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Abstract—Hyperspectral images (HSIs), featured by a high
spectral resolution over a wide range of the electromagnetic
spectrum, have been widely used to characterize materials with
subtle difference in the spectral domain. However, a large number
of bands and insufficient number of sample pixels for each class
are challenging for traditional machine learning-based classifiers.
As alternative tools for feature extraction, neural networks have
received extensive attention. This letter proposes to combine t-
distributed stochastic neighbor embedding (t-SNE) with convolu-
tional neural network (CNN) for HSI classification. Our frame-
work is designed to automatically capture potential assembly
features which are extracted from both the dimension-reduced
CNN (DR-CNN) and multiscale-CNN. Experimental results show
that the proposed classification framework out-performs several
state-of-the-art techniques on three real datasets.

Index Terms—hyperspectral image classification, t-distributed
stochastic neighbor embedding, convolutional neural network,
dimensionality reduction, assembly fusion.

I. INTRODUCTION

With the development of hyperspectral imaging, increasing
spatial-spectral resolution provides rich information for clas-
sification. In existing works, random forest (RF) [1], support
vector machine (SVM) [2] and sparse representations (SR) [3]
have been considered as efficient algorithms for feature extrac-
tion and classification in HSIs. However it is difficult to obtain
high accuracy from classifying directly original hyperspectral
data, due mainly to the Hughes phenomenon, i.e. insufficient
number of pixel based samples in comparison to the high
dimensionality of the spectral data [4]. Meanwhile, although
high spectral resolution leads to increased inter-class variation,
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the high dimensional data also increases the computational
complexity and limits the separability of traditional methods,
leading to relatively poor classification performances. This is
mainly due to the extract shallow features fails to represent
the essential taxonomic features of each class in HSI [5].

In order to address the challenge of high-dimensionality in
HSI, manifold learning becomes a hot topic in HSI classifica-
tion since 2000 [6]. By projecting HSI into low-dimensional
spaces, manifold learning can find the intrinsic structure
of differently distributed data and suppress the noise. The
machine-learning community has demonstrated the potential
of manifold-based approaches for nonlinear dimensionality
reduction [7]. While, manifold learning inevitably lost some
crucial information in data projecting.

For HSI classification, the most important step is to extract
high-quality features. Recently, deep learning has received
extensive attention in hyperspectral classification due to its
capability to learn and represent more meaningful features
hierarchically. Compared with state-of-the-art traditional meth-
ods, deep learning can extract higher-level and more robust
features [8]. A number of deep learning networks have been
successfully applied in hyperspectral classification. [9] pro-
posed promising and novel auto-encoder based deep neural
networks, which for the first time introduced stacked con-
volutional denoising and auto-encoder mechanism into high-
dimension data featrue representation. Different network struc-
tures can extract various discriminate features for classification
of HSI. In [10], a CNN with five convolutional layers was
used to extract spectral features. However, spectral features
carry great intra-class variation and inter-class similarity and
ignore specific spatial information to some degree. As a result,
the work in [11] used 2-D convolutional kernels to extract
the spectral-spatial features for effectively HSI classification.
[12] proposed multiscale features fusion based on different
spatial structures containing various texture features due to
plentiful neighbourhood association. While HSI has noise in
the acquired datasets, with fully training, the CNN can not only
extract spatial-spectral features to improve accuracy without
information loss, it may also learn noise information hence
decrease classification results.

With the consideration of these advantages and disadvan-
tages of manifold learning and CNN, we propose a combi-
nation of dimension-reduced CNN features (DR-CNN fea-
tures), learned by a manifold learning method and CNN
called dimension-reduced CNN (DR-CNN) [13], and spatial-
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Fig. 1. t-SNE-CNN. The feature fusion based classification framework.

spectral features, learned by a deep learning newtowrk called
multiscale-CNN, to improve the classification accuracy of HSI.
Firstly, we implement t-SNE to obtain a dimension-reduced
hyperspectral image. Then CNNs are designed to extract high-
level features from the dimension-reduced image and also from
the original HSI with multiscale scheme. Finally, assembly
features extracted by CNNs are used for classification.

The remaining parts of this letter are organized as follows.
Section II introduces the framework of t-SNE-CNN. Section
III presents experimental results including comparisons with
the state-of-the-art. Section IV summarizes some concluding
remarks.

II. THE PROPOSED T-SNE DEEP LEARNING FRAMEWORK

A. DR-CNN: Feature Extraction Based on t-SNE Dimension-
ality Reduction and CNN

Given a high-dimensional hyperspectral image matrix X =
[x1,x2, . . . ,xN ] ∈ RC×N with N spectral vectors (the
columns of X) of size C, the t-SNE algorithm converts
X into a low-dimensional matrix Y = [y1,y2, . . . ,yN ] ∈
RD×N (D < C). Two conditional probability distributions are
defined as follows:

P (xi|xj) =
S(xi,xj)∑N
k 6=i S(xi,xk)

(1)

Q(yi|yj) =
S(yi,yj)∑N
k 6=i S(yi,yk)

(2)

where S(·) denotes the Euclidean distance between two vec-
tors of sample pixels. To satisfy the distribution of conditional
probability P and Q being as equal as possible for all sample

pixels, the Kullback-Leibler (KL) divergence in (3) need be
as small as possible:

KL =
∑
i

∑
j

P (xi,xj) log
P (xi|xj)

Q(yi|yj)
. (3)

The t-SNE algorithm obtains the optimal dimensionality
reduction by calculating the minimum value of KL divergence
between the joint conditional probability of the original space
and the embedded space. The non-linear dimension-reduction
algorithm t-SNE finds the structure of data by identifying the
pattern based on the similarity of data points with multiple
characteristics, focusing on the local structure of data. Actu-
ally, in order to speed up the calculation, we use “Barnes-Hut
t-SNE” instead of the traditional “t-SNE” method. Parameters
are set as follows:
• The dimension of reduced data Y is set to D = 3, which

is the same as that in [14]. This is because larger D can
hardly improve the classification accuracy as validated in
our experiments.

• The parameter of perplexity, denoted as α, is set as 50.
Larger datasets usually require a larger perplexity to use
more nearest neighbors information.

• The remaining parameters are consistent with the
default setting of “TSNE” in the sklearn codebase
(https://scikit-learn.org/stable/modules/generated/sklearn.
manifold.TSNE.html).

The DR-CNN feature extraction model is shown in Figure
1 of the block dimension-reduced CNN. The t-SNE algorithm
maps hyperspectral data from the original high-dimensional
manifold space to a low-dimensional space, followed by four
convolutional modules. Considering that the t-SNE algorithm

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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is focusing more on the local structure of the hyperspectral
image, we extract large scale data cubes of size 41 × 41 ×
D as input data, where D represents the number of reduced
dimension. The size of extracted cubes is the same as that in
[14]. Meanwhile, the size of convolutional kernels is set to 3×
3. Finally, the network outputs DR-CNN features. The network
operates in a similar manner as Multiscale-CNN which are
elabrated in the next subsection.

B. Multiscale-CNN: Spatial-spectral Feature Extraction from
the Original HSI

In order to fully extract spatial-spectral features from the
original HSIs [15], we propose to adopt multiscale convolution
kernels. The CNN computes robust spatial-spectral features by
applying various filters in multiple hidden layers. Consider-
ing different ground objects have different spectral reflection
profiles, the 2D convolutional kernel size is 1 × 1 to extract
spectral features. Meanwhile, 3×3-sized convolutional kernels
are exploited to effectively extract spatial information based
on local correlation. In the flowchart of multiscale-CNN, the
input data are calculated by multiple convolution kernels, then
activated by an activation function. Finally, features are con-
catenated in a fully connected layer. A typical hyperspectral
convolution calculation formula is given by:

vi,j = ffc(fac(wc ∗Xi,j)) (4)

where vi,j represents the feature vector of the input data at
position (i, j) in the HSI, ffc is the fully connected function
which transforms the data into one-dimensional vectors, and
fac is an activation function. wc are multiple convolutional
kernels, combining with the input data Xi,j through the
operation of convolution denoted as ∗. The parametric rectified
linear unit is applied as a non-linear activation function, which
is defined by:

fac =

{
xi, if xi > 0,

aixi, if xi ≤ 0.
(5)

where ai is automatically updated in the process of training
CNN.

The structure of multiscale-CNN is shown in Figure 1. It can
be divided into two main components, including extraction of
spectral features and spatial features. The spectral features are
extracted by utilizing 1× 1×L convolutional kernels in scale
1 where L represents the number of convolutional kernels.
The framework designs 3 × 3 × L convolutional kernels to
extract spatial information from 3 × 3 × C-sized cube and
9 × 9 × C-sized cube which composed by center pixel and
its neighbourhoods pixels from original hyperspectral image.
This network adopts 3×3×C-sized cube in scale 2, and uses
a 9× 9× C-sized cube in scale 3. In the final step, different
scale features are concatenated as spatial-spectral features.

C. t-SNE-CNN: Classification by Combining the Two Kinds
of Features

As shown in Figure 1, spatial-spectral features and t-SNE
features are combined together to classify HSI. The network
predicts class of assembly features by applying linear layers

and an activation function layer. In this work, linear layers
mean features transformation which combines two kinds of
features and adjusts the number of assembly features. To
enhance the robustness of classification results, dropout is
introduced to force randomly some nodes of each layers to
zero in every training session. The final layer outputs class
labels.

This letter proposes a deep learning classification method to
extract assembly features which combined spatial-spectral fea-
tures of multiscale-CNN and dimensionality reduction features
of t-SNE algorithm. The next section details the parameter
settings of the proposed approach and the classification results
on three real hyperspectral images.

III. EXPERIMENT RESULT

A. Datasets

There are three datasets used in evaluating the performance
of the proposed method for classification of HSI, including
the Indian Pines dataset, the University of Pavia dataset, and
the Salinas dataset.

1) Indian Pines: We use remaining 200 bands in 0.4-2.5
um with a spatial resolution of 20 m. It is composited by 16
different land-cover classes with 10249 labelled pixels. Each
class is divided randomly into 10% for training the network
and 90% for testing the performance of t-SNE-CNN.

2) University of Pavia: We use 103 bands in 0.43-0.86
um with a spatial resolution of 1.3 m. It is composited by
9 different land-cover classes with 42776 labelled pixels. The
individual class is divided randomly into 3% for training data
and 97% for testing data.

3) Salinas: We use 204 bands in 0.4-2.4 um with a spatial
resolution of 3.7 m. It is composited by 16 different land-
cover classes with 54129 labelled pixels. Each class is divided
randomly into 1% training data and 99% testing data.

B. Baselines

To evaluate the performance of the proposed t-SNE-CNN,
we compare it with two widely-used conventional machine
learning methods, namely SVM [16] and RF-200 [1] with
200 trees. Meanwhile, deep learning methods, 1D-CNN [11]
exploiting spectral information and DC-CNN [14] exploiting
spatial-spectral information, are also compared. These exper-
iments just follow default parameters in cited documents to
make the results more consistently for comparison. Further-
more, in order to see the individual effect of DR-CNN features
and spatial-spectral features extracted by the proposed method,
we show their classification results, called ‘DR-CNN’ and
‘multiscale-CNN’, respectively, when using only one kind of
features.

For quantitative assessment, the overall accuracy (OA) of
all classes, the average accuracy (AA) of each class, and the
Kappa (consistency of classification results based on confusion
matrix) are calculated.

The optimization function of t-SNE-CNN network is Adam
[17] with an initial learning rate of 0.005. For each 10 training
epochs, the learning rate decays to 90% of the previous one.
Meanwhile, the batch size of the training data is set as 100 in
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Fig. 2. Indian Pines. Classification result graphs of different methods and a standard classification result graph of Indian Pines.

Fig. 3. University of Pavia. Classification result graphs of different methods and a standard classification result graph of University of Pavia.

Fig. 4. Salinas. Classification result graph of different methods and a standard classification result graph of Salinas.

every training epoch. For optimum parameters, t-SNE-CNN
network chooses CrossEntropyLoss as the loss function and
initializes network parameters by ‘Kaiming normal’ method.
In Table I, network configuration are specified with the pa-
rameters.

TABLE I
PARAMETERS OF PROPOSED T-SNE-CNN NETWORK

t-SNE-CNN Network Indain Pines University of Pavia Salinas

Scale 1 Convolutional kernel size: 1× 1, number of kernels: 16, stride=1
Activation function: PRelu()

Scale 2 Convolutional kernel size: 3× 3, number of kernels: 16, stride=1
Activation function: PRelu()

Scale 3 Convolutional kernel size: 3× 3, number of kernels: 16, stride=2
Activation function: PRelu()

t-SNE Convolutional kernel size: 3× 3, number of kernels: 40, stride=2
Activation function: PRelu()

Classification Dropout: 0.5
Activation function: PRelu()

C. HSI classification

As shown in the Figure 2, Figure 3 and Figure 4, the clas-
sification maps of t-SNE-CNN are visually better than those
from other methods. Obviously, t-SNE-CNN with spatial-
spectral information from dimensionality reduced HSI and
the original HSI provides higher feature extraction capability
in classification. As illustrated in detail in Table II, several
observations are summarized as follows concisely: (1) In three

HSIs, t-SNE-CNN yields uniformly the best performance in
terms of OA, AA, and Kappa indexes; (2) t-SNE-CNN out-
performs DR-CNN and multiscale-CNN, implying the fusion
of two kinds of features (i.e., DR-CNN features used in DR-
CNN method and spatial-spectral features used in multiscale-
CNN) can improve classification accuracy than using only one
of them; (3) In particular, the t-SNE employing dimension-
reduced HSI boosts the separability between categories com-
pared with SVM, RF-200 and 1D-CNN using original HSI;
(4) Basically, neural network-based methods, except 1D-CNN,
achieve higher classification accuracy than two conventional
machine learning methods, i.e., SVM and RF-200.

The classification accuracy of each class is compared in Fig-
ure 5. As seen, t-SNE-CNN (in red color) uniformly achieves
higher accuracy in each class and has great improvement on
some classes with low accuracy in contrast methods, e.g. class
9 in Indian Pines, class 3 in University of Pavia data, and class
11 in Salinas data. Furthermore, the red lines exceed the blue
lines and the pink lines, implying that t-SNE-CNN can fully
integrate two features to improve classification performance.

IV. CONCLUSION

In order to deal with Hughes phenomenon and to take full
advantage of spectral-spatial information in HSIs, we propose
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TABLE II
CLAFFISICATION OF THREE DATA SETS FOR DIFFERENT CLASSIFICATION METHODS. (REPEATING TEN TIMES TO CALCULATE MEAN VALUE.)

Data set Indian Pines University of Pavia Salinas
Evaluation Index OA AA Kappa OA AA Kappa OA AA Kappa
t-SNE-CNN 98.94% 97.89% 98.79% 99.74% 99.60% 99.65% 99.26% 99.35% 99.18%
DC-CNN [14] 98.07% 95.50% 97.80% 99.14% 98.71% 98.86% 97.84% 98.39% 97.59%
DR-CNN 97.38% 94.93% 97.02% 96.33% 92.50% 95.12% 98.73% 98.65% 98.58%
multiscale-CNN 92.87% 87.42% 91.86% 98.32% 97.06% 97.78% 93.44% 96.14% 92.70%
1D-CNN [11] 74.53% 66.36% 70.69% 91.00% 88.30% 88.01% 88.99% 92.71% 87.70%
SVM [16] 80.59% 74.81% 77.75% 92.24% 89.39% 89.62% 89.27% 92.54% 88.01%
RF-200 [1] 75.71% 61.89% 71.97% 85.41% 80.59% 80.16% 86.56% 90.65% 85.01%
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Fig. 5. Classification accuracy of each class : Indian Pines, University of
Pavia, Salinas. The right column represents the classification result of zooming
in the upper part of the image corresponding to the left column.

in this letter a CNN based classification framework exploit-
ing assembling features extracted from both the dimension-
reduced data and the original image with multiscale scheme.
The experiments using three real HSI datasets demonstrate
that assembly features achieve better classification results
than individual features. A comparison of t-SNE-CNN with
the state-of-the-art algorithms is conducted, leading to the
conclusion that t-SNE-CNN outperform several conventional
and deep learning based methodologies.
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