Abstract:
To improve traffic safety, millimeter wave radars have been widely used for sensing traffic environment. As radars also operate on a narrow small road and in the same fre...Show MoreMetadata
Abstract:
To improve traffic safety, millimeter wave radars have been widely used for sensing traffic environment. As radars also operate on a narrow small road and in the same frequency band, mutual interference between different automotive radars that arises cannot be easily reduced by frequency or polarization diversity. This letter presents novel orthogonal noise waveforms to reduce such neighboring interferences. First, the spectral density distribution function of the proposed waveforms is defined by using an optimized Kaiser function. Subsequently, the phases of the noise waveforms are formulated as a problem of phase retrieval and are explored. Thanks to nonuniqueness solutions, the proposed method generates the orthogonal signals with a good random phase diversity. The proposed method was tested on a representative scenario for interference reduction. The experimental results show that the proposed method can produce visually convincing radar images, and the signal-to-interference and noise ratio is better than the existing methods.
Published in: IEEE Geoscience and Remote Sensing Letters ( Volume: 15, Issue: 1, January 2018)