluated based on two simulated data
sets and compared with other rank selection techniques.

1) Data set 1: The first hyperspectral data set is simulated
by randomly selecting 10 different endmembers from the
USGS spectral library [39] shown in Fig. 2. The associated
abundance fractions are shown in Fig. 3. A linear mixture
model is used to create hyperspectral image of size 128 ×
128 × 224 where the Gaussian noise is allowed to be band-
dependent with the noise variance at band i given by [5]

σ2
i = σ2 e

− (i−p/2)2

2η2∑p
j=1 e

− (j−p/2)2
2η2

.

Band 112 of simulated hyperspectral data set 1, both before
and after adding noise is given in Fig. 4. Also, in Fig. 4,
the spectrum located at position (64,64) is depicted before
and after adding noise. For this data set η = 1/18. In the
experiments, this data set is used for both model selection
and rank selection. Note that, in simulated data set 1, spatial
structure and pixel variability have been taken into account for
simulating fractional abundances so we get closer simulation
compared to the real case which makes rank estimation more
challenging. However, in experiments, we will also consider
the case of applying sum to one assumption on the fractional
abundances.

2) Data set 2: The second simulated hyperspectral data set
is based on a linear mixture model having the same size as
data set 1. Endmembers are also selected randomly from the
USGS spectral library. However, the fractional abundances are
generated based on the Dirichlet distribution [5], [17]. Noisy
data set is simulated as previously explained for data set 1 for
two different cases, η = 1/18 and η = 0. The Matlab code
to generate data set 2 can be found online [40]. In this paper,
this data set is only used for evaluating the rank selection
techniques.
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TABLE I
SEVEN LINEAR SPARSE HSI MODELS USED IN THE MODEL SELECTION EXPERIMENTS.

HSI Model formulation Spatial basis used Spectral basis used Spectral Rank

Model (1) Y = D2WDT
1 +N 2-D wavelet 1-D wavelet Full-Rank

Model (2) Y = D2W +N 2-D wavelet No spectral basis Full-Rank
Model (3) Y = WDT

1 +N No spatial basis 1-D wavelet Full-Rank
Model (4) Y = WVT +N No spatial basis Spectral eigenvectors Full-Rank
Model (5) Y = D2WVT +N 2-D wavelet Spectral eigenvectors Full-Rank
Model (6) Y = WVT

r +N No spatial basis Spectral eigenvectors Low-Rank
Model (7) Y = D2WVT

r +N 2-D wavelet Spectral eigenvectors Low-Rank
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Fig. 2. Ten endmembers signatures from USGS library used for simulated
hyperspectral data set 1.

B. Hyperspectral Model Selection Using SURE

In this subsection, we use SURE to compare the seven
aforementioned models (1-7) and select the one which gives
the lowest risk value for HSI modeling. We should note that
for HSI model evaluation we do not need a simulated data
set since SURE can be directly applied on real data set (see
Section VI-A). Here, simulated data set 1 (SNR=15 dB) is
used to investigate how well SURE estimates the MSE.

Fig. 5 compares the MSE and SURE values for models (1-
5) as a function of the tuning parameter, λ. It can be seen that
SURE (dash lines) is a good estimator of MSE (solid lines) for
all the five models. Also, in Fig. 5, it can be seen that model
(3), where the hyperspectral data is only projected spectrally
on wavelet basis, has the worst performance and model (5)
outperforms other models based on SURE.

Among the purely wavelet based models (1), (2) and (3) the
spectral-spatial model (1) is the best, followed by the spatial
model (2), and trailed by the spectral model (3).

Fig. 5 also shows that model (4) in which the hyperspectral
image is projected on the spectral eigenvectors (V), is a better
model than the spatial-spectral wavelet model (1) since it has
a lower minimum SURE value.

Overall, model (5) has the lowest SURE value which
demonstrates that projecting the simulated hyperspectral image
on the wavelet basis spatially and on its spectral eigenvectors
(V) spectrally has the lowest SURE value. That is better seen
in Fig. 6.

Fig. 6 shows the low-rank models (6) and (7) for r = 10,

w.r.t. the tuning parameter, λ. It can be seen that, also for low-
rank models SURE estimates the MSE successfully. From Fig.
6, it can also be seen that model (7) outperforms model (6) in
terms of the risk value.

SURE and MSE for full-rank models (4) and (5) are also
displayed in Fig. 6. It can be seen that, when λ is small
the low-rank models substantially outperform the full-rank
ones but when λ increases, the full-rank and low-rank models
perform similarly. This can be explained by the fact that
for low λ the low energy (noisy) components are neglected
by the low-rank models but kept by the full-rank models,
but for high λ the noisy components are zeroed out due to
high threshold value which makes the low-rank and full-rank
models perform similarly. By comparing results in Fig. 5 and
6 one can conclude that model (7) gives the lowest risk value
for all the seven models for the simulated HSI. Note that, in
this experiment, for low-rank models the true rank number is
selected i.e. r = 10.

C. Evaluation of HySURE

Here, we compare HySURE with NWHFC, HySime,
GENE-CH and GENE-AH based on two simulated hyper-
spectral data sets. In this paper, the noise is estimated by the
multiple regression technique given in [5] for all techniques
including the noise whitening step for NWHFC and therefore
the comparisons of the aforementioned rank selection tech-
niques will not be dependent on the estimation of noise. The
false alarm parameter PFA is selected to be PFA = 10−8 for
NWHFC and the geometric methods (GENE-CH and GENE-
AH) and also p = 2 for TRI-P algorithm used in the geometric
techniques as suggested in [17].

1) Data set 1; Experiment 1: In Table II, we compare
HySURE with NWHFC, HySime, GENE-CH and GENE-
AH, for simulated data set 1. The methods are evaluated
for different levels of SNR (10, 15, 20, 25, 35 and 50
dB) and different rank numbers, 3 ≤ r ≤ 10. The results
are obtained by taking the median over 10 experiments. In
this experiment, for the geometric methods (GENE-CH and
GENE-AH) maximum rank number (rmax) is chosen to be
25 since the maximum rank number of the simulated data set
used in the experiment is 10. Obviously, the rank estimation
problem becomes more challenging by decreasing SNR and
also with increasing the number of endmembers since the
complexity of the mixing problem is increased. As can be seen
in Table II, with increasing r and decreasing SNR, HySime
underestimates the rank number, GENE-CH and GENE-AH
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Fig. 3. Fractional abundances associated to ten endmembers selected from USGS library and used for simulated hyperspectral data set 1.

Fig. 4. Band 112 and the spectrum located at position (64,64) of simulated
hyperspectral data set 1 before and after adding noise (SNR=15 dB).
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Fig. 5. A comparison of MSE with SURE for models (1-5) w.r.t. the tuning
parameter λ for simulated hyperspectral data set 1.

fail to estimate the true rank in many cases and NWHFC fails
for all the cases except r = 3. HySURE performs successfuly
for SNR= 50 dB and 35 dB. It estimates the true rank for
r ≤ 8 in the case of SNR=25 and 20 dB. Also, in the case of
low SNRs, SNR=15 and 10 dB, HySURE estimates the true
rank for r ≤ 6 and r ≤ 5, respectively. We should note that
for the cases that HySURE fails, the estimations are very close
to the true ranks.
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Fig. 6. A comparison of MSE with SURE for models (4-7) w.r.t. the tuning
parameter λ for simulated hyperspectral data set 1.

2) Data set 1; Experiment 2: Here, we repeat the rank
selection experiment on data set 1 after applying sum to one
assumption on the abundances. The rank estimation results
are given in Table III. It can be seen that NWHFC gives
better results compared to the previous experiment. Although
NWHFC fails in many cases, the estimations are closer to
the true ranks in this experiment. It appears that there are no
trends in the behaviors of GENE-CH and GENE-AH and like
in the previous experiments these methods fail in many cases.
The estimation results for HySime and HySURE show slight
improvements from the previous experiment. For instance,
HySime can estimate the true rank for r = 3, and also
for r = 4 when SNR≥ 35. Overall, HySURE considerably
outperforms the other rank selection techniques based on the
experiments carried out on simulated data set 1.

3) Data set 2; Experiment 1: HySURE is also compared
with NWHFC, HySime, GENE-CH and GENE-AH based on
simulated data set 2 for η = 1/18. Table IV gives the results
obtained by rank selection techniques for r = 3, 5, 10, 15, 20
and 30 and SNR = 10, 15, 20, 25, 35 and 50. The results are
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TABLE II
HYPERSPECTRAL RANK SELECTION USING FIVE TECHNIQUES (HYSURE,

NWHFC, HYSIME, GENE-CH, GENE-AH) APPLIED ON SIMULATED
DATA SET 1 FOR SNR= 10, 15, 20, 25, 35 AND 50, IN DECIBEL AND

3 ≤ r ≤ 10. THE CORRECT RANK ESTIMATIONS ARE SHOWN BY BOLD
NUMBERS. THE RESULTS ARE OBTAINED BY TAKING THE MEDIAN OVER

10 EXPERIMENTS.

SNR Method r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10

HySURE 3 4 5 6 7 8 9 10
NWHFC 3 3 2 3 2 2 4 4

50 dB HySime 3 4 4 5 5 6 7 7
GENE-CH 8 6 9 7 11 13 13 17
GENE-AH 4 6 5 7 7 9 11 10

HySURE 3 4 5 6 7 8 9 10
NWHFC 3 3 2 3 2 3 3 4

35 dB HySime 3 3 4 4 4 5 5 5
GENE-CH 5 10 6 6 14 6 10 12
GENE-AH 5 7 6 6 5 7 6 6

HySURE 3 4 5 6 7 8 8 9
NWHFC 3 3 2 3 2 3 2 4

25 dB HySime 3 3 4 4 4 4 4 4
GENE-CH 5 5 6 5 6 5 9 7
GENE-AH 6 5 5 6 6 5 11 5

HySURE 3 4 5 6 7 8 8 9
NWHFC 3 3 2 3 2 3 2 4

20 dB HySime 3 3 3 4 3 3 4 3
GENE-CH 6 3 3 4 5 3 11 8
GENE-AH 6 3 3 8 5 3 6 4

HySURE 3 4 5 6 6 7 8 9
NWHFC 3 3 2 3 3 3 2 3

15 dB HySime 2 2 2 3 3 2 2 2
GENE-CH 3 3 4 3 3 4 8 4
GENE-AH 3 3 4 3 3 4 8 3

HySURE 3 4 5 5 6 7 8 8
NWHFC 3 3 2 3 3 3 2 3

10 dB HySime 2 1 2 2 2 2 2 2
GENE-CH 3 3 4 3 3 3 4 3
GENE-AH 3 3 4 3 3 3 4 3

obtained by taking the median over 10 experiments. All the
parameters are selected like in the previous experiment except
here rmax = 50 (for GENE-CH and GENE-AH) since the
maximum rank number used in this experiment is 30.

In this experiment, HySURE behaves as a robust rank
selection technique w.r.t. the rank number and also to the
noise power. HySURE estimates the true rank for all the
cases. It appears that increasing noise power and number
of endmembers affect HySime estimations. We should note
that HySime is closely related to HySURE, but HySURE is
based on sparse model and sparse estimation technique for
the hyperspectral signal which makes it be more robust to
the noise power. NWHFC and the geometric techniques does
not perform satisfactorily and GENE-CH fails to select a rank
in many cases where given by zeros in the table. Note that
HySime and HySURE are parameter free techniques which is
important for big data analysis.

4) Data set 2; Experiment 2: In this experiment, we add
Gaussian noise when η = 0 to the simulated data set 2.
All rank selection techniques are compared in Table V for
r = 3, 5, 10, 15, 20 and 30 and SNR = 10, 15, 20, 25,
35 and 50. All parameters are selected like in the previous
experiment. The results are obtained by taking the median
over 10 runs. From Table V, it can be seen that all tech-

TABLE III
HYPERSPECTRAL RANK SELECTION USING FIVE TECHNIQUES (HYSURE,

NWHFC, HYSIME, GENE-CH, GENE-AH) APPLIED ON SIMULATED
DATA SET 1 HAVING SUM TO ONE CONSTRAINT ON FRACTIONAL

ABUNDANCES FOR SNR= 10, 15, 20, 25, 35 AND 50, IN DECIBEL AND
3 ≤ r ≤ 10. THE CORRECT RANK ESTIMATIONS ARE SHOWN BY BOLD

NUMBERS. THE RESULTS ARE OBTAINED BY TAKING THE MEDIAN OVER
10 EXPERIMENTS.

SNR Method r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10

HySURE 3 4 5 6 7 8 9 10
NWHFC 6 9 7 6 7 8 9 10

50 dB HySime 3 4 4 5 5 6 7 7
GENE-CH 3 4 5 9 5 6 6 12
GENE-AH 3 4 5 5 5 6 9 7

HySURE 3 4 5 6 7 8 9 10
NWHFC 4 5 6 6 7 8 9 10

35 dB HySime 3 4 4 4 5 4 4 4
GENE-CH 5 4 6 5 6 6 6 6
GENE-AH 4 4 6 5 6 6 6 6

HySURE 3 4 5 6 7 8 9 9
NWHFC 3 5 6 6 7 8 7 9

25 dB HySime 3 3 4 4 4 4 4 4
GENE-CH 7 6 7 7 7 6 6 5
GENE-AH 7 6 7 5 6 6 6 5

HySURE 3 4 5 6 7 8 8 9
NWHFC 3 5 6 6 7 8 7 9

20 dB HySime 3 3 4 4 4 3 4 3
GENE-CH 8 8 5 5 7 4 5 9
GENE-AH 6 8 5 5 7 4 5 6

HySURE 3 4 5 6 7 7 8 9
NWHFC 3 5 5 6 6 7 7 9

15 dB HySime 3 3 3 4 3 2 2 2
GENE-CH 14 7 5 5 7 8 4 5
GENE-AH 10 7 5 5 7 8 4 5

HySURE 3 4 5 6 6 7 8 9
NWHFC 3 5 5 6 6 7 7 9

10 dB HySime 3 3 2 3 3 2 2 2
GENE-CH 7 6 5 5 6 8 3 5
GENE-AH 7 6 5 5 6 6 3 5

niques estimate the true rank for r = 3 for all SNR values.
However, NWHFC fails for all the other cases shown in
the table. Also, in Table V, we can see that the other four
techniques (HySURE, HySime, GENE-CH and GENE-AH)
perform similarly. Also, GENE-CH slightly outperform the
other techniques in this experiment. Overall, by increasing the
rank number and decreasing the signal to noise ratio, the rank
estimation techniques underestimate the true rank.

VI. REAL DATA EXPERIMENTS

In real data experiments, we use two data sets, Indian
Pines [41] and Cuprite [42]. Indian Pines is a widely used
hyperspectral data set captured by the airborne hyperspectral
sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrom-
eter) with 20 m spatial resolution per pixel and 10 nm spectral
resolution per band. The data is composed of 145×145 pixels
in 220 bands. Cuprite is also an AVIRIS data set composed
of 512×614 pixels in 224 spectral bands with 10 nm spectral
resolution per band. Here, Indian Pines is used for both model
selection and rank selection and Cuprite is only used for the
rank selection experiment.
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TABLE IV
HYPERSPECTRAL RANK SELECTION USING FIVE TECHNIQUES (HYSURE,
NWHFC, HYSIME, GENE-CH AND GENE-AH) APPLIED ON SIMULATED

DATA SET 2 WHEN η = 1/18, FOR SNR= 10, 15, 20, 25, 35 AND 50, IN
DECIBEL AND r= 3, 5, 10, 15, 20 AND 30. THE CORRECT RANK

ESTIMATIONS ARE SHOWN BY BOLD NUMBERS. THE RESULTS ARE
OBTAINED BY TAKING THE MEDIAN OVER 10 EXPERIMENTS.

SNR Method r=3 r=5 r=10 r=15 r=20 r=30

HySURE 3 5 10 15 20 30
NWHFC 16 33 18 30 24 25

50 dB HySime 3 5 10 15 19 28
GENE-CH 3 5 11 19 29 0
GENE-AH 3 5 10 16 22 34

HySURE 3 5 10 15 20 30
NWHFC 7 21 9 20 10 15

35 dB HySime 3 5 10 14 18 24
GENE-CH 3 6 15 0 0 0
GENE-AH 3 6 12 24 33 45

HySURE 3 5 10 15 20 30
NWHFC 8 13 7 16 9 12

25 dB HySime 3 5 10 14 13 18
GENE-CH 3 7 26 0 0 0
GENE-AH 3 9 20 34 38 47

HySURE 3 5 10 15 20 30
NWHFC 5 10 7 14 7 11

20 dB HySime 3 5 9 11 10 14
GENE-CH 3 8 27 0 0 0
GENE-AH 3 8 19 37 30 46

HySURE 3 5 10 15 20 30
NWHFC 5 9 7 12 6 12

15 dB HySime 3 5 6 9 7 9
GENE-CH 4 9 32 0 40 0
GENE-AH 4 7 20 38 29 36

HySURE 3 5 10 15 20 30
NWHFC 3 8 7 11 5 11

10 dB HySime 3 5 5 7 6 7
GENE-CH 6 8 22 0 27 0
GENE-AH 5 7 21 38 30 27

A. Hyperspectral Model Selection Using SURE

Fig. 7 compares the SURE values for models (1-5) as
a function of the tuning parameter, λ. It can be seen that,
SURE selects λ = 0 for model (3), and model (5) has the
lowest SURE value for Indian Pines compared to the other
four full-rank models. Among the wavelet based models (1-3)
the spectral-spatial wavelet-based model (1) outperforms the
spatial model (2) and the spectral model (3).

Also from Fig. 7, it can be seen that model (4), in which the
unknown signal is modeled by using the spectral eigenvectors,
and model (5), where a spatial wavelet is used with the spectral
eigenvectors, substantially outperform wavelet-based models
(1-3).

Fig. 8 compares SURE values for the low-rank models (6)
and (7) at their optimum rank w.r.t. the tuning parameter, λ. It
can be seen that, model (7) outperforms model (6) based on
SURE values making it the best model. Also, the SURE values
for the full-rank models (4) and (5) are given which clearly
show the advantages of the low-rank models. Therefore, based
on the results shown, model (7) is the best model among the
candidates.

TABLE V
HYPERSPECTRAL RANK SELECTION USING FIVE TECHNIQUES (HYSURE,
NWHFC, HYSIME, GENE-CH AND GENE-AH) APPLIED ON SIMULATED

DATA SET 2 WHEN η = 0, FOR SNR= 10, 15, 20, 25, 35 AND 50, IN
DECIBEL AND r= 3, 5, 10, 15, 20 AND 30. THE CORRECT RANK

ESTIMATIONS ARE SHOWN BY BOLD NUMBERS. THE RESULTS ARE
OBTAINED BY TAKING THE MEDIAN OVER 10 EXPERIMENTS.

SNR Method r=3 r=5 r=10 r=15 r=20 r=30

HySURE 3 5 10 15 20 29
NWHFC 3 4 5 7 7 6

50 dB HySime 3 5 10 15 19 28
GENE-CH 3 5 10 15 20 30
GENE-AH 3 5 10 15 20 30

HySURE 3 5 10 14 18 24
NWHFC 3 4 5 7 6 3

35 dB HySime 3 5 10 14 18 24
GENE-CH 3 5 10 15 19 27
GENE-AH 3 5 10 15 18 24

HySURE 3 5 9 13 14 18
NWHFC 3 4 5 6 4 3

25 dB HySime 3 5 9 13 13 16
GENE-CH 3 5 10 15 16 21
GENE-AH 3 5 10 14 12 17

HySURE 3 5 9 12 11 14
NWHFC 3 4 4 5 2 3

20 dB HySime 3 5 9 12 9 12
GENE-CH 3 5 9 13 13 16
GENE-AH 3 5 9 11 9 13

HySURE 3 5 8 9 9 10
NWHFC 3 3 4 3 1 2

15 dB HySime 3 5 6 9 7 9
GENE-CH 3 5 7 12 9 12
GENE-AH 3 5 7 8 8 9

HySURE 3 5 6 8 7 7
NWHFC 3 3 3 2 1 2

10 dB HySime 3 5 5 7 6 6
GENE-CH 3 4 6 10 8 8
GENE-AH 3 4 5 7 7 7

B. Hyperspectral Rank Selection Using HySURE

Here, a similar experiment is carried out on real hyperspec-
tral data, Indian Pines, and the performance of HySURE is
shown by a contour plot in Fig. 9. In Fig. 9, a logarithmic scale
of the SURE value is shown for 1 ≤ r ≤ 224 and 0 ≤ λ ≤ 4.
The minimum SURE value, as indicated in the figure, happens
for r = 21 and λ = 0.44 and therefore HySURE selects
r = 21 for Indian Pines.

1) Indian Pines Rank Estimation: Here, we compare
HySURE with HySime, GENE-AH and GENE-CH in terms of
rank selection for Indian Pines data set. Usually, hyperspectral
data sets contain noisy and water absorption bands. These
bands are highly corrupted and usually affect the HSI analysis
techniques which are not robust to the noise power and
therefore they are usually discarded before HSI analysis. For
instance, in [5] and [17] these bands have been removed before
estimating the HSI rank in real experiments. Recently, it was
shown that recovering those corrupted bands can improve
HSI analysis [43]. As we have shown in the previous section
HySURE is highly robust to the noise power since the signal
estimation is done based on a sparsity technique. As a result,
we consider rank selection methods in two different cases.
First, we apply the techniques on the data set containing all



8

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

λ

R̂
λ

 

 

R̂λ-model (1)

R̂λ-model (2)

R̂λ-model (3)

R̂λ-model (4)

R̂λ-model (5)
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Fig. 8. A comparison of SURE for models (4-7) w.r.t. the tuning parameter
λ for Indian Pines.

available bands which are 220 in the case of Indian Pines.
Second, we will also consider the results of rank selection
techniques when the noisy and water absorption bands are
removed from the data sets which leads to 186 bands for
Indian Pines (removed band numbers include 1-4, 103-113,
148-166). Usually, 16 ground truth materials are considered for
the Indian Pines [41]. The rank estimation results are given in
Table VI. In this experiment, PFA is set to 10−8 for NWHFC,
GENE-CH and GENE-AH and rmax is set to 100 and 35 for
GENE-CH and GENE-AH, respectively.

2) Cuprite Rank Estimation: Due to the natural charac-
teristics of Cuprite Nevada scene, Cuprite data set has been
widely used for applications such as rank and endmember
estimation and unmixing. Therefore, we also use this AVIRIS
data set for rank estimation in this subsection. Usually, 25
ground truth materials are considered for the Cuprite data set
[44]. The rank estimation results are given in Table VI for
HySURE, NWHFC, HySime, GENE-CH and GENE-AH, they
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Fig. 9. The contour plot of a logarithmic scale of HySURE w.r.t. the rank
number, r, and the sparsity tuning parameter, λ, for Indian Pines.

are applied on data having all the available bands (206 bands)
and also on data set having 188 bands (after removing noisy
and water absorption bands which includes bands 1-2, 104-
113, 148-167 and 221-224). In this experiment, rmax is set to
100 and 35 for GENE-CH and GENE-AH, respectively.

3) Discussion: It is hard to state the true rank in the case
of real hyperspectral data but we can claim that the minimum
rank number is the number of classes. Therefore, in Table
VI we can see that HySime underestimates and GENE-CH
overestimates the rank number for both data sets. In the case
of Indian Pines, when the data set contains the corrupted bands
NWHFC estimates r = 16 which is the number of classes and
after removing those bands NWHFC estimates r = 17 which
is one more than the number of classes. In the case of Cuprite,
NWHFC underestimates the rank number. The estimated ranks
by GENE-AH and HySURE agree quite well for all cases and
they are estimated by a small difference over the number of
classes. Note that GENE-CH fails to estimate a rank number
in the case of Cuprite when corrupted bands are left in the
data set where shown by zero in the table.

TABLE VI
HYPERSPECTRAL RANK SELECTION BY APPLYING HYSIME, GENEH-CH,

GENE-AH, SPAMARS AND SPAWMARS USING ALL THE BANDS OF
INDIAN PINES AND CUPRITE DATA SETS AND ALSO WHEN NOISY AND

WATER ABSORPTION BANDS ARE REMOVED (LEFT AND RIGHT COLUMN,
RESPECTIVELY).

Indian Pines Cuprite
Number of bands 220 186 206 188
HySURE 21 20 29 29
NWHFC 16 17 22 17
HySime 12 14 3 15
GENE-CH 49 63 0 85
GENE-AH 20 19 28 28

VII. CONCLUSION

In this paper, SURE was proposed as the rank number and
the sparsity tuning parameter selection method for hyperspec-
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tral data. It was shown that SURE can simultaneously select
the rank and sparsity tuning parameters for hyperspectral data.

Based on SURE and a sparse model estimation, a technique
was developed for HSI rank selection called HySURE. The
performance of HySURE was evaluated by using both simu-
lated and real hyperspectral data sets. Additionally, SURE was
suggested for model evaluation in the case of real hyperspec-
tral data and it was shown that low-rank models outperform
the full-rank models.

In experiments, HySURE showed robust performances both
w.r.t. the noise power and the rank number for the simulated
hyperspectral data sets compared to the other rank selection
techniques used in the paper. The developed method was also
used to select the rank of two real data set, Indian Pines and
Cuprite which gave reasonable rank numbers compared to the
number of ground truth material in both cases. The method
was also shown to be robust even when the noisy and water
absorption bands were left in the real data sets.

The developed method, HySURE, is simple, automatic and
easy to apply on a real HSI.

APPENDIX A
DERIVATION OF THE SHRINKAGE FUNCTION

Here, we prove that the shrinkage function is the solution
of the following convex minimization

argmin
Wr

1

2

∥∥Y −AWrM
T
r

∥∥2
F
+
∑
t,k

λ |wtk| ,

where Mr and A are orthogonal. The fidelity term of the
minimization problem can be rewritten as∥∥Y −AWrM

T
r

∥∥2
F
=

tr
((

Y −AWrM
T
r

)T (
Y −AWrM

T
r

))
=

tr
(
YTY

)
− 2tr

(
MrW

T
r ATY

)
+ tr

(
MrW

T
r ATAWrM

T
r

)
where ATA = In and MT

r Mr = Ir (Mr and A are
orthogonal). Thus, by using trace properties and ignoring
irrelevant terms, the minimization problem is given by

argmin
Wr

1

2
tr
(
WT

r Wr

)
− tr

(
BWT

r

)
+
∑
t,k

λ |wtk| , (7)

where B = ATYMr = [btk]. By adding the quadratic term
1
2 tr
(
BTB

)
(which is a constant), the minimization problem

(7) can be written as

argmin
Wr

1

2
‖Wr −B‖2F +

∑
t,k

λ |wtk| ,

which is a separable problem and can be solved pixelwise as

argmin
wtk

1

2
(wtk − btk)2 + λ |wtk| . (8)

Finally, it can be shown that the solution to (8) is given by
the shrinkage function

ŵtk = max (0, |btk| − λ)
btk
|btk|

.

APPENDIX B
DERIVATION OF HYSURE

Here, we derive a SURE formula for the sparse estimation
and the general model

Y = AWrM
T
r + N,

where A = [ait], M = [mjk] and Wr = [wtk]. Assuming
X = AF = [xij ] and F = WrM

T
r = [ftj ] then SURE is

given by [38]

R̂λ,r = ‖E‖2F + 2

p∑
j=1

σ2
j tr

(
∂x̂(j)

∂yT(j)

)
− np,

where E = Y −AŴrM
T
r is the residual and σj = 1 due to

prewhitening. Equivalently, we can write

R̂λ,r = ‖E‖2F + 2

n∑
i=1

p∑
j=1

∂x̂ij
∂yij

− np.

Also, we assume B = ATQ = [btk] and Q = YMr = [qik].
By using the chain rule we have

∂x̂ij
∂yij

=
∂x̂ij

∂f̂tj

∂f̂tj
∂ŵtk

∂ŵtk
∂btk

∂btk
∂qik

∂qik
∂yij

, (9)

where the partial derivatives are given by

∂x̂ij

∂f̂tj
=

∂

∂f̂tj

n∑
t=1

aitf̂tj =

n∑
t=1

ait,

∂f̂tj
∂ŵtk

=
∂

∂ŵtk

r∑
k=1

ŵtkmjk =

r∑
k=1

mjk,

∂ŵtk
∂btk

= I(|btk| > λ),

∂btk
∂qik

=
∂

∂qik

n∑
i=1

aitqik =

n∑
i=1

ait,

∂qik
∂yij

=
∂

∂yij

p∑
j=1

yijmjk =

p∑
j=1

mjk.

By substituting the partial derivatives in (9), SURE is given
by

R̂λ,r = ‖E‖2F +

2

n∑
i=1

p∑
j=1

n∑
t=1

ait

r∑
k=1

mjkI(|btk| > λ)

n∑
i=1

ait

p∑
j=1

mjk − np

= ‖E‖2F + 2

n∑
t=1

n∑
i=1

a2it

r∑
k=1

p∑
j=1

m2
jkI(|btk| > λ)− np.

Since ATA = In and MT
r Mr = Ir then we have

n∑
t=1

n∑
i=1

a2it = 1 and
r∑

k=1

p∑
j=1

m2
jk = 1.

Finally, SURE is given by

R̂λ,r = ‖E‖2F + 2

n∑
t=1

r∑
k=1

I(|btk| > λ)− np. (10)
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The tuning parameters λ and r and the models are selected
corresponding to the minimum of SURE. It is worth to
mention that based on the derivation above, the solution is
also true for the case when A and Mr are low-rank orthogonal
matrices.
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