This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

AVDNet: A Small-Sized Vehicle Detection Network
for Aerial Visual Data
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Abstract— Detection of small-sized targets in aerial views is a
challenging task due to the smallness of vehicle size, complex
background, and monotonic object appearances. In this letter,
we propose a one-stage vehicle detection network (AVDNet) to
robustly detect small-sized vehicles in aerial scenes. In AVDNet,
we introduced ConvRes residual blocks at multiple scales to
alleviate the problem of vanishing features for smaller objects
caused because of the inclusion of deeper convolutional layers.
These residual blocks, along with enlarged output feature map,
ensure the robust representation of the salient features for small-
sized objects. Furthermore, we proposed a recurrent-feature
aware visualization (RFAV) technique to analyze the network
behavior. We also created a new airborne image data set (ABD)
by annotating 1396 new objects in 79 aerial images for our experi-
ments. The effectiveness of AVDNet is validated on VEDAI, DLR-
3K, DOTA, and the combined (VEDAI, DLR-3K, DOTA, and
ABD) data set. Experimental results demonstrate the significant
performance improvement of the proposed method over state-of-
the-art detection techniques in terms of mAP, computation, and
space complexity.

Index Terms— Aerial scenes, automatic target detection, deep
learning, remote sensing, residual features, vehicle detection.

I. INTRODUCTION

DVANCES in unmanned aerial vehicles (UAVs) tech-

nology has unlocked a new frontier of computer vision,
which requires analysis and interpretation of aerial images and
videos. Vehicle detection in aerial images is a challenging task
due to the variable sizes of the vehicles (small, medium, and
large), high/low density of vehicles, and complex background
in the camera’s field of view. Therefore, it is important to
design and develop robust vehicle detection algorithms suitable
for aerial scenes.

The literature for vehicle detection in aerial images can
be divided into descriptor-based and feature learning-based
methods. The traditional feature descriptor-based approaches
generally consist of three stages: vehicle localization, feature
extraction, and classification. For vehicle localization, slid-
ing window [1]-[5] is one of the most widely used
methods. However, parameter selection for window size, stride
length, etc., influences the detection performance. It also
increases the processing time, which is not aligned with
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the demand for real-time detection. Therefore, many seg-
mentation approaches, such as simple linear iterative clus-
tering [6], edge-weighted centroidal Voronoi tessellations-
based algorithm [7], have been proposed to alleviate some of
these shortcomings. For feature extraction and classification,
various feature descriptors, i.e., Haar-features, scale invariant
feature transform, local binary pattern, histogram of oriented
gradients (HOG), Gabor filters, etc., [8]-[12], have been used
with support vector machines (SVM) for classification in the
literature.

Liu and Mattyus [1] detected the vehicle locations by
a sliding window mechanism using integral channel fea-
tures (ICFs) and an AdaBoost classifier in a soft-cascade
structure. The detected spatial regions are further classified
into different orientations and vehicle type based on HOG
features. Similar framework with a different set of descriptors
to encode the local distributions of gradients, colors, and
texture were proposed in [2]. Xu ef al. [3] improved upon the
original Viola—Jones object detection scheme for better vehicle
detections in UAV images. Zhaou et al. [4] proposed to use a
bag of words, local steering kernel descriptor, and orientation
aware scanning mechanism to perform vehicle detection. More
recently, Wu et al. [5] presented an aerial object detection
framework, integrating diverse channel features extraction,
feature learning, fast image pyramid matching, and boosting
strategy.

Chen et al. [10] and [11] proposed the superpixel seg-
mentation technique along with fast sparse representation to
generate relevant vehicle patches. The HOG features for these
patches are used in an SVM classifier for vehicle detection.
Yu et al. [12] performed rotation-invariant object detection
using superpixel segmentation and Hough forests.

The feature learning-based methods have utilized convo-
lutional neural network (CNN) to learn features from an
image for object detection. These methods can be catego-
rized into two-stage and single-stage frameworks. Recent
approaches [13]-[17] for aerial images have primarily used
the two-stage architecture [fast/faster region-based CNN
(R-CNN) [18]]-based frameworks to detect vehicles in aerial
scenes. The faster R-CNN, consists of a region proposal
network (RPN) and object detection network, leading to
significant computational cost. Redmon et al. [19] proposed
a unified one-stage model named YOLO to perform object
detection and classification. Further, improvements were also
proposed through recent detectors such as YOLOv2 [20],
YOLOv3 [21], and RetinaNet [22]. However, these tech-
niques are more suitable for images captured from canon-
ical views and consist of a large number of parameters
requiring high memory space. In addition, to effectively
deal with the challenges of rotation variations and appear-
ance ambiguity in geospatial scenes, various rotation-invariant
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Fig. 1. Proposed AVDNet vehicle detection framework (for two vehicle

classes). x, y, w, h: bounding box coordinates (center location, width, height),
Oconf: object confidence, Cconf: class confidence.

detectors [8], [23]-[25] have been proposed in the literature.
Diao et al. [26] proposed saliency-based object detection using
deep belief networks. Nie et al. [15] used multitask models to
combine semantic labeling and detection information for more
accurate detection results.

In this letter, we address the shortcomings of the existing
deep networks for object detection in aerial scenes and propose
the one-stage vehicle detection network (AVDNet) object
detector. The AVDNet preserves the small object features by
introducing ConvRes blocks at multiple scales. To detect the
densely populated objects, the AVDNet generates enlarged
feature maps in the final layer of the network. The input
layer is enlarged to maintain higher pixels-per-object values.
Furthermore, we proposed a recurrent-feature aware visualiza-
tion (RFAV) technique to visually analyze the AVDNet layers.
The AVDNet also offers superior resource (computation and
memory space) efficiency as compared to the state-of-the-art
techniques.

II. PROPOSED METHOD
We propose a novel AVDNet technique for aerial scenes.
The detailed description of the proposed work, the motivation
behind the methods and analysis of AVDNet is given in
Sections II-A and II-B.

A. AVDNet Object Detector

We designed a one-stage AVDNet object detector to simul-
taneously perform object localization and classification. The
proposed detector uses the AVDNet convolutional network
to learn the salient feature maps from the input image. The
AVDNet generates a fixed-size tensor (76 x 76), which
contains the bounding-box coordinates, object, and class con-
fidence values of different anchor boxes for an input image.
These features are then used to perform object localization and
classification. The entire architecture of the proposed aerial
object detector is shown in Fig. 1.

B. AVDNet Convolutional Network

The aerial images usually consist of smaller and crowded
objects, which makes it is very difficult to learn the individual
object features. Typically, the initial CNN layers contain
detailed information as compared to the more abstract features
available in the deeper layers. Therefore, we propose to use
residual feature blocks at multiple scales to preserve the low-
level features present in the shallower layers while increasing
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Fig. 2. RFAV visualization of the ConvRes3 block of AVDNet.

the depth of the network. The proposed AVDNet consists of
two convolutional (conv) layers and five residual feature blocks
(ConvRes), as shown in Fig. 1. Each ConvRes block extracts
the salient features by applying two 3 x 3 and one 1 x 1
cony operation. These ConvRes blocks enhance the capability
of neurons to learn the minute details while maintaining the
robustness of the features, as shown in Fig. 2. All the conv
layers are followed by a batch normalization and leaky ReLu
activation layer. The detailed explanation of the architecture
is given as follows.

1) Convolutional Layer: Let I¢(a, b) be an input image of
size M x M;a € [1,M],b € [1, M] having C channels and
f() is the filter with a kernel size & x h. The response of
the convolutional layer (conv) is computed by the following
equation:

d

C
FE=" ) =17 + b 1)

j=l k=1

where b¥ is the bias, n € [1, M], and d is the filter depth.
In AVDNet, conv with stride 2 is used to downsample the
feature maps, which allows inherent learning of the weights
to represent the salient features from the previous layer. The
outcome of conv with stride 2 is computed by the following
equation:

d
Fhn =3 rfmy« 1" +bF nell, M2 @)
j=1

2) ConvRes Blocks: The response of a ConvRes block
consisting of three conv layers is computed using the following
equation:

Fgoanes = Fld(a’ b) + Fld—Z(a5 b) (3)

where [ is the current conv feature layer. These ConvRes
residual features are studied at three different scales in the
AVDNet. The 1 x 1 conv response along with the leaky ReLu
introduces an increased amount of nonlinearity in the feature
response of the previous 3 x 3 conv layer. This enhances the
ability of the network to study the local features for very small
objects.

C. Analysis of the AVDNet Detector

1) Recurrent-Feature Aware Visualization: In Fig. 2,
the composite visual representation of the multiple feature
maps generated at the end of a conv operation is shown. For
d feature maps in conv layer [, the RFAV representation is
computed using the following equation:

RFAV(a, b) = argmax (H“"(2)); z € [0,255] (4
V4

where argmax(-) collects the histogram bin index of the
maximum value. The temporal histogram Hl(a’b)(-) at pixel
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Fig. 3. Sample activation responses after each ConvRes block of AVDNet.
The red boxes highlight the activations in different regions for the presence
of vehicles in the input image, d = depth of the activation map.

location (a, b) is calculated using the following equation:

d
Hl(d,b)(z) — Zé(Flk(a’ b) — Z)§ z € [0, 255]. 5)
k=1

2) Feature Degradation Problem: Usually, the initial layers
have detailed information as compared to the features at the
deeper layers. These detailed features are very useful in the
detection of small and dense objects. In order to preserve
the small-sized object features, we designed residual feature
blocks at multiple scales in the AVDNet. These residual
connections enable the network to activate the regions with the
presence of vehicles and neglect the rest, as shown in Fig. 3.

3) Effect of Final Feature Map Resolution: The lower
pixels-per-object values of the smaller objects cause the fea-
tures to vanish in the deeper networks. This is in contrast
to the features of bigger objects with higher pixel-per-object
values, which are clearly detected in the deeper CNN layers.
For example, if the resolution of an image is 1024 x 1024,
and the size of the vehicle is ~40 x 60 in the image, then,
in the YOLOvV2 architecture, the image is first resized into
416 x 416 or 608 x 608 input size and further downsampled
five times after several convolution and max-pooling layers.
This will result in negligible feature representation (around
1 or 2 tensors) for the dense small-sized vehicles in the output
feature maps, which is insufficient to accurately detect those
objects. Therefore, the proposed AVDNet addresses this issue
by maintaining a high-dimensional tensor shape in the final
layer.

4) Higher Pixels-Per-Object Values: We have made another
observation that the input layer size influences the network’s
capability to learn the features for the small-size objects. This
point was also reiterated by Lin ef al. [22] in RetinaNet where
they used 600-pixel and 800-pixel image scale as input to the
network to improve the detection performance. In the AVDNet,
we have used an enlarged input layer size of 608 x 608.
However, the total number of parameters and inference model
size of the AVDNet is approximately 79% and 63% lower as
compared to YOLO and RetinaNet, respectively. The proposed
AVDNet is more accurately able to perform vehicle detection
with lower space and computational complexities.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Data Sets

1) VEDAI: VEDAI [27] data set contains aerial images
captured from various scenarios for vehicle detection. In our

TABLE I
SUMMARIZATION OF THE EVALUATED DATA SETS

Dataset  #Images #Objects #Object per class
car: 1393, truck: 307, pickup: 955,
VEDAI 1248 3773 tet: 190, cc: 397, bt: 171, mc: 4, bus:
3, van: 101, other: 204, large: 48
DLR-3K 262 8401 car: 8210, hv: 191
car: 24516, hv: 11307, pln: 4733,
DOTA 1558 55235 bt: 14679
ABD 79 1396 car: 1353, hv: 11, bt: 32
Complete 3099 68579 car: 36510, hv: 12406, pln: 4781,

bt: 14882
*tct: tractor, cc: camping car, mc: motorcycle, hv: heavy vehicle, pln: plane,
bt:boat

experiments, we have trained our proposed AVDNet for
11 vehicle categories. The details of all the data sets (number
of images, objects per class, etc.) are given in Table I.

2) DLR-3K: DLR-3K [1] is mainly comprised of scenes
from urban and residential areas. For our experiments, we have
divided each image (total of 20 images) into 16 parts to gen-
erate 320 images. We have manually annotated all the images
in DLR-3K and generated 8401 horizontally aligned bounding
boxes for all the objects. Finally, we selected 262 images with
a resolution of 1404 x 936 for training and evaluation.

3) DOTA: DOTA [28] introduced a large-scale data set
consisting of 2806 aerial images. In our experiments, we have
represented these objects through four categories: car, heavy
vehicle, plane, and boat. Moreover, we manually annotated
all the images in DOTA and generated 55 235 horizontally
aligned bounding boxes as ground truth.

4) Airborne Data Set (ABD) Data Set: We collected 79 new
aerial images from online sources and generated a new data set
named ABD by annotating 1396 objects for our experiments.
The objects were annotated with four different classes: car,
heavy vehicle, plane, and boat.

5) Complete Data Set: For more comprehensive perfor-
mance analysis of the proposed and existing object detectors
in aerial scenes, we generated a large data set by combining
VEDALI DLR-3K, DOTA, and ABD data sets. The complete
data set is categorized into four classes similar to the DOTA
and ABD data set. The summary description of all the data
sets is given in Table L.

B. Experimental Settings

1) Implementation Details: The entire method is imple-
mented in darknet. The detection results of the AVDNet
depend on various parameters, such as intersection over union
(IoU) thresholds and number of anchor boxes. The threshold
is the minimum object confidence score for which the network
will detect an object. The object and class confidence values
are computed, as given in [20]. We have generated four
anchors with respect to each of the four training data sets.

2) Training Configuration: Training is done over a Titan
Xp GPU system with stochastic gradient descent optimizer
and minibatch size = 4. The weight decay and momentum
parameters are set to 0.0005 and 0.9, respectively. The training
loss is calculated by taking the sum of square error from the
final layer of the network, as given in [20]. We train our
model with input layer size of 608 x 608, which is determined
through a set of experiments on parameter sensitivity analysis
for computational performance and model accuracy. Similarly,
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TABLE 11
COMPARATIVE DETECTION PERFORMANCE OF THE AVDNET
AND EXISTING STATE-OF-THE-ART TECHNIQUES
Method/mAP (%) VEDAI DLR-3K DOTA Complete
Coupled R-CNN 12.04 11.74 25.60 19.66
YOLOV2 416x416 9.08 9.61 33.36 28.86
YOLOv2 608x608 25.12 26.81 47.45 48.04
Faster R-CNN 34.82 20.04 42.29 38.02
YOLOv3 416x416 32.07 52.11 74.46 70.35
YOLOv3 608x608 38.98 54.49 76.60 75.21
RetinaNet 43.47 54.77 73.77 71.28
AVDNet 51.95 56.24 79.65 80.02

the initial learning is set to 0.001 through experimental analy-
sis with different learning rates.

3) Model Training: We divide VEDAI, DOTA, Complete
data set into train and test set with a ratio of ~[90:10].
The DLR-3K data set is divided with a ratio of ~[80:20].
The AVDNet is trained over each data set without using
any pretrained weights. The AVDNet detector is trained for
~30k iterations over VEDAI, DOTA, Complete data set, and
~15k iterations over DLR-3K. The initial learning rate is
further reduced by a factor of 10 at 20k iterations for VEDAI,
DOTA, and Complete data set, and at 10k iterations for
DLR-3K. The RetinaNet detector was trained for each data set
using the ResNet-50 model pretrained over the ImageNet data
set. Similarly, pretrained ResNet-101 was used while training
Faster R-CNN over the aerial data sets. The AVDNet generates
four bounding boxes corresponding to each grid cell as a center
and selects the bounding box with the highest IoU with respect
to the given threshold.

C. Results and Analysis

1) Quantitative Results: The performance measures of the
proposed AVDNet and other state-of-the-art approaches for
vehicle detection in VEDAI, DLR-3K, DOTA, and Complete
data set is given in Table II. We compare different methods
in terms of mAP, which corresponds to the average of the
maximum precisions at different recall values. To ensure fair
comparison, all the methods were evaluated over the same set
of unseen test data.

The proposed AVDNet outperforms the existing state-of-
the-art techniques in all four aerial data sets. More specif-
ically, it achieves 8.48%, 1.47%, 5.88%, and 8.74% higher
mAP in comparison to RetinaNet over VEDAI, DLR, DOTA,
and Complete data set respectively. Similarly, it outperforms
YOLOV3 by 12.97%, 1.75%, 3.05%, and 4.81% over the four
respective data sets, respectively. The AVDNet also signif-
icantly exceeds the performance of Coupled R-CNN [16],
which is designed for the task of aerial object detection.

We present the precision-recall graphs at different
IoU thresholds for AVDNet, YOLOv2, and YOLOvV3
(Figs. 4 and 5). It is evident from Figs. 4 and 5 and
Table II, that the AVDNet is much more robust for vehicle
detection in aerial images in comparison to the current pop-
ular CNN-based techniques. We have calculated the results
at two different input layer size 416 and 608, to evaluate
the performance of YOLOv2. The performance improvement
of YOLOvV2_608x608 over YOLOvV2_416x416 clearly proves
our analysis about the effects of pixel-per-object values over
the performance, as discussed earlier in Section III. The
proposed AVDNet outperforms both YOLOv2_416x416 and
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Fig. 5. Precision-recall graph of the proposed and existing state-of-the-art
object detectors over (a) DOTA and (b) Complete data set.

Fig. 6.  Qualitative performance of AVDNet under various challenging
scenarios. First row: occlusion by overhead building/trees. Second row:
vehicles of varying sizes and orientations. Third row: vehicles covered with
shadows. (a) Input aerial image. (b) Vehicles detected by AVDNet.

YOLOv2_608x608 in terms of mAP. As stated earlier,
the enlarged dimensionality of the final tensor layer used
in the proposed AVDNet leads to better performance as
compared to YOLOv2 and YOLOV3, and the same is shown
in Figs. 4 and 5.

2) Qualitative Results: We show the qualitative results of
our approach to different challenging scenarios in Fig. 6. The
detection responses from the original images are cropped out
for appropriate visual representation. The AVDNet is able
to detect vehicles, which are partially occluded by overhead
building or trees, as shown in the first row in Fig. 6. Similarly,
the varying shapes and orientation of vehicles (boats) are also
robustly detected by the proposed method, and the same is
shown in the second row in Fig. 6. Furthermore, vehicles cov-
ered with shadows incident from buildings/trees/other objects
are also detected accurately by the proposed AVDNet.
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TABLE III

COMPUTATIONAL AND SPACE COMPLEXITY OF THE PROPOSED METHOD
AND EXISTING STATE-OF-THE-ART TECHNIQUES

No. of params.

Method . e Model size
(in_millions)
YOLOvV2 67 255 MB
YOLOvV3 61 235 MB
Faster R-CNN 59 253 MB
RetinaNet 36 146 MB
AVDNet 13 53 MB

We can also see that, in case of a high degree of occlusion,
the vehicles are undetected as shown in the fourth row as a
failure case. However, overall, these qualitative results demon-
strate the effectiveness of our approach in different challenging
scenarios in aerial object detection.

3) Complexity Analysis: The computation and space com-
plexity of the proposed method and existing state-of-the-art
techniques is given in Table III. We can see that the proposed
method uses approximately 1/5, 2/9, 5/14 times smaller num-
ber of parameters as compared to YOLO (v2 and v3), Faster
R-CNN, and RetinaNet, respectively. Similarly, the proposed
AVDNet model utilizes approximately 2/9, 2/9, 5/14 times less
memory space as compared to YOLO (v2 and v3), Faster
R-CNN, and RetinaNet, respectively. Thus, the proposed
method offers superior resource efficiency (computation and
memory space) as compared to the state-of-the-art techniques.

IV. CONCLUSION

In this letter, we identified the shortcomings of the exist-
ing one-stage object detectors for aerial scenes. To address
these issues, we proposed a new object detector AVDNet
by introducing ConvRes blocks at multiple scales to pre-
serve salient features of small-sized objects. We maintained
higher pixels-per-object values and generated enlarged feature
maps for accurate feature representation in the output layer.
Moreover, we proposed to analyze the network behavior by
introducing RFAV technique. Furthermore, we generated a
new data set ABD by collecting 79 new aerial images (anno-
tated 1396 objects) from open sources. We demonstrated the
efficacy of the AVDNet by conducting experiments on three
challenging data sets VEDAI, DLR-3K, and DOTA. We also
developed a large-scale aerial image data set by combining
all three data sets along with the ABD data set. From the
experimental results, it is clear that the AVDNet outperforms
the existing state-of-the-art approaches in terms of mAP,
computational (no. of parameters), and space complexity.
The detection performances over the complete data set also
provide baseline results for future vehicle detection techniques
designed for aerial scenes.
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