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Dual-smoothing for Marine Oil Spill Segmentation
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Abstract—We present a novel marine oil spill segmentation
method that characterizes two smoothing modules at the label
level and the pixel level separately. At the label level, we exploit
the rolling guidance filter for smoothing the label cost volumes. It
enables scale-aware labelling and thus alleviates the ambiguous
segmentation that blurs the detailed structures of oil spills. At the
pixel level, we adapt a cooperative model for smoothing higher
order pixel variations, which has the potential of preserving
elongated strips that often arise in oil spills. We integrate the two
smoothing modules operating at different levels into an energy
minimization formulation, which is referred to as dual-smoothing.
The coupling of the two smoothing modules enables an effective
complement to each other such that the specific structures of
oil spills are accurately characterized. We compute the optimal
labelling of the dual-smoothing framework based on graph-cuts.
The proposed dual-smoothing framework is especially effective in
segmenting elongated and detailed oil spills, and the experiment
results demonstrate its advantages over threasholding and graph-
cuts based segmentations.

Index Terms—Oil spill segmentation, Dual-smoothing, Graph-
cuts.

I. INTRODUCTION

O
IL spill disasters and accidents have occurred frequently

in the past decades and caused serious damages to the

affected natural environment and ecosystem [1]. It is thus

particularly helpful if oil spills can be detected at an early

stage. To monitor and detect oil spills through remote sensing

technologies has also been an important research topic [2]. Of

all the popular monitoring platforms, satellite based Synthetic

Aperture Radar (SAR) has played an important role due to

its capacity of all-weather and all-time operation [3][4]. The

key to explore the full potential of SAR for oil spill detection

is to effectively process the obtained images, where image

segmentation is particularly important [5]. The challenges and

difficulties in accurate SAR segmentation come from the facts

that oil spills often exhibit irregular patterns and are exposed

to excessive noise. Elongated strips of oil spill areas are one

class of common shapes in SAR images that are difficult to

preserve in segmentation. Furthermore, the boundaries of oil

spill areas exhibit large variations at different scales, which

may easily cause ambiguities in segmentation.

Though oil spill segmentation has been studied for decades,

the above challenges have not been fully addressed yet in

literature — existing methods tend to apply generic image

segmentation strategies to the oil spill segmentation scenario

but ignore the intrinsic features of oil slicks [6]. For instance,

thresholding is a type of generic segmentation methods and is a

widely used in segmenting SAR images into oil areas and non-

oil areas [7]. This pixel-wise strategy is efficient but extremely

sensitive to noise. One solution to address this disadvantage

is to perform smoothing on the image for denoising and then

threshold the pixel gray values. However, the smoothing filters

tend to reduce the useful detailed structures and noise together

and lead to labelling ambiguity. A more general solution to

improve the robustness of pixel-wise methods is to incorporate

pairwise terms as the denoising procedure and formulate

an integrated objective function for both thresholding and

smoothing. Discrete optimization methods such as graph-cuts

are then used to compute the segmentation. These graph-

cuts strategies are not only effective in segmenting generic

images but also achieve state-of-the-art performance in oil

spill segmentation [8]. However, the pairwise terms in graph-

cuts encourage consistent segmentations by penalizing the

assignment of different labels to neighboring pixels. It can

cause oil strip areas to be cut off or erased in segmentation.

To overcome the drawbacks of the existing methods and

address the challenges in oil spill segmentation, we present

a dual-smoothing framework for accurately segmenting the

oil spills from SAR images. We formulate the oil spill

segmentation as a labelling problem. Our smoothing scheme

operates at the label level and pixel level separately. The label

level smoothing elaborates boundary segmentation at different

scales and the pixel level smoothing favors the shape of long

oil strips. We finally optimize the dual-smoothing framework

based on graph-cuts and obtain the segmentation results.

Polarimetric SAR data [9] have also been broadly exploited

for oil spill detection. In this regard, one notable recent

study in literature is the Bayesian oil spill segmentation

approach[10], which achieves state of the art performance. On

the other hand, we investigate oil spill segmentation mainly

form an image processing point of view and do not consider

the polarimetric information. Therefore, our framework and

the polarization based method may possibly complement each

other in various imagery situations.

II. PRELIMINARIES

For an image with N pixels, let I = {I1, I2, ..., IN} denote

the set of the pixel gray values, with Ii representing the gray

value of the pixel i. We formulate the oil spill segmentation

as a labelling problem. Let X = {x1, x2, ..., xN} denote the

binary variable set where xi is the label assigned to the pixel

i. The segmentation is to assign a label xi ∈ {0, 1} to every

pixel i of an image. In the oil spill segmentation scenario,

if one pixel is assigned the label 0, it is segmented to the oil

area, and if one pixel is assigned the label 1, it is segmented to

the non-oil area. We aim to compute the optimal labelling X

which gives the segmentation results. The labelling problem

is normally formulated in terms of minimizing an energy

function consisting of unary terms and pairwise terms, where

unary terms penalize the inconsistence for assigning a label to
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a pixel and pairwise terms penalize the assignment of different

labels to adjacent pixels. Our contribution is to describe how

to develop new unary terms and pairwise terms which result

in an accurate oil spill segmentation.

III. LABEL LEVEL SMOOTHING

In this section we describe how to perform smoothing on

label cost volumes, which results in a robust unary term. One

cost volume measures the inconsistence between a pixel and

a label. One traditional definition of the cost volume Ẽi(xi)
for assigning label xi ∈ {0, 1} to the pixel i is formulated as

{

Ẽi(0) = − logP (Ii|B)

Ẽi(1) = − logP (Ii|O)
(1)

where O and B indicate oil area and non-oil background

area, respectively. In our work, the probabilities P (Ii|B) and

P (Ii|O) are formulated by Gaussian mixture models (GMMs)

and estimated through Expect-Maximization (EM) algorithms.

The features related to wind speeds, incident angles or oil

types are thus encoded by the GMM model parameters. For

labelling a pixel i, one traditional thresholding method is to

compare the two cost volumes Ẽi(0) and Ẽi(1) for it. If

Ẽi(0) ≤ Ẽi(1), the pixel i is labelled 0, and otherwise it

is labelled 1. The thresholding strategy is straightforward but

very sensitive to noise. To neutralize the noise influence, the

thresholding can be done after pre-smoothing the noisy image.

However, the smoothing on pixels is low-passing filtering

in nature. It blur the high-frequency features such as the

boundaries and details of the oil spill area such that labelling

ambiguity might arise. In contrast to processing the image at

pixel level, we apply smoothing at the label level. Specifically,

we exploit a rolling guided filter to smooth the cost volumes

for both labels 0 and 1 over the whole image pixels. The

detailed operations are described as follows

Ei(xi) =

∑

j:(i,j)∈A exp
(

−
d2

ij

2σ2
s
−

‖Ẽi(xi)−Ẽj(xj)‖
2

2σ2
r

)

Ẽi(xi)

∑

j:(i,j)∈A exp
(

−
d2

ij

2σ2
s
−

‖Ẽi(xi)−Ẽj(xj)‖
2

2σ2
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(2)

where A = {(i, j) | the pixels i and j are spatially adjacent},

dij is the spatial distance between the pixels i and j in the

image. σs and σr denote the standard deviations, controlling

the spatial and range weights, respectively. The new unary

term Ei(xi) is more desirable than (1) in penalizing pixel-label

inconsistence. The reason for its effectiveness is two-fold.

First, rather than processing pixel gray values, the smoothing

in (2) operates on different cost volumes for different labels

separately. Cost volumes for different labels are contrastive

such that they effectively complement each other in preserving

oil spill structures in smoothing. Second, the rolling guided fil-

ter itself is edge and scale aware [11], favoring the preservation

of boundaries and details of oil spills at different scales.

Fig. 1 illustrates some processing results for one small

patch of a SAR image containing oil spills. Fig. 1(a)-1(d)

illustrate the cost volumes before and after being smoothed

by the rolling guided filter. The original cost volumes for

both label 0 and 1 are rather noisy, while the smoothed cost

volumes are comparatively clean. Furthermore, the smoothed

cost volumes contrastively preserve labelling structures. The

oil area in the middle of the patch is not clearly characterized

in the cost volume for label 1 (i.e. background) in Fig. 1(d).

In contrast, it presents dominant saliency in the cost volume

for label 0 (i.e. oil spill area) in Fig. 1(b). The two smoothed

cost volumes complement each other such that the labelling

ambiguity caused by smoothing can be partially neutralized.

IV. PIXEL LEVEL SMOOTHING

In this section, we describe how to develop a pixel level

smoothing term which favors elongated oil strip segmentation.

The processing are based on pairs of adjacent pixels. For a

pair of adjacent pixels (i, j) ∈ A, we define the pairwise term

Eij(xi, xj) as follows

Eij(xi, xj) = |xi − xj | · sij (3)

where sij = exp
(

−|Ii−Ij |
2

2σ2

)

.

The pairwise term (3) penalizes the different labelling be-

tween a pair of adjacent pixels. Therefore, the minimization of

(3), sometimes along with a unary term such as that introduced

in Section III, tends to lead to an over-smoothing effect such

that oil strips might be partially erased in the segmentation.

To overcome the disadvantages of the straightforward smooth-

ing in (3), we exploit a cooperative model to establish the

smoothing term at the pixels level. This is commenced by

grouping the set of adjacent pixel pairs A into K clusters

by performing K-means on the similarity measure sij . The

obtained K classes of pairs of adjacent pixels are denoted as

A1 · · · AK . In this scenario, pixel pairs across the boundary of

a strip are very likely to form clusters because of their close

similarities. Here the individual elements in one subset Ak are

pixel pairs, not individual pixels. To render a more convenient

representation for characterizing individual pixels in Ak rather

than pixel pairs, we use the notation Pk for denoting the set

of pixels involved in Ak . The set Pk is a subset of the image

pixel set. Let X1 · · ·XK denote the label sets for pixels in

the subsets P1 · · · PK , respectively. Specifically, one binary

variable in Xk is the label for one individual pixel in PK . A

higher-order term EPk
(Xk), which incorporates all pairwise

terms associated with Ak, is defined over the set Pk of pixels

EPk
(Xk) = min







∑

(i,j)∈Ak

Eij(xi, xj), T







(4)

where T is a thresholding parameter. The higher-order term

(4) can be thought of being a cooperative model because the

pairwise terms involved in Ak cooperate with each other in

terms of certain operations within the model. In our work, we

use sum and thresholding operation introduced in [12] as the

cooperative model. Other cooperative functions can also be

applied subject to monotonically increasing concavity.

The higher-order term (4) favors the preservation of oil elon-

gated strips in segmentation because it alleviates the penalty

for assigning different labels to adjacent pixel pairs within a

cluster. Even if pixels in a cluster formed by cross boundary

pixel pairs are differently labelled, the minimum of (4) is



3

(a) Oil cost before filtering. (b) Oil cost after filtering. (c) Background cost before filtering. (d) Background cost after filtering.

(e) Original image. (f) Manual segmentation. (g) Graph-cuts. (h) Dual-smoothing.

Fig. 1: Processing results for a small patch of one SAR image containing oil spills.

not greater than the threshold T . Therefore, the minimization

of (4) allows different labels across strip boundary and thus

encourages the preservation of elongated strips of oil spills.

V. DUAL-SMOOTHING FOR SEGMENTATION

The label smoothing presented in Section III and pixel

smoothing presented in Section IV operate at different level

separately. In order to take the advantages of both schemes, we

integrate them into a dual-smoothing framework in terms of

energy minimization. Specifically, we integrate the unary terms

(2) and the higher-order terms (4) into an energy function

E(X) =

N
∑

i=1

Ei(xi) +
∑

Pk

EPk
(Xk) (5)

Different configurations for X = [x1, x2, · · · , xN ] represent

different segmentation results. The minimization of (5) opti-

mizes the penalties encoded by both the label smoothing and

the pixel smoothing and thus shares the merits from these two

levels. However, the energy function (5) contains higher-order

terms, i.e. EPk
(·), and cannot be minimized by using popular

discrete optimization methods such as graph-cuts and belief

propagation, which are just applicable for pairwise cases. To

render an efficient computation, the higher-order term EPk

(4) is reformulated as a quadratic pseudo-boolean function

(QPBF) [12][13] as follows

EPk
(Xk) = T + min

hg ,yij

{
∑

(i,j)∈Ak

βi,j((xi + xj − 2yij)hg

−2(xi + xj)yij + 4yij)− Thg}
(6)

where yij and hg are auxiliary binary variables. After the

QPBF transformation, the higher-order term EPk
(·) is trans-

formed into pairwise terms, i.e. there is no product of variables

in (6) with order greater than pairwise. Substituting (6) into

(4), we have the energy function (4) formulated by the linear

combination of unary terms and pairwise terms. We use the

min-cut/max-flow algorithm [14] to compute the minimization

of the energy function and obtain an optimal labelling config-

uration, resulting in the final oil spill segmentation.

Fig. 1(g) and Fig. 1(h) illustrate the segmentation results

of graph-cuts and dual-smoothing which are obtained through

employing (3) and (4), respectively1. Compared with the

manual segmentation illustrated in Fig. 1(f), the oil strip in

Fig. 1(g) is partially erased, which is caused by the over-

smoothing effect of the pairwise term (3). In contrast, the oil

strip is better preserved in Fig. 1(h), which is benefited from

the advantage of the higher-order term (4) in characterizing

elongated boundaries of oil strips.

VI. EXPERIMENTS

In this section, we experimentally compare the performance

of the proposed dual-smoothing framework with that of the

thresholding method [7] and the graph-cuts method [8] in oil

spill segmentation. We use SAR images with VV polarization

obtained from NOWPAP database 2 in our experiments. The

data are 32-bit floating point based calibrated images. The

experiments are implemented by using Matlab 2013b with an

embedded C++ compiler.

Fig. 2 illustrates the experimental results for oil spills shaped

in long strips or even more complicated patterns. Specifically,

Fig. 2(a) is the original image of oil spill; Fig. 2(b) gives

the manual segmentation of the oil spill areas; Fig. 2(c)

demonstrates the thresholding segmentation result; Fig. 2(d)

shows the segmentation result of graph-cuts; and Fig. 2(e)

is the segmentation result of the proposed dual-smoothing

method. Compared with the manual segmentation of oil spill,

the threshold segmentation result has excessive noise and

poor accuracy. The dual-smoothing method shows superior

performance over the traditional thresholding and graph-cuts

methods in preserving elongated stripes and detailed structures

— a little elongated stripes which is neglected in Fig. 2(d) has

been successfully identified and shown in Fig. 2(e). Fig. 2(f)

illustrates the receiver operating characteristic curves(ROC) of

the three methods, from which we can see that the ROC curve

1The segmentation results in Fig. 1(g) and Fig. 1(h) are both obtained by
incorporating the unary terms (1) and (2), respectively. The integration of the
unary term and higher-order term is introduced in Section V.

2http://cearac.poi.dvo.ru/en/db/

http://cearac.poi.dvo.ru/en/db/
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(a) Original image. (b) Manual segmentation. (c) Threshold segmentation.

(d) Graph-cuts. (e) Dual-smoothing.
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Fig. 2: The segmentation results for one whole SAR image.

of the dual-smoothing framework is much closer to the manual

segmentation.

Fig. 3 shows the experiment results from a SAR image with

an extremely slim oil stripe under random noise. Fig. 3(a) is

the original image; Fig. 3(b) gives the manual segmentation

of oil spill; Figs. 3(c), 3(d) and 3(e) show the results of

thresholding, graph-cuts and dual-smoothing, respectively. It is

clear that the dual-smoothing method outperforms alternative

methods, as evaluated by the ROC curve in Fig. 3(f) where it

has the steepest ROC curve among the three methods.

Fig. 4 demonstrates the experiment results for processing a

SAR image under wave disturbances, which are shaped in a

clear order and not easy to filter out as random noise. Here

we observe that though the dual-smoothing framework in this

orderly disturbed situation does not appear to be as effective

as those in Figs. 2 and 3, it still shows advantage over the two

alternative segmentation methods, especially when the false

alarm rate is low, as shown in Fig. 4(f).

Table 1 gives the segmentation accuracies and precisions

for alternative methods over two hundred patches containing

elongated strips extracted from the satellite SAR images. We

can see that the dual-smoothing framework outperforms the

other two method in both accuracy (
# correctly segmented pixel

# all pixels
) and

precision (
# correctly segmented oil pixels

# oil pixels segmented
) along with their standard

deviations.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a dual-smoothing framework for seg-

menting oil spill areas in SAR images. Theoretical and em-

TABLE I: Accuracy/Precesion/Robustness

Method Thresholding Graph-cuts Dual-smoothing

Accuracy 0.6406±0.1353 0.7623±0.1686 0.8070±0.0819

Precision 0.7847±0.1829 0.7856±0.0940 0.8033±0.0893

pirical studies reveal that our method is especially effective in

segmenting detailed and elongated strips of oil spills. Addi-

tionally, we leave a free parameter T in the higher order term

for tuning. Our study is conducted from an image processing

point of view, and one possible direction for our future work

is to investigate how to involve polarization characterization,

which would effectively complement the visual information.

Furthermore, based on the combination of polarization and

visual information, we will also address more challenging

problems such as the discrimination between oil spill areas and

low wind areas, ship wakes or biogenic slicks for developing

a more general and robust segmentation framework.
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(a) Original image. (b) Manual segmentation. (c) Threshold segmentation.

(d) Graph-cuts. (e) Dual-smoothing.
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(a) Original image. (b) Manual segmentation. (c) Threshold segmentation.

(d) Graph-cuts. (e) Dual-smoothing.
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