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Abstract— The wetted width of a river is one of the most
important hydraulic parameters that can be readily measured
using remote sensing. Remotely sensed river widths are used
to estimate key attributes of river systems, including changes
in their surface area, channel storage, and discharge. Although
several published algorithms automate river network and width
extraction from remote sensing images, they are limited by only
being able to run on local computers and do not automatically
manage cloudy images as input. Here we present RivWidthCloud,
a river width software package developed on the Google Earth
Engine cloud computing platform. RivWidthCloud automatically
extracts river centerline and widths from optical satellite images
with the ability to flag observations that are obstructed by
features like clouds, cloud shadows, and snow based on existing
quality band classification. Because RivWidthCloud is built on a
popular cloud computing platform, it allows users to easily apply
the algorithm to the platform’s vast archive of remote sensing
images, thereby reducing the users’ overhead for computing
hardware and data storage. By comparing RivWidthCloud-
derived widths from Landsat images to in situ widths from the
U.S. and Canada, we show that RivWidthCloud can estimate
widths with high accuracy (root mean square error: 99 m;
mean absolute error: 43 m; mean bias: −21 m). By making
RivWidthCloud publicly available, we anticipate that it will be
used to address both river science questions and operational
applications of water resource management.

Index Terms— Discharge, Google Earth Engine (GEE), remote
sensing, river width.

I. INTRODUCTION

VARIATIONS in centerline and width along river channels
have been used to infer the morphodynamics of rivers

and river deltas [1]–[3]. Moreover, repeated width measure-
ments can be used to estimate river discharge based on
classic hydraulic geometry relationships [4]. While in situ
gauging stations measure river water level (height) to esti-
mate discharge, the numbers of stations providing data to
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the public have declined since the 1980s [5], due to both
decreased monitoring budgets and changes in international
data sharing policies. Fortunately, recent advancements in
theory and algorithms have enhanced our ability to gauge
rivers from space. Among various satellite-based river dis-
charge estimation methods that use river observations, many
require river width as input. For example, point-scale and
reach-scale [6] multitemporal river widths have been used
to estimate river discharge using hydraulic geometry rela-
tionships established with in situ discharge measurements.
Moreover, the recently discovered at-many-stations hydraulic
geometry (AMHG) allows for estimating river discharge using
widths alone [7]. In combination with the increasing number of
earth-observing satellite missions, including the forthcoming
Surface Water and Ocean Topography (SWOT) mission [8],
satellite-derived widths will help us observe ungauged rivers
and supplement in situ gauging networks, ensuring greater
monitoring consistency globally.

Most existing algorithms to extract river widths are designed
for optical images, and their application is heavily limited
by the presence of clouds, as they require cloud-free images
as input [1], [2], [9]–[14]. At any given time, clouds cover
∼67% of the earth’s surface [15] and therefore a river width
algorithm that can automatically run on images with cloud
cover will vastly increase the amount of data available for
river monitoring purposes.

Here, we present RivWidthCloud, the first Google Earth
Engine (GEE)-based river width algorithm that automatically
extracts river centerlines and widths from remotely sensed
images (cloud-free or not) with minimal user input and min-
imal required computation hardware. By adapting the widely
used RivWidth algorithm [13] to the GEE platform [16], this
new tool contains several novel features that allow for rapid
river width extraction from partially cloud-covered images.
A suite of accompanying visualization and diagnostic tools
and a detailed user manual are included in the software
repository. In what follows, we describe the algorithm,
validate its output, and discuss potential next steps for
RivWidthCloud.

II. METHOD

Calculating river widths using RivWidthCloud incorpo-
rates three main steps: 1) extracting a river mask from a
satellite image; 2) deriving a river centerline from the river
mask; and 3) measuring river width along the centerline.
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RivWidthCloud in principle works with any remote sensing
product capable of providing classifications of water and visual
obstructions (cloud, snow/ice, etc.). The methods for classify-
ing water and the accuracy of such classifications vary among
remote sensing products. Thus, the software is structured
so that new classification modules associated with different
remote sensing products could be easily inserted. Because
of its accurate cloud classification algorithm [17] and its
long mission history, we describe and validate RivWidthCloud
using data from the Landsat program, specifically imagery
from the Thematic Mapper (TM), Enhanced TM Plus, and
Operational Land Imager instruments.

A. Developing the River Mask

To classify surface water [Fig. 1(b)], RivWidthCloud uses
a simple, spectral-based water classification formula with a
reported accuracy of ∼97% [18]. The water classification
makes use of multiple spectral indexes like modified nor-
malized difference water index [19], normalized difference
vegetation index [20], and enhanced vegetation index [21]
with thresholds determined based on training data across the
contiguous U.S. Then, RivWidthCloud relies on the Global
River Widths from Landsat (GRWL) dataset [22] to distin-
guish river pixels from nonriver water pixels. GRWL con-
tains width values associated with each centerline location,
derived from Landsat images using RivWidth, for rivers wider
than 30 m globally. RivWidthCloud calculates a channel
mask [Fig. 1(c)] as all water pixels [Fig. 1(b)] that are
connected to the GRWL river centerlines. By default, the
algorithm checks connectivity to the GRWL centerline within
a 4-km radius, a modifiable value that allows measurement of
rivers with the maximum width ≤8 km. RivWidthCloud then
removes all islands with a surface area smaller than a default
of ∼0.3 km2 (333 Landsat pixels, also a modifiable value) in
the channel mask to reduce the topological complexity of the
resulting centerline. After removing the islands, the image is
then referred to as a river mask [Fig. 1(d)].

We note that the accuracy of the channel/river mask and the
widths derived from them is highly dependent on the accuracy
of the inundation map, and hence on the water classification
method that is used to generate the inundation map. While
RivWidthCloud uses a default spectral-based water classifi-
cation method, an alternative, the Dynamic Surface Water
Extent (DSWE) classification method [23], is also available
in RivWidthCloud, and can be easily selected by the user.

B. Delineating the River Centerline

There are two major steps in generating a 1-pixel-wide
river centerline: 1) deriving a raw centerline by applying three
numeric operations consecutively on the river mask: distance
transform, gradient, and skeletonization and 2) removing the
spurious branches from the raw centerline. The details of these
two steps are provided in the following paragraphs.

The distance transform assigns each river pixel the value
of its distance to the closest nonriver pixel [Fig. 1(e)].
After the distance transform, pixels close to the center of
the river have local maximum values, as they are furthest

Fig. 1. Steps to derive river centerlines. (a) Landsat RGB image. (b) Water
mask. (c) Channel mask. (d) River mask. (e) Distance to closest nonwater
pixel. (f) Gradient of the distance map. (g) Raw 1-pixel-wide centerline.
(h) Final river centerline after removing spurious branches. (i) Cross-sectional
lines with length scaled by the widths calculated using RivWidthCloud
(only every third cross-sectional line plotted).

from the banks. Next, RivWidthCloud convolves the distance
map with a pair of 3 × 3-pixel kernels (1–2) to generate a
gradient map [Fig. 1(f)]. While the maximum distance scales
with river size, the gradient close to the centerline is nearly
always a local minimum and close to zero [Fig. 1(f)]. Thus,
the algorithm generates an initial centerline by classifying
gradient-map pixels with values less than 0.9 as belonging to
the centerline. This threshold was chosen from the range used
by RivWidth [14] to balance algorithm speed—achieved with
a lower threshold, and improved centerline connectivity from
using a higher threshold. To ensure that the centerline is only
one pixel wide, three iterations of skeletonization, or thinning,
were applied to the initial centerline mask [Fig. 1(g) shows
the resulting 1-pixel-wide centerline]. The implementation of
skeletonization in GEE is modified from [24].
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The resulting 1-pixel-wide centerlines often exhibit spurious
branches—artifacts mainly produced by irregular bank shapes.
RivWidthCloud trims these branches by starting from the
endpoint of each centerline and removing either 500 pixels
(∼1500 m for Landsat) or the total length of the segment to
the next confluence, whichever is shorter. The resulting final
centerline [Fig. 1(h)] preserves the river’s channel structure
such that each channel retains its own centerline, and as
a result, each channel’s width is measured separately. This
approach differs substantially from that of the RivWidth
algorithm [13], which outputs a single centerline with total
flow width summed across all channels.

C. Calculating River Width

Once the 1-pixel-wide centerline is computed,
RivWidthCloud uses two steps to calculate river width.
First, for each centerline pixel, it calculates the direction
orthogonal to the local centerline. Second, it computes the
river width along these orthogonal directions.

To calculate the orthogonal direction, the algorithm con-
volves the river centerline image with a 9 × 9-pixel kernel
(see (S1) in the Supplemental Materials) filled with values of
zero except for the pixels along the rim. The value of each
rim pixel is assigned in the following manner: Starting from
the center-right position moving anticlockwise, each pixel is
assigned the value of the angle (in degrees) between the
horizontal line and the line connecting the pixel itself and the
kernel center. For example, the rim pixel at top-right corner is
assigned a value of 45°, and the rim pixel at top-center is equal
to 90°. The values of the centerline pixels from the convolved
image, when divided by two, approximate their orthogonal
directions. However, the resulting orthogonal direction is only
accurate when exactly two pixels intersect the rim of the
kernel, one from each end of the overlapping centerline
segment (Fig. 2). For pixels located near the end of river
centerline that intersect with the kernel once, we estimated
their orthogonal direction by adding 90° to the convolved
value. We then discard those orthogonal directions if more
than two centerline pixels intersect the kernel—a condition
that often occurs close to confluences.

After obtaining the orthogonal directions, the river width
is calculated for each centerline pixel as follows. First,
RivWidthCloud generates a line segment wm along the orthog-
onal direction with length equals three times the distance to
the closest nonwater pixel (wb; Fig. 2); then, the algorithm
calculates the river width (w) by multiplying wm by the mean
value of the channel mask [Fig. 1(c)] along wm .

w = wm × u (3)

u = w

wm
=

∑N
i=1 pi

N
(4)

where N is the total number of pixels intersecting the
segment wm , and pi is the value of the pixel i on the channel

Fig. 2. Calculating the orthogonal direction and river width. The box is
a 9 × 9-pixel kernel that is used to calculate the orthogonal direction for
its center point (gray). The red line along the orthogonal direction of the
centerline is used to calculate river width.

mask. The mean value u equals to the ratio between the wetted
length of wm and wm itself. This particular method to calculate
the final widths is chosen for its easy implementation in GEE.

D. Assigning Quality Flags

The accuracy of RivWidthCloud’s width measurements
depends on the accuracy of the water classification, which can
be impacted by clouds, cloud shadows, topographic shadows,
and the presence of snow/ice. Recent work has pioneered the
ability to distinguish these features using a machine learning
approach [25], [26], and we expand on this ability by allowing
such processing automatically in GEE, which allows easy
global application. Specifically, with each width measurement,
RivWidthCloud provides several quality flags indicating the
potential influence of each of these features [see Fig. 1(i) for
an example of RivWidthCloud derived centerline, orthogonal
direction, and widths; widths flagged are shown as invalid].

Cloud, Cloud Shadow, Snow/Ice: When using Landsat
imagery as input, RivWidthCloud uses the Fmask classification
algorithm [17] to flag whether a width measurement is affected
by clouds, cloud shadows, or snow/ice. Each of these condi-
tions has its own flag, which was assigned the mean value of its
corresponding image along the cross-sectional line wm . Thus,
a flag with a nonzero value suggests the width measurement
may be impacted by the flagged condition.

Topographic Shadow: RivWidthCloud estimates the extent
of topographic shadows using the ee.Terrain.hillShadow func-
tion from GEE. The Multi-Error-Removed Improved-Terrain
DEM (MERIT DEM) [23] and the image specific sun elevation
and azimuth are used to estimate the topographic shadow. For
each width measurement, the flag for the topographical shadow
is assigned the mean shadow value along the cross-sectional
line wm .

III. RESULTS AND DISCUSSION

To test the performance of RivWidthCloud, we validated
the widths it produces against in situ width measurements
from the United States Geological Survey (USGS) and



Fig. 3. Validation of Landsat-derived river width with in situ width
measurements from the USGS and Water Survey of Canada.

the Water Survey of Canada. For the period 1984–2018,
we obtained 1514 valid (flag-free) widths from Landsat images
that had same-day in situ measurements at gauging stations,
across the U.S. (492 stations with 1476 widths) and Canada
(27 stations with 38 widths). We found that the widths
computed using RivWidthCloud on Landsat imagery (wL)
closely matched the in situ measurements (wG) (root mean
square error = 99.2 m; mean absolute error = 43.1 m; mean
bias =−20 m) (see also Fig. 3). Large inconsistencies between
widths obtained in situ and remotely were mainly from stations
where: 1) nearby river widths changed rapidly or 2) the in
situ width was taken a certain distance upstream or down-
stream from the gaging station. In both situations, the in situ
widths did not serve as good validation data (validation can
be assessed for each individual station using the RivWidth-
Cloud GEE app: https://eeproject.users.earthengine.app/view/
rivwidthcloud-validation). For the majority of the width valida-
tion pairs, the accuracy of Landsat-derived widths depends on
the accuracy of the image classification—the classification for
water determines the extent of the river while the classification
of cloud/shadow/snow/ice determines the flagging accuracy.

The centerlines from RivWidthCloud by default do not
guarantee connectivity at confluences. This lack of connec-
tivity is a necessary side-effect of our default method of
calculating gradient to accelerate the centerline computation.
In cases where connectivity is needed, it can be enforced
by directly calculating the centerline from the river mask via
skeletonization only, skipping the steps of distance transform
and gradient. However, solely relying on skeletonization to
calculate the centerline is slow and could potentially exceed
the computational resources available to a GEE user when
applied over a large area.

IV. CONCLUSION

We present RivWidthCloud, an automated river width
extraction algorithm that uses the cloud computing services
available on GEE. By validating river widths calculated using
RivWidthCloud with same-day in situ width measurements,
we show that the algorithm can accurately extract river width
from Landsat images. It is likely that the error assessment
included here is conservative because it does not factor in
errors in in situ width measurements or mismatches between in
situ and satellite measurement locations in areas where width
changes rapidly (see Fig. S1).

Two distinct advantages of RivWidthCloud over previous
river width measuring algorithms [1], [2], [9]–[14] are its ease
of use based on a popular cloud computing environment and
its flagging capability to automatically reduce adverse impact
from features like cloud and shadows. These advantages allow
users to quickly extract typical width statistics and time series
without the overhead of downloading, storing, and processing
remote sensing data locally. It also allows for the generation of
spatially continuous multitemporal width data that can be used
to provide a priori data set of variations of river location and
width for future satellite missions like SWOT, or to estimate
river discharge either via AMHG alone or via in conjunction
with other remote sensing data products.

RivWidthCloud is currently implemented with remote sens-
ing products from Landsat program, given its long mission
history, wide application, and sophisticated cloud algorithm.
However, the range of remote sensing data for RivWidthCloud
can be readily expanded to include other remote sensing
data products (e.g., from Sentinel 2 or Moderate Resolution
Imaging Spectroradiometer).
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