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Abstract—The role of global sensitivity analysis (GSA) is to
quantify and rank the most influential features for biophysical
variable estimation. In this paper, an approximation model,
called High Dimensional Model Representation (HDMR), is
utilized to develop a regression method in conjunction with
a global sensitivity analysis in the context of determining key
input drivers in the estimation of crop biophysical variables
from polarimetric Synthetic Aperture Radar (PolSAR) data.
A multitemporal Radarsat-2 dataset is used for retrieval of
three biophysical variables of barley: leaf area index, normal-
ized difference vegetation index and BBCH-stage. The HDMR
technique is first adopted to estimate a regression model with all
available polarimetric features for each biophysical parameter,
and sensitivity indices (SI) of each feature are then derived to
explain the original space with a smaller number of features
in which a final regression model is established. To evaluate
the applicability of this methodology, root mean square and
coefficient of determination were performed under different
amounts of samples. Results highlight that HDMR can be used
effectively in biophysical variable estimation for not only reducing
computational cost, but also for providing a robust regression.

Index Terms—Agriculture, polarimetry, synthetic aperture
radar, global sensitivity analysis (GSA), Radarsat-2

I. INTRODUCTION

Tracking crop biophysical variables using time series of po-
larimetric Synthetic Aperture Radar (PolSAR) data is an active
research topic in precision agriculture due to the sensitivity
of PolSAR data to the physical and geometrical structure of
vegetation [1], [2]. From the application point of view, its
all-weather, day and night imaging capability makes PolSAR
well-suited for tracking crop status and the evolution of its
biophysical variables.

Retrieval of crop variables using PolSAR, or any other
remote sensing technique, can roughly be categorized under
two approaches: physical and statistical. Physical models ex-
press the backscattering from crops as a complex function
of morphological parameters of crop with assumptions on
ground scattering and dielectric constant [2]. Even though
there are some successful examples, when it comes to op-
erational monitoring, the requirement of a physical scattering
model for each crop type limits the performance of physical
model-based crop monitoring approaches. Instead, statistical
approaches (specifically regression based on machine learmning)
are getting very popular for crop monitoring. The ease of their
implementation at an affordable computational cost makes
machine learning regression algorithms appealing for crop
monitoring [3]-[5]. Learned or data-driven statistical models
do not deal with equations of physical laws (e.g. backscattering
model for a crop). Instead, they are more flexible since they
define the biophyscial variable estimation as a regression

problem, hence rely heavily on the availability of training
samples.

An essential part of the machine learning based biophysical
variable estimation is the uncertainty quantification (UQ) of
the regression coming from the inputs (e.g. measured PolSAR
data). UQ provides an assessment of the impact of the inputs
distribution on outputs distribution. UQ studies are classified
into two groups: local sensitivity analysis (LSA) and global
sensitivity analysis (GSA). The LSA consists of partial deriva-
tives of model outputs with respect to the input variables,
meaning that it is only capable of measuring the local effect
of the input variables on the model output. Therefore, LSA
does not consider the effect of the interactions between the
input parameters on the model output. On the contrary, GSA
allows us to measure the effect of the uncertainty of each
input variable on the variance or distribution of the model
outputs. High Dimensional Model Representation (HDMR) is
one of the most popular methods for computing the global
sensitivity indices. However, it requires analytical form of the
input function in advance to calculate each component in the
HDMR expansion. When the input function is not known or
very complex, Random Sampling HDMR (RS-HDMR) was
proposed, which is based on the decomposition of the HDMR
terms with splines or orthogonal polynomials [6]. However,
a significant drawback of the classical HDMR is the need of
the input variables to cover uniformly the whole input space,
which is not the case in many occasions due to the variability
and scarcity of the input data, obtained by space-borne radar
measurements. To handle such measurements, in this work,
the RS-HDMR was solved in the least squares sense with a
regularizer to prevent unstable behaviors of the coefficients of
the orthogonal polynomials.

Sensitivity analysis has recently attracted much interest in
remote sensing in the context of estimation the relevant scene
features. For example, in [7], a Gaussian Process Regression
(GPR) based local sensitivity analysis was introduced by
making use of mean and variance predictive estimates of
the GPR for global ocean chlorophyll prediction to reveal
the most important spectral bands. In the context of the
GSA, a comprehensive evaluation that combines physically
based emission models and various global SA algorithms
to evaluate the sensitivities of microwave emissivity and
brightness temperature to soil parameters was presented in
[8]. A GSA of a radiative transfer theory based scattering
model to see how different morphological parameters of rice
impact on a backscattering under given set of assumptions was
performed by [2]. Compared to these studies, our work aims
to expand the applicability of the GSA to a regression method



constructed by meta-modelling, which does not need to take
into account the the physics behind the acquisition system. The
proposed method in this study is primarily based on so-called
High Dimensional Model Representation Ridge Regression
(HDMR-RR) as presented in [9]. Numerous studies have been
conducted with the HDMR for function approximation [10]
and sensitivity analysis [11], and very promising results have
been obtained in different ranges of applications. The main
contribution of this paper is the utilization of the HDMR-
RR for a global sensitivity analysis and the demonstration of
its performance for crop biophysical variable estimation with
POLSAR data as input.

II. METHODOLOGY: HMDR-RR

HDMR is a method which decomposes a multivariate func-
tion with n variables into a finite hierarchical expansion of
component functions with respect to input variables [12], as
follows:
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where fj refers to the constant term. The component functio(rllg
fi(x;) are called first order terms, f;;(x;,x;)-second order
terms, and so on. Each component function is calculated by
taking multi-dimensional integrations, which are very com-
putationally demanding [13]. Random Sampling HDMR (RS-
HDMR) was proposed to alleviate this by approximating the
component functions as a linear combination of orthogonal
polynomials. The HDMR-RR is a first order regularized least
squares regression method which utilizes the first order RS-
HDMR terms in the approximation, as shown as below:
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where m is the order of the orthjogonal Legendre Polynomials
OLPs). o/ and ¢;(z;) refer to the coefficient of the LP and its
value at the sample z;. The constant term, mean response of
f, is simply calculated by taking the average of all the outputs.
Having vectorized (2), the LPs coefficients can be found by
solving the following regularized least squares optimization
problem:
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where « is a Vect]gr1 of LPs coefficients associated with each
feature. y and X correspond to the model output and the
Tikhonov regularization coefficient, respectively, while & is
a matrix obtained by explicitly evaluating the LPs at each z;
sample in the input domain.
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Where [ corresponds to the number of samples. By solving

Eq. 3, o can be obtained as below:
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Once all the coefficients are determined, the biophysical
variables of the crops can be estimated with the input PoISAR
features. Additionally, the coefficients can be interpreted as the
contribution of each feature to the variance of the biophysical
parameter, and the GSA can be performed straightforwardly.

A. Global Sensitivity Analysis: Sobol Indices

The functional decomposition of the variance via HDMR is
often referred to ANalysis Of VAriance (ANOVA), as shown
in Eq.1. It is demonstrated that such a decomposition exists for
every finite-variance functional, and it is orthonormal, hence
yielding unique coefficients [14]. ANOVA enables global
sensitivity analysis for uncorrelated input variables [15]. A
widespread quantitative global sensitivity measure is given by
the variance-decomposition-based Sobol indices (SI) [14].

The straightforward calculation of the SI based on the
ANOVA HDMR requires 2" integral evaluations, which is
impractical in many of the engineering problem. Another
way to calculate these coefficients is the use of regression
[13], [16]. Therefore, in this study, the proposed approach is
considered as a global sensitivity tool.

Once the LPs coefficients are determined via the HDMR-
RR, the first order SI can be calculated as the ratio of the
variance of each component function, D; to the total variance
D, as follow:
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It can be easily seen that there is a close relationship between
variance decomposition and HDMR-RR coefficients, which
allows for the calculation of Sobol indices directly from the
Legendre coefficients, i.e. without the need for additional
sampling as it is required in variance decomposition of the
classical HDMR. Note that first order sensitivity indices show
the effect of the single factor x; on the output f(x) but it does
not account for the high dimensional component functions, in
which the sum of the SIs corresponding to the all component
functions is equal to one.

III. STUDY AREA AND DATASET

A dataset formed by 20 sequential Radarsat-2 images and
in-situ measurements of various crop types, acquired over In-
dian Head (Canada) as part of the ESA-funded AgriSAR2009
campaign is exploited here. As a representative cereal, barley
is considered in all the experiments of this study. As part
of the AgriSAR2009 campaign data, biophysical variables
such as LAI, NDVI and phenological stages were measured
within 3 barley fields. The phenological scale employed in the
ground campaign is the continuous BBCH (Biologische Bun-
desanstalt, Bundessortenamt und CHemischelndustrie), with
a range [0 — 100]. LAI and NDVI values were obtained
in-situ with the Plant Canopy analyzer LAI-2000 and the
GreenSeeker RT200 Nitrogen/Defoliant/Plant Growth, respec-
tively (see [17], [18] for more details).

For each field, the in-siftu measurements were conducted
weekly at four spatially independent points, yielding a total of
144, 108 and 100 samples for BBCH stage, NDVI and LAI,
respectively. Fig. 1 shows the acquisition dates of Radarsat-2
and the LAI measurements of barley along with phenological
information. The BBCH value increases monotonically in time
whereas the LAI a dimensionless quantity defined as the ratio
of the total area of all leaves on a plant to ground surface



TABLE 1
LIST OF RADARSAT-2 POLARIMETRIC FEATURES [17] AND CROP
VARIABLES
Polarimetric features Description
£1: [HH?? +|[VV]? +2+ |[HV|
£2, £3, f4: |HH], [VV|, |HV|?
f5, fo, f7: entropy, anisotropy, alpha
£8, £9, f10: |HH|/|\VV|, VH|/|VV||HV|/|HH|
fl1, £12, f13: Purvv: Pvv,av: PHH HV
f14, f15, f16: vy Pvv.av: Paa av
£17, £18: |[HH+VV], |HH-VV]?
£19: PHHIVV,HH-VV
£20:

HH+VV . HH-VV

Biophysical variables  Description

LAI green leaf area per unit

NDVI difference between reflected near-infrared
and red light

Phenology BBCH scale (0-100)

area, starts to decrease from the fruiting stage (~ BBCH 70);
hence the main driver features for phenology and LAI estima-
tions may be different. The relationship between phenology
and NDVI is similar to the phenology-LAI relationship, but
NDVI exhibits saturation for high LAI values. Notice that
some in-situ measurements and Radarsat-2 acquisitions show
temporal differences larger than 5 days, none of which were
considered in the regression analysis.

In this study, a total of 20 polarimetric features extracted
from fully-polarimetric Radarsat-2 images, are used as input
data (x). They are listed in Table I with the definition of
the crop variables, corresponding to f(x). The polarimetric
features are chosen according to their extensive usage in crop
monitoring studies [1], [17]. In Table I, p; ; and ¢; ; denote
the degree of correlation and the phase difference between two
polarimetric channels, ¢ and j, respectively. All the features
were computed after a multi-looking with a moving-average
window (boxcar) of 9 x 9 pixels.

IV. RESULTS AND DISCUSSIONS

In all the experiments, the training and test dataset for
each output, including NDVI, LAI, and BBCH-stage, were
randomly generated one hundred times to provide more robust
results. Due to the limited samples, 80% of the entire dataset
was considered as training, leaving the remaining for testing.
All the features were scaled to the range [-1,1] to ensure
the orthogonality of the LPs during the implementations. By
considering all the features, the HDMR-RR was employed
to express the relationship between the input and output
datasets. Note that the sensitivity analysis is meaningful only
if the HDMR model is able to approximate the biophysical
variables in terms of functions of the polarimetric features. The
goodness-of-fit of the HDMR-RR was compared to other state-
of-art methods, such as kernel ridge regression with radial
basis function (KRR-RBF), GPR, Support Vector Regression
(SVR), and Relevance Vector Machine (RVM). Radial basis
kernel function was used for the SVR. The parameters of each
regression method were optimally selected based on 5-fold
cross validation. The results obtained with each regression
method were evaluated with box-plots based on two metrics;
root-mean square (RMS) and coefficient of determination
(R2), as shown in Fig. 2.
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Fig. 1. Temporal trend of LAI and phenological scales of barley. Grey and
dashed lines denote the Radarsat-2 acquisition and BBCH-scale measurment
days, respectively.

According to the results, the HDMR provides slightly better
accuracy in terms of RMS and R2 than the other regression
methods on the LAI dataset. However, for NDVI and BBCH
estimations, although the GPR outperforms the others in terms
of the median value of the metrics, its mean accuracy is not
statistically different than the HDMR, which has comparable
stability as well. For all the estimations, in terms of the median
value, the HDMR-RR obtains R2 values greater than 0.8 (a
one value would indicate a perfect prediction of the outputs
from the inputs). However, the small sample size (see Fig.
1) and the evident large variations in LAI within the fields,
make the regression more difficult to perform for LAI than
for the other two variables. In a nut shell, the results show
that the HDMR-RR achieves a performance competitive with
the other methods and shows superiority because of the global
sensitivity analysis.

In order to determine the most relevant features for each
variable estimation, the sensitivity indices were computed
using (6) based on the the coefficient vector a. Fig. 3 shows
the results of the sensitivity indices for BBCH, NDVI, and LAI
as a heat map for each trial. The highest values indicate the
features most relevant for improving the performance of the
regression. Note that compared to LAI and NDVI, the most
important feature for BBCH has a SI around 0.3, meaning
that there is no any single dominant feature contributing to
the BBCH variability. The main reason of this, based on
the BBCH modeling, is that more plant features affect the
definition of BBCH than the definition of LAI and NDVI. Phe-
nology, i.e. BBCH stage, is determined by the morphological,
chemical and physical condition of the field. Instead, LAl is a
function of physical structure of the crops, hence, being able
to be properly characterized by less number of polarimetric
features.

Regarding the relevance of the individual features, f8, the
co-polar backscattering ratio, is the most important feature
for all the biophysical variables, as shown in Fig. 3. The
importance of f8 comes from the crops physical condition
in time, producing different attenuation behaviour for vertical
and horizontal polarisation. Indeed, the change in size and
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Fig. 2.

vertical structure of barley makes the co-polar backscattering
ratio the most relevant feature among the others. According to
Fig. 3(a), in addition to the co-polar backscattering ratio, the
phase differences between co-polar (f14) and 1°¢ and 2™¢ Pauli
channels (f20) and alpha (f7) show high values of sensitivity
indices, meaning that the features related to the scattering
mechanism are outstanding features among the others listed
in Table I for the BBCH stage of barley. For LAI and NDVI,
in addition to f8, the correlation of co-polar channels and
1%* and 2"¢ Pauli channels are the most prominent feature.
Despite alpha (f7) is an influential feature in BBCH scale
estimation, it can be ignored in the estimation of the NDVI and
the LAI Instead, entropy (degree of randomness of scattering)
appears important within the features. It is worth noting that
here only the first-order SI -based on the uncorrelated features
assumption- are considered. The second- and higher-order
SI expressing the interactions among the features are not
considered. This is the reason highly correlated two features
may have not exactly same SI, but they have similar SI, hence
similar importance.
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Fig. 3. Sensitivity indices calculated by HDMR-RR for BBCH (a), NDVI
(b) and LAI (c) based on hundred random trials with different training and
testing dataset. z-axis and y-axis show the feature ID and the number of trails,
respectively.

(b) BBCH

(c) NDVI

Comparison of LOOCV RMSE and R2 using whisker-box plots of the regression methods for LAI (a), BBCH (b) and NDVI (c) estimation.

In order to analyse the effects of the relevant features in
terms of R2 and RMS, having ranked the features with respect
to their highest SI, averaged over one hundred trials, the
relevant features were given to the HDMR-RR one at a time.
Fig. 4 illustrates how the number of ranked features at each
run of biophysical variable estimation affects the prediction
results, measuring both R2 and RMS. It can be easily seen
that the HDMR-RR captures the peak accuracy when the
number of features are 5, 6 and 9 for NDVI, LAI and BCCH,
respectively. After reaching the peak accuracy, the accuracy of
the regression either remains stable or reduces slightly as the
number of the added features increases. The visual inspection
reveals that the increase in R2 is relatively small (<<0.01) when
more input features are used. The NDVI regression rapidly
converges, with typically 5 features, compared to the LAI
and the BBCH regression. The highest number of features
is required for an accurate estimation of BBCH stage. This is
due to the fact that the first features are not very dominant
in terms of the SI values, compared to the case of NDVI and
LAL In other words, the SI for the remaining features have
almost the same values, around 0.2, meaning that they are
equally important in the regression, whereas the SI of the rest
of the features in the case of NDVI and LAI are quite close to
zero. The backscattering ratio HH/HV, (f9), has an impact
on LAI estimation, however neither on NDVI nor on BBCH

stage.
V. CONCLUSION

This study proposes a machine-learning based polynomial
expansion to estimate crop biophysical variables from Pol-
SAR data, and including an identification of the important
PolSAR features through a GSA. The results show relevant
and informative features, which may differ for each biophys-
ical variable, provide a satisfactory prediction performance.
HDMR-RR achieves an accurate prediction performance just
based on a few of the most important features, hence a
dimensionality reduction is achieved, since the rest of features
do not contribute significantly to the estimation.

Results highlight that the co-polar backscattering ratio is the
most important polarimetric feature for LAI, NDVI and BBCH
estimation of barley. Additionally, the dominant scattering
mechanism in time, i.e. the mean alpha angle plays a key
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Fig. 4. RMS and R2 results of the analysis of the BBCH (a), NDVI (b) and
LAI (c) regressions after feature selection processing on the given dataset.

role in BBCH-scale estimation, but it can be ignored in the
context of LAI and NDVI estimation. For LAI and NDVI, the
features related to the volume, i.e., entropy (f5), as well as the
ratio of VH/VV (f9) have a higher weight compared to the
rest of the features.

It should be noted that precision of the parameters obtained
by the HDMR-RR are expected to be relatively less accurate
than those of parameters calculated by the classical HDMR,
since it finds the parameters in the least square senses. Besides,
to make more reliable analysis especially for the highly cor-
related datasets, the proposed approach needs to be modified
in a way that takes into account the correlations between the
features.
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