Abstract:
This letter summarizes a special stream of the IEEE Geoscience and Remote Sensing Letters devoted to understanding the heterogeneity in soil moisture, evapotranspiration,...Show MoreMetadata
Abstract:
This letter summarizes a special stream of the IEEE Geoscience and Remote Sensing Letters devoted to understanding the heterogeneity in soil moisture, evapotranspiration, and other related ecohydrological variables based on multiscale observations from satellite-based and airborne remote sensors, a flux observation matrix, and an ecohydrological wireless sensor network in the Heihe Watershed Allied Telemetry Experimental Research project. Scaling and uncertainty are the key issues in the remote-sensing research community, especially regarding the heterogeneous land surface. However, a lack of understanding and an inadequate theoretical basis impede the development and innovation of forward radiative transfer models, as well as the quantitative retrieval and validation of remote-sensing products. We summarize the prior considerations regarding surface heterogeneity research and report the main outcomes and contributions of this special stream. The highlights of this stream are related to spatial sampling, upscaling, uncertainty analysis, the validation of remote-sensing products, and accounting for heterogeneity in remote-sensing models.
Published in: IEEE Geoscience and Remote Sensing Letters ( Volume: 14, Issue: 11, November 2017)