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Abstract—For Earth observation data to be useful for a wide
range of land surface applications, a kilometer or finer resolution
is required. Unfortunately, passive microwave observations at low
microwave frequencies (1–10 GHz), already providing important
information on soil moisture and vegetation dynamics, are gener-
ally only available at a resolution of tens of kilometers. This letter
presents a new downscaling method relating L-band radiometer
and C-band radar observations for downscaling purposes. The
data were obtained from two extensive airborne field experiments
across a 80 000-km2 catchment in south-eastern Australia and
coinciding Envisat Advanced Synthetic Aperture Radar acqui-
sitions, performed during the Austral summer and spring of
2010. The novel approach of this study is in the downscaling of
coarse-scale emissivities as observed by the radiometer with a new
interpretation of the change detection methodology for the radar
signal to relate the spatiotemporal changes of those two types
of observations at 1 km. It is shown that, for most land surface
conditions, a good spatial representation at high resolution is
achieved, without considering land surface specific parameteriza-
tions, which is promising for using very high resolution radar data
from the Sentinel-1 platform for downscaling of passive microwave
data from current missions, such as National Aeronautics and
Space Administration’s Soil Moisture Active Passive and Euro-
pean Space Agency’s SMOS.

Index Terms—Advanced Synthetic Aperture Radar (ASAR),
downscaling, microwave radiometry, remote sensing, Sentinel-1,
Soil Moisture Active Passive (SMAP).

I. INTRODUCTION

G LOBAL water resource management is an important as-
pect for meeting the growing demands for fresh water due

to diverse types of anthropogenic pressure on this resource [1].
In addition, information on the hydric state of the land surface
is important for other applications, such as environmental risk
assessments (e.g., floods and fires), numerical weather pre-
diction, and agriculture and ecosystem management. Satellite
microwave observations have been shown to be sensitive to sur-
face soil moisture variations [2]. To observe soil moisture glob-
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ally, a number of microwave satellite missions were designed
to observe this land surface variable at a relatively high rate
of every 2–3 days. In particular, the European Space Agency’s
(ESA) Soil Moisture and Ocean Salinity mission (SMOS,
launched in November 2009 [3]), the National Aeronautics and
Space Administration’s Soil Moisture Active Passive (SMAP,
launched in January 2015 [4]), and the Japan Aerospace Ex-
ploration Agency (JAXA) Global Climate Observation Mission
for Water (GCOM-W1) satellite [5] with the second Advanced
Scanning Microwave Radiometer (AMSR-2) onboard were
specifically designed to observe soil moisture as one of their ob-
jectives. In addition, other sensors, such as the Advanced Scat-
terometer (ASCAT, launched onboard Metop-A (October 2006)
and Metop-B (October 2012) [6]), allow deriving soil moisture
from its active microwave backscatter observations. Similarly,
high-resolution active microwave missions have also seen soil
moisture products being developed, e.g., from ESA’s Advanced
Synthetic Aperture Radar (ASAR; launched onboard Envisat
(March 2002) and operational 2004–2011 [7]), or JAXA’s
ALOS-PALSAR (ALOS-1 (in orbit 2006–2011 [8]). However,
those products are often found to be relatively noisy and thus
have a lower accuracy than the low-resolution missions [9].

For the purpose of numerical weather predictions, low-
resolution, yet relatively accurate, observations are often suf-
ficient. However, for water resource management applications
(e.g., irrigation), as well as natural hazard predictions, a higher
spatial resolution is required. To circumvent the main shortcom-
ing of these microwave missions, i.e., mainly the relatively low
spatial resolution of tens of kilometers in the passive and the
high noise in the active data, the design of SMAP integrated
both a radiometer and a radar [4], with a final soil moisture
product of 9-km resolution, based on downscaling the passive
soil moisture product using the active radar data to provide
the spatial variation information [10], [11]. The approach of
SMAP was to carry both active and passive sensors, allowing
the use of temporally collocated data sets. The combination
of radiometer and higher-resolution radar was unique, until the
end of operations of the radar instrument in July 2015. The end
of this part of the mission requires new methods of downscaling
coarse resolution data.

As an alternative to downscaling using collocated microwave
data sets, various disaggregation approaches based on optical
imagery have been developed to obtain 1-km-resolution data
for SMOS [12], [13]. The disadvantage of such methodologies
is that optical and thermal data can be difficult to obtain due
to frequent cloud cover, particularly in temperate regions. Con-
sequently, merging existing high-resolution active microwave
data sets with the low-resolution passive microwave observa-
tions needs to be considered as an alternative.
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The launch of ESA’s Sentinel-1A satellite in 2014 (and its
twin in 2016) opens up an excellent opportunity to develop
weather-independent, high-resolution soil moisture products
from low-resolution passive missions. Operating at C-band,
Sentinel-1 delivers very high resolution data (of up to 5 × 20 m)
with its final overpass repeat rate of 3–12 days depending on the
region, which is comparable to the ASAR GM data availability
of 3–8 days. In order to allow for the implementation of
a robust downscaling methodology, the relationship between
C-band backscatter and L-band radiometer data needs to be
investigated first. The present paper uses data obtained from
Envisat’s ASAR to study its relationship with high-resolution
passive L-band observations acquired during the Australian
Airborne Cal/Val Experiments for SMOS (AACES [14]). While
[15] already reported a good correlation between similar data
sets over the central-Australian arid zone, transferability of
the correlation to broader categories of terrain and surface
conditions still needs to be investigated.

The regression-based merging methodology developed for
SMAP in [10] is adapted here. Apart from only considering
L-band emissions, the direct comparison of brightness temper-
ature and backscatter is problematic because it fails to account
for the significant influence of land surface temperatures on
brightness temperatures, which is absent in backscatter obser-
vations. This problem was also identified in [16] where the rela-
tionship between active and passive observations were analysed
for the Aquarius mission. As in [16], the regression parameters
in this paper are derived from passive microwave emissivities
and the change detection signal of the radar backscatter for
a subset of the AACES-1 data. The disaggregation scheme is
then evaluated using high-resolution airborne radiometer data
acquired during AACES-2.

II. DATA SETS

A. Airborne Radiometer Data

The data sets used in this study are airborne L-band passive
microwave observations collected during the AACES cam-
paigns in south-eastern Australia [14]. The campaigns were
conducted in the Austral summer (January–February 2010) and
winter (September 2010) seasons. The Polarimetric L-band
Microwave Radiometer (PLMR) was flown at an altitude of
10 000 ft (3000 m) above ground, resulting in an average 3 dB
footprint of ∼1 km, and collecting data across most parts of
the Murrumbidgee River catchment (Fig. 1). Operationally, the
data are normalised to a 38◦ reference incidence angle [17] to
remove angular effects. The introduced additional error in the
PLMR data due to this normalization procedure was shown
to be in the order of 2.6 K for this data set [18], which will
introduce uncertainties to the emissivities of less than 1% (for
a reference land surface temperature of 280 K or more). During
AACES-1, ten patches of ∼50 km × 100 km were covered
across a five-week period. The campaign started in very hot
and dry conditions and finished with very wet (∼200 mm
precipitation over three days) and relatively cool conditions
towards the end, due to a change in the continental weather pat-
terns during this period, rather than spatially or topographically
induced variations in the surface temperature. During the winter
campaign, only the five central patches were covered, excluding
the homogeneous/semi-arid western parts and the mountainous/

Fig. 1. Spatial overview of the individual flight patches. Black lines indicate
the areas used for the regression model (only taken from the summer cam-
paign), and red lines are for the validation areas (only taken from the winter
campaign), refer to Table I for a detailed overview. The blue outline indicates
the Murrumbidgee River catchment over a Landsat composite image.

urbanised eastern section of the catchment. The second cam-
paign was marked by wet/cool conditions typical of a temperate
winter and significantly higher levels of standing vegetation
cover. More detailed information is presented in [14].

B. Satellite Radar Data

ASAR was operated on board the Envisat satellite from
2004 until 2011. Over Australia, SAR data were mainly ac-
quired in its Global Mode (GM), resulting in overpasses every
3–8 days over the AACES patches within the Murrumbidgee
River catchment. Those data are available at 1-km resolution
and are normalised to a 30◦ reference incidence angle and the
horizontally polarized (HH) data were chosen for this study
[19], as the ASAR GM data were generally provided in that
polarization [7]. As the AACES campaigns were not designed
to temporally collocate flights with ASAR, the closest overpass
time to the PLMR acquisitions was chosen. In case of signifi-
cant precipitation events, the closest date without precipitation
interference was chosen.

III. METHODOLOGY

A. Data Preprocessing

The ultimate goal of this proof-of-concept study is the down-
scaling of SMOS and SMAP passive brightness temperature
data, which are provided at incidence angles of 42.5◦ and 40◦,
respectively, for their gridded higher level products. To study
the possibility of a simple and directly applicable downscaling
approach, both PLMR and ASAR data were not further cor-
rected for their respective incidence angles, with the PLMR
data being assumed to be representative of the SMOS/SMAP
data when upscaled to 50× 50 km2. A full description of
the operational PLMR processing chain (including correction
for temperature drifts during the flights) is found in [17]. All
corrections were done at the native resolutions, i.e., 500 m
for ASAR and 1km for PLMR. In order to reduce the noise
levels, in particular the speckle noise in the ASAR observations,
both data sets were aggregated to 2 km on a regular reference
grid, using linear averaging with a simple nearest-neighbour
approach. An aggregation to 4 km as suggested by [7] would
have meant losing too much valuable spatial information.
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B. Downscaling Approach

To facilitate the transferability of the presented approach the
approach developed for SMAP and presented in [10] and [11]
was adapted, where

Tbp(Fj) = Tbp(C) + β(C)× [σpp(Fj)− σpp(C)] (1)

with C and F indicate coarse (50 km) and fine (2 km) resolution
data; Tbp(Fj) is the downscaled brightness temperature for
a high-resolution pixel at location j; Tbp(C) is the observed
brightness temperature at the coarse scale; β(C) is the regres-
sion slope between active and passive observations at the coarse
scale; σpp(Fj) the radar backscatter for the high-resolution
pixel at j; and σpp(C) the aggregated backscatter data, up-
scaled to the resolution of the low-resolution radiometer C.
The subscript p refers to the polarization. Reference [11] also
introduced a variable to implicitly consider vegetation condi-
tions, through the use of the cross-polarised data of SMAP.
As ASAR GM only rarely provided coinciding cross-polarised
data, and Sentinel-1 is likely to only collect full acquisitions
across selected regions of the world, it was necessary to employ
the original algorithm of [10] to be globally applicable.

Other than in [20], the parameters here were developed for
data mainly collected over patches separate to those chosen for
the validation. Here, several changes were made to the SMAP
approach: i) the development of the regression parameter is
conducted at the 2-km resolution instead of the coarse scale
to obtain sufficient data points for the regression, and ii) the
εp and sensitivity Δσ were used in place of Tb and σ◦. The
reasons behind those changes are that brightness temperatures
are directly affected by the effective surface temperatures and
temperature drifts can be significant in this area (e.g., over 30K
as experienced during the AACES-1 campaign). On the other
hand, surface temperature drifts play an insignificant role in
backscatter observations, while being more strongly affected by
surface roughness. For the latter, ASAR data were corrected for
their pixel specific dry reference, because of the non-negligent
background bias due to temporally persistent roughness and
vegetation that may not be seen in passive emissivities in the
same way, but appear as a residual in the dry reference. Equa-
tion (1) is therefore reformulated to include the new definitions:

εp(Fj) = εp(C) + β(C) × [Δσ(Fj)−Δσ(C)] (2)

where

εp(Fj) =
Tbp(Fj)

Ts
(3)

Δσ(Fj) =σp(Fj)− σp,dryref
(Fj) (4)

and Ts is the coarse-scale (2/3× 1/2◦) modeled surface tem-
perature taken from Modern Era Retrospective-Analysis for
Research and Applications (MERRA) Land reanalysis [21].
A further assumption made is that β(Fj) = β(C), which is
similarly used in [10].

For the determination of the regression slope, the seven outer
patches (1–4 and 8–10) of AACES-1 were chosen (Fig. 1) as
they encompass the full range of soil moisture and general
surface conditions (topography, vegetation, water bodies, etc.)
found within the catchment. To validate the regression, data
acquired over patches 4–8 during AACES-2 in the following
winter were used, making the validation data set both spatially

Fig. 2. Scatter plot including the three linear regression functions. The error
bars show the assumed errors in the emissivity (4 K error in the brightness
temperature) and backscatter (0.3 dB) data. The MERRA soil temperature
uncertainty was assumed to be 3 K. For better visualization, only one in ten
data points was plotted.

and temporally independent. While Tbp(Fj) and Δσ(Fj) were
computed at 2-km resolution, Tbp(C) and Δσ(C) were the
spatially aggregated brightness temperature and backscatter
data, linearly averaged across each half patch or SMOS/SMAP
footprint (i.e., 50 km × 50 km).

C. Regression

The regression parameter β(Fj) was obtained through linear
regression between εp(Fj) and Δσ(Fj), making use of two
different approaches to determine a line of best fit, depending
on the purpose of the analysis. First is the standard least-squares
approach that yields a regression model for predicting εp(Fj)
from a given value of Δσ(Fj). However, as the brightness
temperature and backscatter observations are associated with
measurement errors or uncertainties, this model can neither be
used for making a reverse inference of Δσ(Fj) based on εp(Fj)
nor transferred to other pairs of measuring systems with dis-
tinctive measurement errors. To make the reverse inference, the
standard least-squares method can be performed with εp(Fj)
as the regressor. In contrast, the second approach based on an
error-in-variable (EIV) model accounts for these measurement
uncertainties. One such implementation is the York regression
that regards (2) as an error-free model, but the regression is
performed between the data pairs

Y = εp(Fj) + Eε (5)
X =Δσ(Fj) + Eσ (6)

with zero-mean additive Gaussian errors Eε and Eσ explicitly
added to allow for the interpretation of εp and Δσ as error-
free variables. York’s line of best fit and the parameter β(Fj)
are then determined by minimizing its weighted distances from
the data points (see (7) and (8), shown at the bottom of the
next page). This study implements the York regression using
known uncertainty estimates, namely, the observational errors
in the backscatter and brightness temperature observations,
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Fig. 3. Density plots showing the relationships between the downscaled
(vertical axes) and original emissivities (ε) derived from PLMR at 2 km, based
on the regression parameter of the three methods. The spatial plots show the
PLMR (top) and downscaled (middle) emissivities using the OLS (forward)
method and their difference (downscaled minus observed) for the five patches
of AACES-2.

which were set to 0.3 dB [19] and 4 K [3], respectively, and
3 K for the land surface model soil temperature [22].

IV. RESULTS AND DISCUSSION

Three distinctly different slope parameters are retrieved from
the regression (Fig. 2), with the standard ordinary least-squares
(OLS-forward) regression providing the best solution with an
R2 of 0.42 and an RMSD of 0.069 for the calibration patches.
The OLS-forward method results in a relatively constrained
range of emissivity values such that the ASAR end-member
values match best. The constrained range of OLS-forward
predictions can also be seen in Fig. 3. Using the aforementioned
slope parameters for (2) yields emissivities for patches 4–8 dur-
ing the winter campaign resulting in RMSDs in the emissivity
estimation of 0.052 (OLS-forward), 0.074 (York), and 0.110
(OLS-reverse) when compared to their reference values. Using
the standard configuration of the L-MEB radiative transfer
model [23] for a bare soil with an average surface roughness
and assumed effective land surface temperature of 280 K, this
uncertainty in the estimation of the emissivity translates into
0.06 m3/m3 soil moisture content for the standard least-square
solution, which is comparable to or even better than other
SMOS downscaling studies (e.g., [13]).

Fig. 3 shows the relationship of PLMR-derived and down-
scaled emissivities of the three regression methods (scatter
plots), as well as the spatial representation for the forward
least-squares method, leading to a downscaled product that is
comparable to the original data (spatial plots). No bias is to be
reported here as the presented downscaling method preserves
the spatial mean, and the mean emissivities were calculated
from PLMR data themselves.

Some artifacts, such as the significant overestimation of
the emissivities by about 0.05 along the flood plains of the
Murrumbidgee River (showing as a red band in the difference
plots, running southeast to northwest in the downscaled emis-
sivities), can be mainly attributed to the differences in the type
of response between active and passive measurements. Other
locations with significant overestimations of the emissivities are
found in the south of the second patch, the east of the fourth
patch, and the north-east of the last patch. In the first instance,
this is due to a water-logged area (as evidenced by the very low
observed emissivities), the city of Wagga Wagga, as well as an
area with an increasingly steep terrain. All of these areas are not
well covered by the regression method as the calibration data set
largely did not include such areas. Interestingly, there is no clear
pattern that can be associated with the forests within the catch-
ment. As the systematic errors for the measurements due to
land surface conditions are generalized for all vegetation types,
such behavior was expected, and it suggests that a better handle
on the observational error relationships needs to be developed
to represent the diverse vegetation within a 50 km × 50 km
footprint. Moreover, for dry areas, the forward regression model
(Fig. 2) is likely to work well for less vegetated areas than areas
of high roughness, such as forests, where values with high-Δσ
values may lead to an overestimation of the emissivities.

Given that the data acquisitions were not coinciding, the low
resolution of the land surface temperature field from MERRA-L,
as well as a number of very strong precipitation events that oc-
curred during AACES-1, this result is promising, given the good
correlations for the forward least-square method of −0.649
(Pearson) and 0.528 (Spearman rank). It can now be argued that
active C-band backscatter data may be used as a proxy to pro-
vide spatially high-resolution information on the soil moisture
variability within a coarse-scale passive microwave pixel.

Some caveats have to be discussed at this point. First, the
slope parameter in [10] assumes a linear and constant rela-
tionship between both brightness temperature and backscatter
(or emissivity and sensitivity in the present study). This was
already shown to be a source of error by [20], where it was
suggested for the slope parameter to be derived individually for
different vegetation covers. As such, this also partly contributes
to the deficiency of the linear model to explain 58% of the
variability (given R2 = 0.42) in the data. Moreover, the rela-
tionship between L-band brightness temperatures and C-band
backscatter is likely to be nonlinear [15]. To simulate the SMAP
approach, this linearity was assumed here, but it will potentially
have to be revised. The obvious nonlinear behavior is already
seen for the dry and hot period (high emissivities and low
sensitivities), where a small range of emissivity is found, while
the sensitivity range is relatively large (being similar to wetter
conditions). In addition, the acquisition of the data for patch
8 during AACES-1 was preceded by precipitation with locally
totaling 180 mm over two successive days, potentially biasing

λ =
var(Eε)

var(Eσ)
(7)

β =
var(Y )− λvar(X) +

√
[var(Y )− λvar(X)]2 + 4λcov(X,Y )2

2 cov(X,Y )
(8)
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the regression. At 2-km resolution, ASAR GM data are also
still relatively noisy [7], and the assumption of instrument and
model errors may have to be revisited. However, Sentinel-1
has a significantly lower radiometric noise (or higher signal-
to-noise ratio) compared to ASAR, which is expected to reduce
the currently apparent spatial noise. Finally, uncertainties in the
accuracy of the precipitation events, the chosen soil temperature
reference, and differences in dates of acquisition (patches 5–7
have the same ASAR data as a reference due to acquisitions
closer to airborne data collections) may add additional levels
of uncertainty. However, the latter may be irrelevant once data
obtained from Sentinel-1 are used, allowing a more timely
combination of the passive and active data sets.

V. CONCLUSION

This letter has presented a novel approach to synergistically
use C-band SAR and L-band radiometer data to achieve a
high-resolution (1–2 km) brightness temperature product (by
means of downscaling the emissivity itself), irrespective of
the weather conditions. The presented methodology uses the
emissivities (radiometer) and sensitivities (radar) to remove
surface temperature effects and to better retain the vegetation
information in the downscaled product.

Making use of two field campaigns conducted in south-
eastern Australia, the downscaling approach resulted in emissiv-
ity uncertainties ranging from 0.052 to 0.110, depending on the
type of regression chosen, which translates to 0.06–0.12 m3/m3

errors in the soil moisture retrieval under standard conditions,
which is comparable to other downscaling methods. This un-
derlines the value of the Sentinel-1 mission in support of other
microwave missions employing lower resolution radiometers,
such as the recent SMOS, SMAP, and AMSR-2.

As this is a proof-of-concept study and a number of assump-
tions were made to simplify the complex relationship between
active and passive microwave emissions across different bands,
future work needs to revolve around understanding the influ-
ence of the instrument errors, as well as the distribution of
the error structures themselves and the role of noncoinciding
data acquisitions, errors due to spatial variability mismatching,
and simple biases, or the likely effect of vegetation type on the
downscaling algorithm. A better understanding of those errors
or uncertainties will eventually allow to improve the regression
model and to reduce the resulting soil moisture retrieval errors.
In addition, different regression types should be tested taking
into account the probable nonlinearity of those data sets, partic-
ularly during extreme conditions (dry or very wet/saline), and
eventually Sentinel-1 data to apply this approach operationally
using existing global soil moisture data sets.
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