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Abstract—In this letter, we consider the varying detection
environments to address the problem of detecting small targets
within sea clutter. We first extract three simple yet practically
discriminative features from the returned signals in the time and
frequency domains and then fuse them into a 3-D feature space.
Based on the constructed space, we then adopt and elegantly
modify the support vector machine (SVM) to design a learning-
based detector that enfolds the false alarm rate (FAR). Most
importantly, our proposed detector can flexibly control the FAR
by simply adjusting two introduced parameters, which facilitates
to regulate detector’s sensitivity to the outliers incurred by the
sea spikes and to fairly evaluate the performance of different
detection algorithms. Experimental results demonstrate that our
proposed detector significantly improves the detection probability
over several existing classical detectors in both low signal to
clutter ratio (SCR) (up to 58%) and low FAR (up to 40%) cases.

Index Terms—Target detection; sea clutter; machine learning.

I. INTRODUCTION

Accurate detection of small targets on sea surface is an

important problem in remote sensing and radar signal pro-

cessing applications [1]. However, when detecting, the radar

returns from the small targets are severely obscured by the

backscatter from the sea surface, which is referred to as sea

clutter [1]. To identify the small targets from the sea clutter,

a promising approach is to seek certain features from the re-

turned signals that can depict the intrinsic differences between

these two classes and then design a feature-based detector.

However, the extracted features usually become ineffective

when the detection environment changes, as the characteristics

of the sea clutter are highly dependent on the sea states and

radar’s parameter configurations. Therefore, extracting robust

features from the returned radar signals that adapt to varying

environments is crucial for target detection.

There have been extensive works to design potentially

discriminative features for detecting small targets within sea

clutter. In [2], the authors utilized a doppler spectrum feature

to describe the differences between the sea clutter and target

signals, where the detector’s decision was made by simply

comparing the feature’s value with a predefined threshold.

However, such single feature based detector only exploits lim-

ited information of the returned signals and thus its detection

performance is likely to be affected by the varying detection

environments. Consider this, a potential solution for detection

performance improvement is to integrate more features to
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construct multi-dimensional feature spaces, as by this more

additional information within the returned signals can be

provided. Following this insight, Xu in [3] extracted two

temporal fractal features to devise a 2-D convexhull learning

algorithm for detection. Further, Shui et. al in [4] introduced

three features, i.e., the RAA, RPH, and RVE, to construct

a 3-D feature space, under which the detection accuracy is

improved in both high and low signal to clutter ratio (SCR)

scenarios compared with several single feature based detectors.

Nevertheless, it should be noted that the detection perfor-

mance in [3] and [4] is still poor in low SCR scenarios, e.g.,

lower than 57% when SCR = -2 dB. To further promote the

robustness of the detectors, the following two ideas could

be considered. Firstly, seek more discriminative features. It

was observed that some features such as the widely-adopted

amplitude become ineffective in low SCR scenarios [5]. On the

contrary, we find that some concepts in other research fields

can be used to define features that are effective even in low

SCR situations, e.g., the information entropy in the commu-

nication theory. Secondly, establish more advanced detection

frameworks. Several recent works have shown that machine

learning based techniques exhibit excellent potential in target

detection compared with some conventional approaches [6]–

[8]. One of their main advantages is that they can adaptively

adjust the involved parameters and decision regions according

to the collected radar returns, which are usually predefined in

existing popular frameworks, e.g., the constant false alarm rate

(CFAR) detector [9]. In this way, learning-based detectors may

be less sensitive to the variation of the detection environments.

In view of these, this letter devotes to exploring discrim-

inative features for feature space construction and designing

a learning-based detector for accurate small target detection.

The main contributions of this work are as follows:

• We exploit some concepts in other research fields to

define three features i.e., the temporal information en-

tropy (TIE), the temporal Hurst exponent (THE), and

the frequency peak to average ratio (FPAR), from the

perspective of time and frequency domains. Particularly,

the three defined features are quite simple yet practically

discriminative under varying detection environments even

in low SCR and false alarm rate (FAR) cases.

• We adopt and elegantly modify the support vector ma-

chine (SVM), a classical binary classifier, to design a

learning-based detector. Significantly different from the

existing learning-based detectors, our proposed detector

enfolds the FAR and can flexibly control it by simply tun-

ing two introduced parameters. By this, it is convenient

to fairly evaluate the performance of different detection
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algorithms, and to flexibly regulate the sensitivity of the

detector to the outliers incurred by factors such as the sea

spikes to meet the requirements of different applications.

• Experimental results show that, compared with several

classical detectors, our proposed detector significantly

improves the detection probability in both low SCR (up

to 58%) and low FAR (up to 40%) cases.

II. FEATURE SPACE CONSTRUCTION

In this section, we adopt the Intelligent PIxel Processing X-

band (IPIX) database, a widely-used database for sea-surface

small target detection, to extract features. The IPIX database

contains amount of sea clutter datasets, collected by the IPIX

radar at the east coast of Canada in November 1993 [10]. In

this database, each dataset is composed of 14 spatial range

cells and each cell has 217 samples with a sampling rate of

1000 Hz. For each dataset, the cell with the target returns is

labeled as the primary cell, the adjacent cells affected by the

target are labeled as the secondary cells, and the remaining

cells are clutter-only cells. In addition, each dataset contains

four kinds of data, referred to as the HH, VV, HV, and VH

data, as the transmitter and receiver of the IPIX radar have two

channels with H and V polarizations, respectively. Throughout

this letter, we will use 10 datasets in the IPIX database, namely

the datasets #54, #30, #31, #310, #311, #320, #40, #26,

#280, and #17. For notational simplicity, we denote the

samples from the primary cell and clutter-only cells as target

signals and sea clutter signals, respectively, in the following.

Based on the 10 selected datasets, this section extracts three

simple yet practically discriminative features from returned

radar signals in the time and frequency domains, and then

based on them to construct a 3-D feature space.

A. Temporal Information Entropy

We first utilize the concept of the information entropy in the

communication theory to define a feature in the time domain.

Let x = {xi, i = 1, 2, · · · , N} be a time sequence composed

by the amplitudes of the returned signals. Divide the amplitude

range covered by x into K (K ∈ N
+) independent segments

with equal length and use Nk to denote the amount of the

elements falling into the k-th segment. Then, the probability

that the amplitude of returned signals falls into the k-th

segment, denoted by P (Nk), can be calculated as

P (Nk) =
Nk

N
. (1)

Accordingly, the information entropy of such a time se-

quence, referred to as the temporal information entropy (TIE)

in this letter, is expressed as

TIE(x) = −
K
∑

k=1

P (Nk) log2(P (Nk)). (2)

To avoid invalid calculation, we set P (Nk) log2 P (Nk) = 0
when P (Nk) = 0. From the above definition, it can be

interpreted that the TIE actually reflects the temporal variation

or randomness of the amplitudes of returned signals.

Fig. 1. Illustrations of the extracted features. (a) The TIE of the returned
signals. (b) The THE of different range cells. (c) The FPAR of the sea clutter
signals. (d) The FPAR of the target signals.

To yield more samples to evaluate the performance of the

proposed features, we segment each cell’s data of length 217

into mutiple small-scale signals of length D, given by

uj = x(d(j − 1) + 1 : d(j − 1) +D), j = 1, 2, · · · (3)

where d is a constant to tune the overlapping length among ad-

jacent vectors. Figs. 1(a) and 2(a) exhibit the discriminability

of the TIE on #54 under the HH mode through the histogram

and scatter distribution, respectively. In both figures, d and D

are set to 64 and 4096 (i.e., the observation time is 4096 ms),

respectively. It can be seen that the TIE indeed can be used

to distinguish target signals from sea clutter signals, as the

TIEs of most target signals are larger than those of sea clutter

signals. However, these two figures also show that effective

detection cannot be achieved by only adopting the TIE, as

the target and sea clutter signals are highly tangled with each

other in some regions. This is because sea clutter contains

spiky pulses in cases of high sea states or low radar grazing

angles, which would enlarge the TIEs.

B. Temporal Hurst Exponent

From [7], the temporal hurst exponent (THE), a widely-used

feature to characterize the fractal property of the sea clutter,

presents satisfactory discriminability when distinguishing the

target from sea clutter. Inspired by this, we adopt the THE as

another feature in our feature space, the calculation procedure

of which is described as follows.

Firstly, divide x into L adjacent sub-periods with the

same length τ = ⌊N
L
⌋ and denote the amplitude set of the

l-th (l = 1, 2, · · · , L) sub-period by {xl,1, xl,2, · · · , xl,τ}.

Secondly, compute the average amplitude and standard de-

viation of each sub-period, denoted by Īl and Sl for sub-

period l, respectively. Let Yl = {Yl,1, Yl,2, · · · , Yl,τ} denote

the accumulated deviation set of sub-period l, where Yl,t

is calculated as Yl,t =
∑t

k=1
(xl,k − Īl), t = 1, 2, · · · , τ.

Define the range of sub-period l, denoted by Rl, as the
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Fig. 2. Scatter distributions of the target and sea clutter signals. (a) 1-D
feature space on #54. (b) 2-D feature space on #54. (c) 3-D feature space
on #54. (d) 3-D feature space on #30.

difference between the maximum and minimum values of Yl,

i.e., Rl = max(Yl,t)−min(Yl,t).
Thirdly, calculate Rl

Sl

for all l ∈ {1, 2, · · · , L} for a given τ

and denote the mean value of them by R
S

. From [11], R
S

shows

the fractal feature at a certain time scale range τ , e.g., from

0.1 s to 4 s for the IPIX datasets. Particularly, R
S

is related

with the THE, denoted by H , by the following equation
(

R

S

)

τ

= c ∗ τH (4)

where c is a constant independent on τ . Finally, to expediently

calculate H , the logarithm operation is taken on both sides of

(4), yielding

log2

(

R

S

)

τ

= H log2 (τ) + log2 (c) . (5)

From (5), log2
(

R
S

)

τ
is linearly dependent on log2 (τ), and

thus H can be readily obtained by the method of first-order

least-squares polynomial approximation.

The THEs of the 14 range cells on #54 under the HH mode

are plotted in Fig. 1(b), from which we can observe that the

primary cell has a larger THE than that of the clutter-only

cells. Furthermore, we combine the TIE and THE to construct

a 2-D feature space in Fig. 2(b). Compared with the 1-D

feature space (see Fig. 2(a)), the 2-D feature space exhibits

better separability. Nevertheless, there are still some overlaps

between the target and sea clutter signals. As a consequence, it

is still necessary to extract additional features for small target

detection, which will be described in the next subsection.

C. Frequency Peak to Average Ratio

To further enhance the discriminability of the feature space,

we introduce a frequency-domain feature into it, inspired by

the fact that additional spectral information of returned signals

that possibly can not be reflected in the time-domain features

(e.g., the TIE and HE) can be embedded. Interestingly, when

conducting the Fourier transform on the received signals, we

find that the spectrum difference between the target and sea

clutter signals exhibits potential discriminability that can be

used for detection, as the spectrum of the former mainly

distributes over a fluctuant and rough surface while that of

the latter more concentrates around a peak.

To quantify this difference, we introduce the frequency peak

to average ratio (FPAR) feature, defined as

FPAR(x) =
max {X (k) , k = 1, · · · , N}

1

N

∑N

k=1
X(k)

(6)

where X(k) is the Fourier transform of the time sequence x,

given by X(k) =
∑N

n=1
xne

−j 2π

N
nk, k = 1, 2, · · · , N.

Figs. 1(c) and 1(d) exhibit the FPAR of the target and sea

clutter signals, the results in which validate that the simple

FPAR does be effective because these two histograms are

only slightly overlapped. Furthermore, we combine the FPAR

with the TIE and THE to construct a 3-D feature space, and

examine its discriminability through the scatter distribution on

#54 in Fig. 2(c). Compared with the 2-D feature space (see

Fig. 2(b)), the 3-D feature space becomes more prominently

separable. However, it is worthwhile to note that some datasets

are possibly linearly non-separable in our constructed 3-D

feature space, e.g., #30 (see Fig. 2(d)), which indicates that

extracting more features does not always result in better

separability performance. Hence, this uncertainty of linear

separability should be considered when designing the learning-

based detector based on these features, the detailed of which

will be described in the next section.

III. FALSE-ALARM-RATE-CONTROLLABLE SUPPORT

VECTOR MACHINE BASED DETECTOR

Back to the detection problem itself, identifying an object

from sea clutter can be naturally regarded as a classification

problem. Based on this fact, this section adopts and elegantly

modifies the SVM, a classical and widely-used learning-

based binary classifier, to design a detector. Although SVM-

based detectors have been utilized in some existing works

to distinguish targets from sea clutter [6]–[8], almost all of

them directly applied the SVM and did not consider the FAR

therein. However, making the FAR controllable can conve-

niently regulate detector’s sensitivity to the outliers incurred

by factors such as the sea spikes and also facilitates to evaluate

the performance of different detection algorithms. It is thus

interesting to design a FAR-controllable SVM-based detector

when identifying the small targets within sea clutter.

For a sample i in the training dataset, we construct a 3-D

feature vector Fi orderly composed by its TIE (fi,1), THE

(fi,2), and FPAR (fi,3), i.e., Fi = [fi,1, fi,2, fi,3]
T , and use

yi ∈ {+1,−1} to label the class of the target (+1) and sea

clutter (−1). By this, the M labeled training samples can be

represented as {(Fi, yi), i = 1, 2, · · · ,M}. From Figs. 2(c)

and 2(d), it is possible that feature vectors of the target and

sea clutter are linearly non-separable in the constructed 3-

D feature space. To handle such problem, non-linear kernel

functions are introduced into the SVM. These kernel functions

attempt to map Fi into a high-dimensional feature space,
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where the originally linearly non-separable dataset is shifted to

a linearly separable one. In this letter, we take the radial basis

function (RBF) as the kernel function, a prominent choice in

SVM-based detectors, defined as follows

k(F1, F2) = exp

(

−
‖F1 − F2‖

2δ2

)

. (7)

After mapping, the next step is to find the hyperplane, i.e.,

ωTF − b = 0, to separate the target and sea clutter data in

the mapped linearly separable high-dimensional feature space

according to the max-margin principle. To determine ω and

b, the original SVM, referred to as the β-SVM in this letter,

solves the following quadratic program

min
ω,b,ξ

1

2
‖ω‖2 + β

M
∑

i=1

ξi

s.t. C1: yi [k(ω, Fi)− b] ≥ 1− ξi, i = 1, 2, · · · ,M

C2: ξi ≥ 0, i = 1, 2, · · · ,M

(8)

where ξi is the slack variable and β refers to the penalty

parameter used to balance the maximization of the margin and

the minimization of the error. Observe that the sea clutter and

target signals share the same β in the β-SVM, which implies

an assumption that these two classes have the same degrees

of toleration to outliers incurred by factors such as the sea

spikes. However, this assumption is possibly not reasonable

in practice because the impacts of the outliers on the target

and sea clutter signals are usually different.

To deal with this problem, we elegantly modify the β-SVM

to an alternative yet mathematically equivalent version of the

β-SVM, referred to as the FAR-controllable SVM (Pf -SVM)

in this letter. Specifically, in the Pf -SVM, we introduce two

penalty parameters β0 and β1, respectively for the sea clutter

and the target signals, to replace β in (8), to control their

individual error weights in the quadratic program. By this,

problem (8) is recast to

min
ω,b,ξ

1

2
‖ω‖2 +

M
∑

i=1

(

1− yi

2
β0 +

1 + yi

2
β1

)

ξi

s.t. C1: yi [k(ω, Fi)− b] ≥ 1− ξi, i = 1, 2, · · · ,M

C2: ξi ≥ 0, i = 1, 2, · · · ,M.

(9)

From (9), increasing β0 would reduce the FAR for a given

β1, as by this the obtained hyperplane will tilt toward the target

signals and thus less sea clutter signals will be misclassified.

On the other hand, enlarging β1 would increase the FAR for

a given β0, as the hyperplane will be more partial to the

sea clutter signals in this case. Therefore, the modification

exploited here not only can enfold the FAR into the SVM-

based detector but also facilitates to flexibly control it by

simply adjusting β0 and β1.

In what follows, according to the theory of the SVM, prob-

lem (9) can be solved by the sequential minimal optimization

(SMO) algorithm in the dual domain [12]. With the obtained

hyperplane, i.e., ωTF − b = 0, the class of an incoming test

Algorithm 1 FAR-Controllable SVM-Based Detector.

1: Initialization

• Set the FAR Pf and the threshold η (e.g., 0.0001).

• Set βh = 2, βl = 0, β0 = 1, β1 = 1, and PF = 1.

2: while |PF − Pf | > η do

3: Solve (9) to obtain ω and b.

4: Determine the class of the training data by (10).

5: Calculate the FAR, defined as

PF = The number of misclassified sea clutter samples

The total number of sea clutter samples in training dataset
×100%.

6: if PF = Pf then

7: Break.

8: else

9: if PF < Pf then

10: Set βh = β0 and β0 = βh+βl

2
.

11: end if

12: else

13: if PF > Pf then

14: Set βl = β0 and β0 = βh+βl

2
.

15: end if

16: end if

17: end while

18: Calculate the detection probability defined as

Pd = The number of correctly-classified target samples

The total number of target samples in testing dataset
× 100%.

data Fj can be decided according to the following principle
{

yj = +1 if ωTFj − b > 0

yj = −1 if ωTFj − b ≤ 0.
(10)

Based on the above discussion, the detailed procedure of our

proposed detector is summarized in Algorithm 1, in which βh

and βl denote the upper and lower bounds of β0, respectively.

The algorithm runs in two stages. In the first stage (Lines

3–5), obtain the hyperplane with the given parameters. Then,

use this hyperplane to classify the training data and calculate

the actual FAR PF . In the second stage (Lines 6–17), adopt

the bi-section method to adjust β0 by comparing PF with

the user-defined FAR Pf . These two stages will be executed

iteratively until the difference between PF and Pf is lower

than the predefined threshold η.

IV. EXPERIMENTAL RESULTS

In this section, we use the 10 datasets mentioned in Sec-

tion II to evaluate the performance of our proposed detector.

Consider that sufficient signal samples are needed to train

the learning-based detector, the overlapped segmentation is

thus adopted under the partition rule presented in (3), with the

parameters set to d = 64 and D = 4096, respectively. By this,

we could yield 1984 target samples and more than 20000 sea

clutter samples for each dataset. Then, we divide the obtained

samples into two groups, one for training composed of a half

of the target samples and all the clutter-only samples and the

other for testing composed of the rest of target samples.

To verify whether our proposed detector can flexibly tune

the FAR or not, we test its performance on #17 under the
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Fig. 3. FAR versus β0 on #17 under the VV mode.

TABLE I
COMPARISONS OF THE DETECTION PROBABILITY (Pf = 0.001).

Methods
Pd (HH mode)

SCR=-2 dB SCR=17 dB

Proposed detector 76 99

Tri-feature detector [4] 57 99

Fractal-based detector [11] 18 79

VV mode. Fig. 3 illustrates how the two introduced penalty

parameters β0 and β1 impact the FAR. From the figure, it is

obtained that a higher β0 corresponds to a lower FAR for a

given target penalty parameter β1 and a higher β1 results in a

larger FAR for a given β0. Hence, our proposed detector can

flexibly control the FAR by simply adjusting β0 and β1.

Furthermore, to evaluate the performance of our proposed

detector under varying detection environments, we compare it

with two classical detectors, the tri-feature detector [4] and the

fractal-based detector [11]. Firstly, we compare their detection

performance under different SCR situations in Table I. It

can be observed that our proposed detector can attain better

detection performance than the other two in both the high and

low SCR cases. For example, our proposed detector improves

the detection probability by 58% and 19% compared with the

fractal-based and tri-feature detectors, respectively, in the case

of SCR = -2 dB.

Secondly, we compare their detection performance at differ-

ent FARs in Fig. 4, where the detection probability is obtained

by first calculating the detection probabilities of all the datasets

and then taking an average on them. It can be seen that,

although the detection probabilities of these three detectors all

increase with the FAR, our proposed detector always achieves

better detection performance than the other two either in

high or low FAR cases. For instance, our proposed detector

improves the detection probability by 16% and 40% compared

with the tri-feature detector and fractal-based detector under

the HH mode, respectively, when the FAR is 0.001.
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Fig. 4. Comparisons of the detection probability under (a) HH, (b) VV, (c)
HV, and (d) VH modes, where the observation time is set to 4096 ms.

V. CONCLUSIONS

Taking the varying detection environments into account,

this letter has investigated the problem of detecting small

targets floating on sea surface. For this, we have first extracted

three discriminative features and then designed a SVM-based

detector that can flexibly tune the FAR. Experimental results

have verified the superiority of our proposed detector over

several existing detectors in both low SCR and low FAR cases.
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