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Warped Gaussian Processes in Remote Sensing
Parameter Estimation and Causal Inference

Anna Mateo-Sanchis, Jordi Muñoz-Marı́, Adrián Pérez-Suay, Gustau Camps-Valls

Abstract—This paper introduces warped Gaussian processes
(WGP) regression in remote sensing applications. WGP models
output observations as a parametric nonlinear transformation of
a GP. The parameters of such prior model are then learned via
standard maximum likelihood. We show the good performance
of the proposed model for the estimation of oceanic chlorophyll
content from multispectral data, vegetation parameters (chloro-
phyll, leaf area index, and fractional vegetation cover) from
hyperspectral data, and in the detection of the causal direction
in a collection of 28 bivariate geoscience and remote sensing
causal problems. The model consistently performs better than
the standard GP and the more advanced heteroscedastic GP
model, both in terms of accuracy and more sensible confidence
intervals.

Index Terms—Inverse modeling, parameter estimation, regres-
sion, Gaussian processes (GP), modeling, causal inference.

I. INTRODUCTION

W ITH the forthcoming superspectral satellite missions
dedicated to land, vegetation and ocean monitoring, an

unprecedented data stream is now available and will increase
in following years. Automatic efficient techniques for spatial
and temporal explicit quantification of Earth properties are an
urgent need. When it comes to the implementation of candidate
retrieval methods into operational data processing chains, like
e.g. the Copernicus’ Sentinels, it is mandatory to invest in
models that are both accurate and robust, but also requiring
minimum user intervention for fitting parameters, and that
provide sensible confidence intervals for the predictions. This
is the scenario where this paper is placed.

In this paper, we focus on the Bayesian non-parametric
framework in general, and in Gaussian processes (GPs) [1],
which have yielded very good performance in the last years
in many geoscience and remote sensing problems, such as
biophysical parameter estimation, radiative transfer model em-
ulation and causal inference from empirical data [2], [3]. De-
spite the very good performance of standard GPs, inclusion of
prior knowledge respecting signal characteristics is mandatory
to achieve state-of-the-art results, and in turn make parameter
tuning simpler and less sensitive to initializations. This can
be achieved by designing kernel functions that respect signal
smoothness in space or time [4], [5], combining multi-scale
and multi-resolution of the features [5], [6], or by designing
regularizers to encompass signal and noise relations [7].
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Little attention has been paid, however, to the statistical
characteristics of the output, observed variable. Actually, we
should note an important observation: GP modeling assumes
that the target data is distributed as a multivariate Gaussian and
that observations are buried in constant power (homoscedas-
tic) Gaussian noise as well. These assumptions allow model
tractability, yet sometimes they are unrealistic in practice.
Commonly one performs ad hoc pre-processing of the data
to achieve transformations of the observed variable to make it
look as a Gaussian. It is customary to apply logarithmic, ex-
ponential, power or logistic transformations to spectral ratios.
This is not only arbitrary, but somehow contradictory since
first data is transformed by a parametric function, and then, a
non-parametric GP model is fitted. In this paper, we propose
a GP that automatically learns the optimal transformation to
be applied. The method is called warped GP (WGP) [8] and
commonly leads to more accurate results over standard and
more advanced GPs. It also leads to more sensible confidence
intervals and gives important insights on the non-linearity of
the problem. The WGP model actually generalizes standard
GPs, and allows to deal with non-Gaussian processes and non-
Gaussian noise.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the warped GP regression method. Section 3
details the data characteristics used in this paper. Section 4
gives the experimental results for several problems: (i) the
estimation of chlorophyll-a concentration from remote sensing
upwelling radiance just above the ocean surface, estimation
of biophysical parameters (chlorophyll-a, leaf area index, and
fractional vegetation cover) from hyperspectral data, and the
problem of cause-effect discovery from pairs of observational
data. Finally, Section 5 concludes the paper and outlines the
further work.

II. WARPED GAUSSIAN PROCESSES

This section reviews the theory of GP regression, introduces
the warped GP model, and describes the parameterization of
both the covariance and the warping functions.

A. Gaussian Process Regression (GP)

Standard regression approximates observations (often re-
ferred to as outputs) {yi}Ni=1 as the sum of some unknown
latent function f(x) of the inputs {xi ∈ RD}Ni=1 plus constant
power Gaussian noise, that is:

yi = f(xi) + εi, εi ∼ N (0, σ2
n). (1)

Instead of proposing a parametric form for f(x) and learn-
ing its parameters in order to fit observed data well, GP
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regression proceeds in a Bayesian, non-parametric way. A
zero mean1 GP prior is placed on the latent function f(x)
and a Gaussian prior is used for each latent noise term εi,
f(x) ∼ GP(0, kθ(x,x′)), where kθ(x,x′) is a covariance
function parameterized by a vector θ, and σ2

n is a parameter
accounting for the noise power. Essentially, a Gaussian process
is a stochastic process whose marginals are distributed as
a multivariate Gaussian. In particular, given the priors GP ,
samples drawn from f(x) at the set of locations {xi}Ni=1

follow a joint multivariate Gaussian with zero mean and
covariance matrix Kff with [Kff ]ij = kθ(xi,xj).

If we consider a test location x∗ with corresponding output
y∗, the GP defines a joint prior distribution between the
observations y ≡ {yi}Ni=1 and y∗. Collecting available data
in D ≡ {(xi, yi)|i = 1, . . . N}, it is possible to analytically
compute the posterior distribution over the unknown output
y∗:

p(y∗|x∗,D) = N (y∗|µGP∗, σ
2
GP∗)

µGP∗ = k>f∗(Kff + σ2
nI)
−1y = k>f∗α

σ2
GP∗ = σ2

n + k∗∗ − k>f∗(Kff + σ2
nI)
−1kf∗.

(2)

The corresponding parameters {θ, σn} are typically selected
by Type-II Maximum Likelihood, using the marginal likeli-
hood (also called evidence) of the observations, which is also
analytic (explicitly conditioning on θ and σn):

log p(y|θ, σn) = logN (y|0,Kff + σ2
nI). (3)

B. Warped Gaussian Process Regression (GP)

In real applications, the distribution of the observations
is very often not Gaussian, due to the sampling strategies
followed during the protocols in data collection or because of
the natural variability of the problem. Very often, in practice,
one remedies that by transforming the observed variable to
make it look like a Gaussian. Actually, it is a standard practice
to apply logarithmic or exponential functions to this end.

In this paper, we use a GP model that automatically learns
the optimal transformation by warping the predictions of a
standard GP model. The method is called warped GP [8],
and essentially warps observations y through a nonlinear
parametric function g to a latent space:

zi = g(yi, ψ) = g(f(xi) + εi),

where g is a function with scalar inputs parameterized by ψ.
Note that the new error term cannot be readily accessed or
quantified, since g is a nonparametric function and does not
factorize. The function g must be monotonic, otherwise the
probability measure will not be conserved in the transforma-
tion, and the distribution over the targets might not be valid [8].
It can be shown that replacing yi by zi into the standard GP
model leads to an extended problem that can be solved by
taking derivatives of the negative log likelihood function in (3),
but now with respect to both θ and ψ parameter vectors.

1It is customary to subtract the sample mean to data, and then to assume
a zero mean model.

C. Model parametrization
Owing to the probabilistic treatment, all GP variants yield

a full posterior predictive distribution over y∗, it is possible
to obtain not only mean predictions for test data, but also its
uncertainty. The whole procedure only depends on a very small
set of parameters; collectively grouped in θ for GP and in ψ
for WGP. Inference of the parameters and the weights α can
be performed using continuous optimization of the evidence
in 3.

For both the GP and WGP models we need to define the
covariance (kernel, or Gram) function k(·, ·), which should
capture the similarity between samples. We used the stan-
dard Automatic Relevance Determination (ARD) covariance
k(xi,xj) = ν exp(−

∑D
d=1(x

d
i − xdj )

2/(2σ2
d)), which has

given good performance in many problems [1], [3], where xi

and xj are vectors. For GP, model parameters are collectively
grouped in θ = {ν, σn, σ1, . . . , σd}. For the WGP we need to
define a parametric smooth and monotonic form for g. In this
paper we used:

g(yi;ψ) =

L∑
`=1

a` tanh(b` yi + c`), a`, b` ≥ 0,

where ψ = {a,b, c}. Even though any other sensible
parametrization could be used, this one is quite convenient
since it yields a set of smooth steps whose size, steepness
and position are controlled by a`, b` and c` parameters,
respectively. In the present work, we fixed L = 5 after several
experiments, while the latter parameters were inferred via
standard maximum log-likelihood maximization.
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Fig. 1: Scatterplot of NDVI vs LAI with predictive means
(lines) and deviations (shaded areas) as well as the marginal
distributions. The conditional densities at NDVI=0.85 (top of
the figure) shows how the standard GP confidence intervals
are symmetric while the WGP better captures the conditional
distribution of the sample and yields asymmetric confidence
intervals tighter around the more densely populated Chl-a
regions.
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D. Illustration of a warped GP model

We illustrate the main difference between GPs and WGPs
in the problem of estimating chlorophyll concentration (Chl-a)
from the NDVI using in situ measurements (data description
and experiments further explained in section III-B). Figure 1
shows the data distribution, as well as linear (cyan), second
order polynomial (red), GP (blue), and WGP (black) fitting.
In gray and blue shaded areas we provide the confidence
intervals (mean±2 standard deviations) for the GP and WGP
models, respectively. The marginals indicate a denser sampling
of Chl-a in the NDVI region between [0.7,0.9], and reveal
a non-Gaussian distribution of the Chl-a target variable. The
main difference between standard GP and WGP arises on the
shape of its confidence intervals, which is better observed
in the conditional pdf, i.e. p(y|NVDI = 0.85). In top of
Fig. 1, the standard GP yields a symmetric area around its
mean, but the shape of the predictive distribution of WGP is
more flexible and adapts better to the data distribution. Note
that the conditional confidence interval in this case shows
three different peaks, revealing higher confidence around the
chlorophyll regions more densely sampled.

III. EXPERIMENTAL RESULTS

We show the potential of WGP in the following three
experiments: 1) estimation of ocean chlorophyll concentration
from multispectral data; 2) vegetation parameter retrieval from
hyperspectral images; and 3) causal inference in a set of 28
geosciences problems.

A. Experiment 1: Ocean chlorophyll estimation

We focus here on the estimation of chlorophyll-a concen-
trations from remote sensing upwelling radiance just above
the ocean surface. A variety of bio-optical algorithms have
been developed to relate measurements of ocean radiance to in
situ concentrations of phytoplankton pigments, and ultimately
most of these algorithms demonstrate the potential of quantify-
ing chlorophyll-a concentrations accurately from multispectral
satellite ocean color data. In addition, we should note that
most of the bio-optical models (such as Morel, CalCOFI and
OC2/OC4 models) often rely on empirically adjusted nonlinear
transformation of the observed variable (which is traditionally
a ratio between bands). In this context, more robust and stable
non-linear regression methods are desirable.

We used the SeaBAM dataset [9], which gathers 919 in
situ pigment measurements around the United States and
Europe. The dataset contains coincident in situ chlorophyll
concentration and remote sensing reflectance measurements
(Rrs(λ), [sr−1]) at some wavelengths (412, 443, 490, 510 and
555 nm) that are present in the SeaWiFS ocean color satellite
sensor. The chlorophyll concentration values range varies
from 0.019 to 32.79 mg/m3, revealing a clear exponential
distribution. More information about the data can be obtained
from http://seabass.gsfc.nasa.gov/seabam/seabam.html.

Table I shows different scores: mean error (ME), accuracy
(RMSE & MAE), coefficient of correlation (R) between the
observed and predicted variable when using the raw data
(no ad hoc transform at all) and the empirically-adjusted

transform2. Results are shown for three flavours of GPs: the
standard GP regression (GP) [1], the variational heteroscedas-
tic GP (VHGP) [7], and the proposed warped GP regression
(WGP) [8] for different rates of training samples. Several
conclusions can be obtained: 1) better results are obtained
by all models when using more training samples, 2) for GP
and VHGP, using empirically-based features improves the
results over using raw data for the same number of training
samples, 3) WGP outperforms standard GP and VHGP in all
comparisons when using raw data, therefore 4) results show
that WGP compensates the lack of prior knowledge about the
(skewed) distribution of the variable.

An interesting advantage of WGP is we have access to the
learned warping function. We plot these for different rates of
training samples in Fig. 2, which shows that: 1) as more sam-
ples are provided for learning, the warping function becomes
more nonlinear for low chlorophyll concentration values; 2)
the learned warping function actually looks linear (in log-
scale) for high observation values and strongly nonlinear for
low values. The empirically-based warping function typically
used in most bio-optical models is a log function. Therefore it
seems that the WGP accuracy comes from the better modeling
of the nonlinearity for low chlorophyll values, which are the
great majority in the database.

B. Experiment 2: Estimation of vegetation parameters
In this second experiment, we used data from the SPARC

campaign acquired during the month of July of 2003 in Barrax
(Spain), previously mentioned in Sec. II. We have in-situ
ground-truth data of three different vegetation parameters,
chlorophyll-a (Chl-a), Leaf Area Index (LAI) and Fraction
of Vegetation Cover (FVC). We trained the models using
hyperspectral reflectances from the CHRIS instrument on
board of PROBA-1 satellite3, which provides information in
62 spectral channels at a spatial resolution of about 34 meters.

As the number of training samples are scarce (only n = 135
labeled samples in total), we report results using a 4-fold
cross validation procedure. The results in Table II show
the mean and the standard deviation for the experiments.
Results are reported in the same terms that in the previous
experiment III-A. The proposed warped GP regression (WGP)

2Several transformations were tested: log, exp, and polynomial.
3https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba
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Fig. 2: Learned warping transformations with WGP for dif-
ferent rates of training samples. The range of y is normalized
[−1, 1] for better representation.
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TABLE I: Bias (ME), accuracy (RMSE, MAE) and fitness (coefficient of correlation R) for different rates of training samples
using both raw and empirically-transformed variable for the SeaBAM dataset.

Raw Empirical
ME RMSE MAE R ME RMSE MAE R

rate = 20%
GP 0.146 ± 0.142 1.836 ±0.541 0.490 ±0.175 0.765 ±0.139 0.148 ± 0.112 2.390 ±1.001 0.411 ±0.098 0.736 ±0.132

VHGP 0.252 ± 0.129 2.195 ±0.342 0.530 ±0.147 0.657 ±0.119 0.141 ± 0.105 2.384 ±1.017 0.410 ±0.096 0.737 ±0.134
WGP 0.143 ± 0.110 1.710 ±0.337 0.401 ±0.055 0.804 ±0.071 0.146 ± 0.118 2.583 ±1.122 0.445 ±0.116 0.686 ±0.149
rate = 50%

GP 0.133 ± 0.110 2.036 ±0.468 0.453 ±0.057 0.765 ±0.106 0.149 ± 0.144 2.024 ±1.689 0.349 ±0.142 0.823 ±0.130
VHGP 0.183 ± 0.119 1.786 ±0.454 0.398 ±0.046 0.789 ±0.090 0.146 ± 0.116 1.934 ±1.272 0.343 ±0.115 0.828 ±0.117
WGP 0.069 ± 0.050 1.318 ±0.331 0.309 ±0.042 0.881 ±0.054 0.107 ± 0.065 1.607 ±0.340 0.326 ±0.051 0.832 ±0.064
rate = 80%

GP 0.122 ± 0.180 1.620 ±0.848 0.457 ±0.160 0.836 ±0.148 0.155 ± 0.138 1.477 ±0.882 0.333 ±0.155 0.889 ±0.089
VHGP 0.211 ± 0.192 1.873 ±0.787 0.430 ±0.158 0.811 ±0.113 0.132 ± 0.114 1.306 ±0.699 0.306 ±0.119 0.906 ±0.075
WGP 0.113 ± 0.072 1.272 ±0.671 0.310 ±0.099 0.885 ±0.129 0.146 ± 0.139 1.536 ±0.798 0.344 ±0.140 0.889 ±0.068

obtains better results for prediction of Chl-a content and FVC.
WGP achieves better quality estimates and lower error bars
compared to the other GP models.

TABLE II: Bias (ME), accuracy (RMSE) and fitness (R2)
for the tested vegetation variables (Chl-a, LAI, FVC) in the
SPARC dataset.

ME RMSE R2

Chl-a
GP -0.99 ± 2.14 5.75 ± 3.81 0.845 ± 0.16

VHGP -1.05 ± 2.15 5.58 ± 4.12 0.854 ± 0.17
WGP -0.51 ± 1.89 5.16 ± 3.13 0.873 ± 0.12
LAI
GP 0.005 ± 0.10 0.53 ± 0.07 0.879 ± 0.03

VHGP 0.03 ± 0.15 0.55 ± 0.05 0.875 ± 0.03
WGP 0.02 ± 0.14 0.55 ± 0.11 0.867 ± 0.05
FVC
GP 0.012 ± 0.009 0.142 ± 0.040 0.796 ± 0.105

VHGP -0.021 ± 0.013 0.144 ± 0.041 0.799 ± 0.088
WGP 0.006 ± 0.007 0.137 ± 0.038 0.814 ± 0.090

For illustration purposes, we show in Fig. 3 the prediction
maps, confidence intervals and the ratio between them. The
proposed WGP predicts in general lower values of Chl-a
content, mostly in the center and eastern region of the scene,
and provides a lower uncertainty in the whole image. On
the contrary, GP and VHGP obtained low uncertainty only
in the western area of the scene and high uncertainty on the
central region. Actually, when looking at the ratio between the
predictive mean and variance (third row), WGP obtained lower
and more homogeneous results. The lower the ratio, the better
the results are. We masked the ratio by fixing a threshold of
20%: GP provided only 52.21% of the predictions below this
threshold, VHGP yielded a 69.72%, and WGP fulfilled this
error for the whole image.

C. Experiment 3: Causal inference in geosciences

Establishing causal relations between random variables from
observational data is perhaps the most important challenge in
today’s Science. In remote sensing and geosciences this is of
special relevance to better understand the Earth’s system and
the complex interactions between the involved processes.

GP VHGP WGP

Fig. 3: Prediction maps of chlorophyll-a content by GP, VHGP
and WGP: predictive mean (top row), variance (middle) and
coefficient of variation -ratios- (bottom) are represented.

In this experiment we used Version 1.0 of the CauseEffect-
Pairs (CEP) collection4. The database contains 100 pairs of
random variables along with the right direction of causation
(ground truth). Data has been collected from various domains
of application, such as biology, climate science, health sciences
and economics, to name a few [10]. We conducted experiments
in 28 out of the 100 pairs that contain one-dimensional
variables and that are related to geosciences and remote sens-
ing: problems involving carbon and energy fluxes, ecological
indicators, vegetation indices, temperature, moisture, heat, etc.
We summarize the involved variables in Table III.

We build upon the framework proposed in [11] to de-
rive cause-effect relations from pairs of random variables5.
The method decides about the causal direction based on

4https://webdav.tuebingen.mpg.de/cause-effect/
5Given two variables, identifying which is the cause and which one is the

effect requires adopting (strong) assumptions. For example, it is assumed the
absence of ‘confounding factors’ that may drive both variables, that ‘selection
bias’ is not present so the observed variables should be representative of the
causal relationship, or that feedback loops are not present either [12].

https://webdav.tuebingen.mpg.de/cause-effect/
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TABLE III: Problems and causal direction for the geoscience
problems in the CEP database.

id x y Cause
01 Altitude Temperature →
02 Altitude Precipitation →
03 Longitude Temperature →
04 Altitude Sunshine hours →
20 Latitude Temperature →
21 Longitude Precipitation →
42 Day of the year Temperature →
43 Temperature at t Temperature at t+ 1 →
44 Pressure at t Pressure at t+ 1 →
45 Sea level pressure at t Sea level pressure at t+ 1 →
46 Relative humidity at t Relative humidity at t+ 1 →
49 Ozone concentration Temperature ←
50 Ozone concentration Temperature ←
51 Ozone concentration Temperature ←
72 Sunspots Global mean temperature →
73 CO2 emissions Energy use ←
77 Temperature Solar radiation ←
78 PPFD Net Ecosystem Productivity →
79 NEP Diffuse PPFDdif ←
80 NEP Diffuse PPFDdif ←
81 Temperature Local CO2 flux, BE-Bra →
82 Temperature Local CO2 flux, DE-Har →
83 Temperature Local CO2 flux, US-PFa →
87 Temperature Total snow →
89 root decomposition root decomposition (grassland) ←
90 root decomposition root decomposition (forest) ←
91 clay content in soil soil moisture →
92 organic carbon in soil clay cont. in soil (forest) ←
93 precipitation runoff →
94 hour of day temperature →

the independence of the residuals with respect to the causal
mechanism. Notationally, two regression models ŷ = f(x) and
x̂ = g(y) are developed trying to estimate one variable from
the other, and then two Hilbert Schmidt Independence Crite-
rion (HSIC) [13] terms between the residuals nf = ŷ − f(x)
(or nb = x̂−g(y)) and the corresponding potential cause x (or
y), respectively. The causal direction score is defined here as
the difference in test statistic between both models [10]. For
the regression models, we run standard GPs, VHGP and the
proposed WGP, and measured independence with HSIC, which
has been widely used in remote sensing as well for feature
selection and dependence estimation [14]. Figure 4 shows the
receiver operating curves (ROCs) for all GP models in the case
of using a limited number of points n = 1000 per problem.
It can be noticed that all methods perform above chance, and
that WGP performs better than the rest in area under the ROC.

IV. CONCLUSIONS

We introduced warped GPs for remote sensing and geo-
science applications involving parameter estimation and causal
inference from bivariate problems. WGP regression is able to
learn an optimal transform. The introduced model generalizes
standard GPs and allows to work with both non-Gaussian pro-
cesses and non-Gaussian noise. Improved results in terms of
accuracy were attained, more credible and tighter confidence
intervals, and the advantage of deriving an optimal transform
for further use. Results in several experiments suggest that
WGPs are a solid approach to both quantitative and qualitative
remote sensing data analysis because of the good accuracy and
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Fig. 4: ROC for the identification of cause-effects in a subset of
remote sensing and geosciences pairs using GP (AUC=0.61),
VHGP (AUC=0.67) and the proposed WGP (AUC=0.68).

explanatory capabilities. Ongoing work is tied to learning both
non-parametric functions following [15] on a full Bayesian
treatment of warping.
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