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Abstract— In this letter, we establish two sampling schemes to 
select training and test sets for supervised classification. We do 
this in order to investigate whether estimated generalization 
capabilities of learned models can be positively biased from the 
usage of spatial features. Numerous spatial features impose 
homogeneity constraints on the image data, whereby a spatially 
connected set of image elements is attributed identical feature 
values. In addition to a frequent occurrence of intrinsic spatial 
autocorrelation, this leads to extrinsic spatial autocorrelation 
with respect to the image data. The first sampling scheme follows 
a spatially random partitioning into training and test sets. In 
contrast to that, the second strategy implements a spatially 
disjoint partitioning, which considers in particular topological 
constraints that arise from the deployment of spatial features. 
Experimental results are obtained from multi- and hyperspectral 
acquisitions over urban environments. They underline that a 
large share of the differences between estimated generalization 
capabilities obtained with the spatially disjoint and non-disjoint 
sampling strategy can be attributed to the use of spatial features, 
whereby differences increase with an increasing size of the spatial 
neighborhood considered for computing a spatial feature. This 
stresses the necessity of a proper spatial sampling scheme for 
model evaluation to avoid overoptimistic model assessments.  
 

Index Terms— Supervised Classification, Spatial Features, 
Morphological Profiles, Random Forests, Model Generalization 
Capability, Multispectral Images, Hyperspectral Images. 
 

I. INTRODUCTION 

The development of methods for the derivation of thematic 
information such as land use / land cover (LULC) classes from 
remote sensing imagery has been a major research subject of 
the remote sensing community in the past decades. Thereby, 
varying ground sampling distances of individual sensors 
induced the development of diverse methodological 
approaches. In this work, we focus on situations where the 
ground sampling distance is much smaller than the objects of 
interest of a scene. This situation can occur in various remote 
sensing data, depending on the relation of ground sampling 
distance and corresponding size of the objects of interest. 
Nowadays, especially data from sensors with a very high 
spatial resolution such as WorldView I-III, or GeoEye, among 
others, feature this situation. Thereby, the high spatial 
resolution can induce high intra-class and low inter-class 
variability in particular in heterogeneous environments such as 
urban areas. This can decrease accuracy of the classification 
model and induce the well-known salt and pepper effect [1]. 

One of the most prominent ways to cope with this 
problem and ensure coherent spatial regularization is to 
compute features which account for the neighborhood of an 
individual image element, i.e., spatial features. Examples of 
such kinds of features are morphological profiles (MPs) (i.e., 
morphological transformations of the image data based on the 
sequential application of a structuring element (SE) with 
increasing size [2], [3]), texture filters [4], variation indices 
[5], and multi-level object-based image analysis approaches 
[6], [7], among others. Thereby, a considerable number of 
spatial features impose homogeneity constraints on the image 
data and attribute identical feature values to image elements in 
close spatial vicinity. Popular examples are MPs, which assign 
minimum or maximum values within a defined neighborhood 
to an individual image element.   

Subsequently, those spatial features are fed to a 
learning machine (e.g., Support Vector Machine or Random 
Forest). There, a popular strategy is to learn the model and 
also optimize its hyperparameters based on a training set using 
labeled samples of relevant thematic classes (relying for 
instance on a k-fold cross-validation for hyperparameter 
tuning), and estimate the generalization capabilities of a 
learned model for unseen data based on an independent test set 
(i.e., holdout) [8]. Thereby, numerous studies do not strictly 
take topological (neighborhood) relations of the image 
elements (here pixels) of training and test set into account. In 
this letter, we investigate whether this can lead to substantially 
biased estimates of the generalization capabilities of learned 
models – especially when relying on spatial features for 
classification. This can be related to the fact that nearby image 
elements tend to show a high degree of similarity in the 
feature space not only because of the frequent presence of 
intrinsic spatial autocorrelation (i.e., image elements nearby 
tend to be more similar than image elements farer apart [9]) 
but also heavily due to the aforementioned homogeneity 
constraints, which are imposed on the image by certain spatial 
features. This can be interpreted as extrinsic spatial 
autocorrelation, where a spatially connected set of image 
elements is attributed identical feature values.  

Although numerous studies establish efficient sample 
selection strategies, recent attempts aim to specifically account 
for spatial autocorrelation in accuracy assessment for 
supervised classification. Brenning [10] proposes spatial 
cross-validation and bootstrap to obtain performance estimates 
that are not biased by spatial autocorrelation. In its presence, 
an overfitted model cannot be distinguished from a model with 
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Fig. 3. Results for the image data of Munich, Cologne, and Pavia. Model generalization capabilities are quantified by means of κ stat
and �� measure as a function of the size of the SE, and number of labeled samples of training set and test set for the spatially 
non-disjoint sampling strategy.
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ensure that differences of the spatially disjoint and non-
disjoint selection strategy are not influenced by varying sizes 
of the considered spatial neighborhood). 

IV. EXPERIMENTAL RESULTS  

Experimental results obtained for the image data of Munich, 
Cologne, and Pavia are visualized in Fig. 3 as a function of 
the number of labeled samples of training and test set, and the 
size of the spatial neighborhood considered for both the 
spatially disjoint and non-disjoint sampling strategy. First of 
all, it can be noted that overall accuracy levels vary between 
the different data sets. The highest levels with the smallest 
variations in terms of numeric values of the considered 
accuracy measures are obtained from the Pavia data set, 
whereas obtaining the correct thematic classes is most 
challenging for the Cologne data set.  

Within an individual plot (i.e., for a fixed number of 
test samples), generally, an increasing number of training 
samples allows for an increasing level of accuracy. This is an 
intuitive result since more prior knowledge is encoded in the 
models. However, estimated generalization capabilities are 
distinctively higher when partitioning non-spatially compared 
to the spatially disjoint strategy. Additionally we find those 
differences increase with an increasing number of training 
samples. This can be related to an increased number of 
samples lying within an area affected by spatial 
autocorrelation. Likewise, differences between the spatially 
disjoint and non-disjoint sampling strategy also increase with 
an increasing size of the SE (i.e., size of the spatial 
neighborhood considered for a spatial feature). This 
observation can be attributed to enlarged areas, which induce 
spatial autocorrelation and underline the significant influence 
of the use of spatial features. In particular, we observe for our 
data sets, that those differences can reach up to 5.2 percentage 
points (p.p.) in κ statistic and 3.2 p.p. in �� measure. Thereby, 
it can be noted that a slight decrease of accuracy especially for 
the spatially disjoint strategy is observable between individual 
plots (i.e., for an increasing number of test samples) for a data 
set. This can be related to the circumstance that few areas for 
selecting training samples are left when a large number of test 
samples is drawn in relation to the size of the image data. This 
can lead to undersampling if the image data is highly 
heterogeneous. Nevertheless, this is for instance hardly 
observable for the Munich data set, which is the most 
homogeneous data set considered. There, differences in κ and 
�� reach up to 4.2 p.p. and 2.6 p.p., respectively, which 
unambiguously underlines the substantial influence of spatial 
autocorrelation especially when using spatial features. 

V. CONCLUSION  

In this letter, we investigated whether estimated generalization 
capabilities of supervised classification models are positively 
biased without a proper spatial sampling scheme that 
considers topological relations in establishing training and test 
sets. Particular emphasis was on the use of spatial features 
(i.e., MPs) for classification. We reasoned that those spatial 
features induce extrinsic spatial autocorrelation in addition to 
intrinsic spatial autocorrelation due to homogeneity 
constraints, which are imposed on the image data, and the 

corresponding attribution of identical feature values to 
multiple image elements in close spatial proximity. To test this 
conjecture, we followed two different strategies for 
partitioning into training and test sets. The first strategy 
established a spatially random selection, whereas the second 
strategy implements a spatially disjoint selection considering 
also topological constraints arising from the application of 
spatial features. 

Experimental results were obtained from multi- and 
hyperspectral acquisitions over varying urban environments. 
Spatial features were computed based on the concept of MPs, 
and models were learned within RF architecture. Our results 
point out that a large share of the differences between the 
accuracies obtained with the spatially disjoint and non-disjoint 
sampling strategies can be attributed to the use of spatial 
features. Differences increase with an increasing size of the 
spatial neighborhood considered for computing a spatial 
feature. This work underlines the necessity of appropriate 
strategies for establishing training and test areas in a spatially 
disjoint way and, thus, learning models that are not influenced 
by intrinsic or extrinsic spatial autocorrelation. Since different 
classifiers tend to show different degrees of (over/under)fitting 
the training data, future research should also investigate 
additional classifiers in order to generalize our findings. 
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