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Abstract—The TanDEM-X mission (TDM) is a spaceborne 
radar interferometer which delivers a global digital surface 
model (DSM) with a spatial resolution of 0.4 arcseconds. In this 
letter, we propose an automatic workflow for digital terrain 
model (DTM) generation from TDM DSM data through 
additional consideration of Sentinel-2 imagery and open-source 
geospatial vector data. The method includes the automatic and 
robust compilation of training samples by imposing dedicated 
criteria on the multisource geodata for subsequent learning of a 
classification model. The model is capable of supporting the 
accurate distinction of elevated objects and bare earth (BE) 
measurements in the TDM DSM. Finally, a DTM is interpolated 
from identified BE measurements. Experimental results obtained 
from a test site which covers a complex and heterogeneous built 
environment of Santiago de Chile, Chile, underline the usefulness 
of the proposed workflow, since it allows for substantially 
increased accuracies compared to a morphological filter-based 
method. 

Index Terms— Automatic Training Sample Compilation, 
DTM Generation, Supervised Classification, TanDEM-X, 
Sentinel-2, OpenStreetMap 

I. INTRODUCTION 

he extraction of digital terrain models (DTMs) from 
digital surface models (DSMs) is a frequent task in Earth 
Observation data analysis. The combination of both 

models allows computing a normalized DSM (nDSM) which 
solely contains heights of objects which are elevated from the 
Earth’s surface such as buildings or vegetation. The extraction 
procedure foresees frequently a two-step approach: First, the 
elevation measurements (i.e., pixels) which represent bare 
earth (BE) are distinguished from elevation measurements 
which represent elevated objects (OBJ). Second, a DTM is 
generated by interpolating between identified BE pixels [1], 
[2]. 

Such procedures were developed primarily for very high 
spatial resolution (VHR) DSMs which are frequently acquired 
by e.g., airborne LiDAR campaigns. In comparison, the 
TanDEM-X mission (TDM), which is a spaceborne radar 
interferometer, provides a global elevation model with a 
consistent but considerably lower spatial resolution of 0.4 
arcseconds (~12 meters) [1]. Tailored methods to extract 
objects such as buildings or vegetation from this model were 
already proposed (e.g., [1], [3], [4]). However, due to the 
coarser spatial resolution properties compared to DSMs 
derived from e.g., LiDAR, it remains challenging to accurately 
separate OBJ and BE pixels in the TDM elevation 

measurements in an automated manner. 
To enhance accuracy properties of previous approaches, 

here, we jointly exploit TDM DSM data, open-source 
geospatial vector data, and imagery from the Sentinel-2 (S-2) 
constellation. To this purpose, we establish a novel workflow 
which foresees the automatic compilation of training samples 
by imposing dedicated criteria on the multisource geodata for 
subsequent learning of a classification model which is capable 
of supporting the accurate distinction of OBJ and BE 
measurements.  

Regarding the underlying methodological principle to 
automatically compile training samples, existing works 
exploited the idea of rule-based training sample selection in 
different application contexts: Huang et al. [5] deploy local 
top-of-atmosphere reflectance histograms computed from 
Landsat imagery to identify the so-called “forest peak” and 
select samples for supervised classification of forest areas 
thereof. With a focus on urban areas, Cao et al. [6] establish 
rules for DMSP-OLS and SPOT data to create a training set 
with “urban” and “non-urban” samples. Huang et al. [7] 
automatically generate labeled training samples for the same 
thematic classes by imposing constraints on the MODIS 
LandCover Type Yearly Global 500m product. Regarding 
mapping efforts with a higher thematic resolution, Huang et 
al. [8] use several spectral indices computed from VHR 
multispectral imagery and ancillary geospatial data (i.e., 
geospatial vector data from the OpenStreetMap (OSM) 
project) for automated compilation of a training set with 
labeled samples for six common land cover classes. In the 
context of DTM generation, Gevaert et al. [2] impose two 
threshold rules on the results of morphological top-hat filter 
operations on a VHR DSM for compilation of a training set 
containing samples for OBJ and BE measurements.  

As can be seen from the literature, existing works either 
exploited the principle of rule-based training sample selection 
for land cover mapping using optical data or generate DTMs 
from VHR DSM data. To address the coarser resolution of the 
TDM DSM data, here, we uniquely combine optical and DSM 
data as well as geospatial vector data for an enhanced 
distinction of OBJ and BE measurements. Moreover, for a 
complete initial discrimination of OBJ and BE pixels in the 
TDM model, we built upon a tailored region-growing-based 
progressive morphological filtering (RPMF) procedure. In 
parallel, an initial training set is compiled by computing 
spectral indices from the S-2 imagery which are physically 
meaningful for six common land cover (LC) classes (i.e., 
“high vegetation”, “low vegetation”, “bare soil”, “building”, 
“water”, and “shadow”). Dedicated threshold-based rules are 
employed to automatically label samples thereof. In addition, 
a tailored road extraction (RE) module is implemented which 
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3 
TABLE I. 

 SPECTRAL INDICES USED FOR INITIAL TRAINING SET COMPILATION 

Index Description Formula LC class  thresholds 

���� 

The normalized difference vegetation index (NDVI) internalizes different 
reflection properties of vegetation in the red (����) and NIR (����) band, 
respectively. High numerical values indicate photosynthetically active 
vegetation. 

���� =
���� − ����

���� + ����

 

low 
vegetation 

���� > 0.55 

high 
vegetation 

���� ≤ 0.55  
∩  ���� > 0.3 

���� 
The normalized difference water index (NDWI) highlights LC classes 
such as water, which feature a strong reflectance in the green band 
(������) and strong absorption in the NIR band. 

���� =
������ − ����

������ + ����

 water 
���� ≤ 0.35  
∩  ���� > 0.2 

��� 
The saturation-intensity ratio index (���) is computed from a conversion 
of the normalized false color composite image into the Hue-Saturation-
Intensity space. Bare soil shows low numerical values in this domain. 

��� =
���������� − ���������

���������� + ���������
 bare soil 

��� ≤ ˗0.45 
∩ ��� > ˗0.6 

��� 
The built-up area index (BAI) considered here deploys the blue band 
(�����) and NIR band to highlight impervious surfaces including 
buildings. 

��� =
����� − ����

����� + ����

 

building 

��� ≤ ˗0.1 
∩  ��� > ˗0.25 

��� 

The morphologic building index (MBI) builds upon the circumstance that 
the relatively high reflectance of roofs and adjacent shadows induce high 
local contrast of buildings. It employs the sum of the differential 
morphologic profile (DMP) of the white-top-hat (WTH) transform. 
Thereby, �� is the opening-by-reconstruction of the brightness image (�) 
and � the parameter of scale. Huang et al. [10] use DMPs based on a 
linear SE applied with varying directions �. To reduce computation time 
we use a disc-shaped SE instead and vary solely its size (i.e., scale �). 

��� = � ������(�), ���(�)

�

= � − ��(�) 

��� > 5 

��� 

The morphologic shadow index (MSI) utilizes the fact that shadows 
feature a low reflectance and high local contrast. Contrary to the MBI, the 
MSI utilizes a black-top-hat (BTH) transform where �� is the closing-by-
reconstruction of � [10]. 

��� = � ������(�), ���(�)

�

= ��(�) − � 

shadow 
��� ≤ 13 

∩  ��� > 12 

 further reduce noise and stress edges related to roads in the 
image. Third, the resulting image is subject to an edge 
extraction procedure (i.e., a gradient filter) to identify 
candidate road segments. Finally, candidate road segments are 
combined with buffered geospatial road vector data from 
OSM and labeled as road samples if an intersection exists.  

An initial training set is compiled based on the described 
procedure for seven LC classes. However, to enhance 
reliability of the labeled samples (i.e., reduce commission 
errors), a three-step pruning strategy is followed. First, labeled 
samples are pruned from the training set if they feature 
ambiguous labels (i.e., more than one LC class was assigned 
to a single pixel). Second, labeled samples at border regions of 
the LC classes “water”, “shadow”, and “bare soil” are also 
pruned from the training set by applying an erosion operation 
[12]. This is done to reduce the likelihood of including mixed 
pixels in the training set, which can be dominantly found at 
the border regions of LC classes. Third, it is verified that the 
remaining labeled samples also correspond to the initial 
outcome of the RPMF procedure, i.e., the samples of the LC 
classes “high vegetation”, and “buildings” feature the label 
“OBJ” in the intimal outcome of the RPMF procedure, 
whereas the samples of the LC classes “low vegetation”, 
“roads”, and “bare soil” feature the label “BE”. Initially 
labeled samples which correspond to one or multiple criteria 
of the pruning strategy are added to the pool of unlabeled 
samples again.  

C. Model learning, postclassification processing and DTM 
generation 

The remaining labeled samples in the training set are used for 
learning a RF model based on an extensive feature set. The 
feature set comprises S-2 spectral information, which is 
encoded by the spectral indices which were also used for the 
training set compilation, additional band ratios, as well as 
tasseled cap transformations. Beside MBI and MSI, further 
features from mathematical morphology are employed. In this 

manner, we conducted opening and closing operations and 
computed reconstruction and top-hat profiles [12]. The OSM 
geospatial vector data feature which was used for identifying 
“road” samples is also considered here by means of a binary 
coding scheme. First and second order texture features are also 
computed, whereas the latter are based on the co-occurrence 
matrix [11]. Lastly, TDM DSM properties are encoded by 
means of measures of central tendency and spread computed 
from moving windows with various sizes on the DSM 
greyscale image. Given the different feature groups and 
various window sizes for the deployed spatial features, finally, 
each pixel is represented by a 221-dimensional feature vector.  

The RF model is learned with a heuristic determination of 
hyperparameters, i.e., the number of classification trees to be 
grown ����� and the number of features ���� used at each 

node is set to 500 and �� (with � denoting the number of the 

input features), respectively, since this parameterization can 
yield near optimum classification results [9]. The learned 
model is applied to identify the LC class of each pixel. 
Subsequent to this, the LC classes are aggregated to BE/OBJ 
pixels and BE pixels in the intimal outcome of the RPMF 
procedure are pruned if they correspond to OBJ pixels in the 
LC classification.  

The identified BE pixels are used to interpolate a DTM. 
Thereby, an exact interpolation method, which predicts a 
value that is equal to the actual value at a sampled location 
and interpolates solely between values of sampled locations, is 
favorable to keep elevation values of BE pixels unaltered. 

III. DATA AND EXPERIMENTAL SETUP 

A. Data 

The test site contains 342,875 pixels which cover parts of the 
city of Santiago de Chile, Chile. Generally, the TDM elevation 
model can be regarded as a DSM, especially when analyzing 
built environments. Only few surfaces such as ice, snow, or 
vegetation can be penetrated by the X-band SAR signal. 
Comparisons to ICESat data underline the high quality of 
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2b-e) using either aggregated LC classes (i.e., BE/OBJ) from 
the seven LC classes or, as a variant to the proposed 
workflow, using the aggregated LC classes which were 
directly classified. Thereby, results are presented for variations 
of the proposed method to quantify the contribution of 
individual processing steps: Fig. 2b shows results when solely 
information from S-2 and OSM is used to compile the training 
set and feature vector for classification (i.e., the third step of 
the three-step pruning strategy (cf. section II.B) was not 
carried out and DSM features were not included for the 
classification process). Fig. 2c shows results where initial 
outcomes of RPMF are also deployed to compile the training 
set and the results shown in Fig. 2d were obtained with the 
inclusion of DSM features. Finally, Fig. 2e provides a further 
variant where samples of certain LC classes in the training set 
were pruned (i.e., downsampled) to establish a balanced 
training set. It can be noted that Fig. 2d-e document the 
approach which internalizes the most exhaustive exploration 
of the given input data. 

First, it can be recognized that the accuracies for the LC 
classification with all seven classes show consistently a 
substantial agreement: κ statistics and OAs increase in a 
strictly monotonic way from 66% to 78% and from 75% to 
84%, respectively, depending on the level of input data 
exploration. The accuracy levels of the aggregated LC 
classification clearly favor the approach which foresees the 
aggregation of the seven LC classes as proposed throughout 
the description of the workflow in contrast to the direct 
classification of BE/OBJ pixels. This circumstance can be 
related to the fact that the aggregated treatment of the LC 
classes for model learning can impose divergence in the class 
patterns in feature space since LC classes with similar spectral 
properties do not constitute their own distinctive class pattern 
in feature space anymore but belong to opposite aggregated 
classes. The same holds true for the accuracy levels when 
comparing final BE/OBJ discriminations in the DSM: the 
accuracies obtained with the aggregated LC classification 
show superior accuracy measures which range from 64% to 
72% and from 83% to 87% regarding κ statistic and OA, 
respectively. The reported numbers were obtained with a 
heuristic hyperparameter determination. This approach 
provided more favorable results here compared to exhaustive 
hyperparameter tuning. In this manner, it can be noted that 
model selection based on the automatically compiled labeled 
samples and exhaustive hyperparameter tuning may fit the 
training data well but can fail to properly generalize for 
unseen samples. However, the numerical results 
unambiguously underline the usefulness of the exhaustive 
exploration of the given input data which allows vastly 
increasing the initial accuracy of the RPMF procedure. 
Thereby, downsampling of the majority classes to establish a 
balanced training set also proved useful here in achieving the 
most favorable accuracy levels. 

Fig. 2g-h shows the identified BE pixels with the RPMF 
procedure and the proposed method (based on the most 
exhaustive exploration of the given input data and a balanced 
training set), respectively. The proposed method enables a 
decrease of commission errors with respect to BE pixels: areas 
which were mistakenly labeled as BE by RPMF such as 
settlement areas with connected highly dense building 

structures with low heights are excluded. The corresponding 
DTMs (Fig. 2i-j) underline the importance of the enhanced 
identification of BE pixels: the DTM computed based on the 
proposed method features both a decreased mean error (ME) 
and mean absolute error (MAE) (The measures were 
computed from the reference BE pixels in the DSM to enable 
a relative comparison with respect to the methods. An 
evaluation based on external DTM data from e.g., LiDAR 
measurements was not followed here to avoid an amalgamated 
assessment of both methods and data quality of the TDM 
DSM). The resulting nDSMs (Fig. 2k-l) mirror the previous 
findings: the nDSM computed with the proposed method 
contains numerous elevated objects which are not captured 
otherwise. As such, results unambiguously underline the 
beneficial joint exploitation of TDM DSM data, S-2 imagery 
and geospatial vector data for discriminating BE/OBJ pixels.  

V. CONCLUSIONS 

We proposed a novel workflow for DTM generation which 
foresees the automatic compilation of training samples by 
imposing dedicated criteria on TDM DSM data, OSM 
geospatial vector data and multispectral S-2 imagery. A 
classification model is learned from the training samples 
which is capable of supporting the accurate distinction of OBJ 
and BE measurements in TDM DSM data. Finally, identified 
BE measurements are deployed to interpolate a DTM. 
Experimental results underline the usefulness of the proposed 
workflow, since it allows for substantially increased 
accuracies compared to a morphological filter-based method.  
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